
Citation: Li, D.; Xu, S.; Jin, H.; Wang,

J.; Yan, F. Copper Nanoparticles

Confined in a Silica Nanochannel

Film for the Electrochemical

Detection of Nitrate Ions in Water

Samples. Molecules 2023, 28, 7515.

https://doi.org/10.3390/molecules

28227515

Academic Editors: Ewa Szpyrka and

Magdalena Słowik-Borowiec

Received: 9 October 2023

Revised: 5 November 2023

Accepted: 7 November 2023

Published: 10 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Copper Nanoparticles Confined in a Silica Nanochannel Film
for the Electrochemical Detection of Nitrate Ions in
Water Samples
Dewang Li 1,2, Shuai Xu 3, Haiyan Jin 1,2, Jinqing Wang 4 and Fei Yan 3,*

1 Donghai Laboratory, Zhoushan 316021, China; dwli@sio.org.cn (D.L.); jinhaiyan@sio.org.cn (H.J.)
2 Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural

Resources, Hangzhou 310012, China
3 School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;

202120104178@mails.zstu.edu.cn
4 College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China;

jqwang@cjlu.edu.cn
* Correspondence: yanfei@zstu.edu.cn

Abstract: The nitrate ion (NO3
−) is a typical pollutant in environmental samples, posing a threat

to the aquatic ecosystem and human health. Therefore, rapid and accurate detection of NO3
−

is crucial for both the aquatic sciences and government regulations. Here we report the fabrica-
tion of an amino-functionalized, vertically ordered mesoporous silica film (NH2-VMSF) confining
localized copper nanoparticles (CuNPs) for the electrochemical detection of NO3

−. NH2-VMSF-
carrying amino groups possess an ordered perpendicular nanochannel structure and ultrasmall
nanopores, enabling the confined growth of CuNPs through the electrodeposition method. The
resulting CuNPs/NH2-VMSF-modified indium tin oxide (ITO) electrode (CuNPs/NH2-VMSF/ITO)
combines the electrocatalytic reduction ability of CuNPs and the electrostatic attraction capacity of
NH2-VMSF towards NO3

−. Thus, it is a rapid and sensitive electrochemical method for the determi-
nation of NO3

− with a wide linear detection range of 5.0–1000 µM and a low detection limit of 2.3 µM.
Direct electrochemical detection of NO3

− in water samples (tap water, lake water, seawater, and
rainwater) with acceptable recoveries ranging from 97.8% to 109% was performed, demonstrating
that the proposed CuNPs/NH2-VMSF/ITO sensor has excellent reproducibility, regeneration, and
anti-interference abilities.

Keywords: copper nanoparticles; silica nanochannel film; nitrate ions; electrochemical sensor; water
samples

1. Introduction

In the past few decades, nitrate ion (NO3
−) pollution in water environments has

become a serious global environmental issue [1]. The wide-spread use of nitrogen fertilizers
and fossil fuels dramatically increases food production and the human population. How-
ever, the excess nitrogen on land and in the air has adverse effects on aquatic ecosystems
and human health. Excessive use of nitrogen-containing fertilizers in agriculture and
livestock farming, along with the uncontrolled discharge of wastewater into the ground-
water, can result in the contamination of multiple aquatic environments [2]. Emissions of
industrial gases are also a source of nitrate pollution, which can form nitric acid and further
acidify lakes and streams through atmospheric deposition [3]. Increased nitrogen flowing
into estuarine and nearshore waters contributes to the eutrophication of coastal waters.
This phenomenon leads to a rise in the occurrence of harmful algal blooms, coastal hypoxia,
and the degradation of habitats [4]. The ultimate oxidation product of inorganic nitrogen,
NO3

−, accounts for more than 65% of the dissolved nitrogen in seawater. Its status and fate
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are crucial to the marine biogeochemical cycles of carbon [5], whose coupling regulates the
climate on Earth [6]. As for human health, high levels of NO3

− intake in the human body
induce methemoglobinemia, colorectal cancer, thyroid disease, and neural tube defects [7].
For these reasons, the World Health Organization, the Food and Agriculture Organization,
and governments have all set strict limits on NO3

− in drinking water [8,9]. Therefore, sim-
ple and sensitive methods for the quantitative analysis of NO3

− in aquatic environments
are urgently needed for the aquatic science community and governments.

Various methods for NO3
− determination include the visible spectrophotometric

method using color reagents [10], direct ultraviolet spectrophotometry [11], fluorescence [12],
chemiluminescence [13], electrochemical sensors [14], high-performance liquid chromatog-
raphy [15], and ion chromatography [16]. Electrochemical sensing has gained widespread
popularity because it generally offers a fast response time, high sensitivity, space-saving
designs, and cost-efficiency [17–19]. However, electrochemical process of NO3

− at the
common electrodes is rather slow and produces high overpotentials. To overcome this
issue, researchers have focused on the exploitation of various nanomaterials, such as metal
nanoparticles [20], carbon nanotubes/fibers [21], and graphene-based materials [22]. Cop-
per nanoparticles (CuNPs) have been reported as an effective electrocatalytic material for
NO3

− and nitrite (NO2
−) reduction and have been combined with other carbonaceous

materials for the sensitive determination of NO3
− and NO2

− [23–25].
Recently, mesoporous materials integrated with various functional nanomaterials

have shown great potential in the fields of adsorption, catalysis, and sensing [26–31].
Vertically ordered mesoporous silica film (VMSF, also referred to as silica nanochannel
film) has opened a vast range of potential opportunities for the electrochemical analysis
of complicated real samples in recent decades [32–34]. VMSFs consisting of vertically
oriented, open nanochannels attached to the electrode ensure the accessible transport of
analytes or probes to the VMSF/electrode interface [35–37]. In addition, VMSFs have the
electrostatic accumulation capacity for the target analyte due to the silanol groups on the
walls and tiny nanochannels; at the same time, the insulating silica membrane can impede
the ingress of interfering substances to the underlying electrode surface via charge, size,
and lipophilicity interactions, showing good sensitivity, reproducibility, and long-term
stability in real media analysis [38–40]. To enhance analytical sensitivity, electrocatalytic
and/or conductive nanomaterials, such as metal nanoparticles [41], graphene quantum
dots [42], and graphene nanosheets [43–46], have been incorporated into the inner space or
bottom of VMSFs. Metal nanoparticles (e.g., gold and platinum) have been synthesized
within the tiny nanochannels of VMSFs for the construction of attractive electrochemical
sensors. To the best of our knowledge, CuNPs confined in the silica nanochannels of VMSFs
have not yet been reported.

In this study, we synthesized electrodeposited CuNPs using an amino-functionalized,
vertically ordered mesoporous silica film (NH2-VMSF) as a hard template. Their electro-
chemical performance with regard to NO3

− quantification in environmental water samples
has been examined. Many uniform, tiny NH2-VMSF nanochannels favor the localized, sta-
ble growth of CuNPs, avoiding the use of any protective agent. The resulting CuNPs/NH2-
VMSF-modified indium tin oxide (ITO) electrode, referred to as CuNPs/NH2-VMSF/ITO,
exhibits superior analytical performance with respect to NO3

− due to the electrocatalytic
properties of the CuNPs and the electrostatic accumulation ability of NH2-VMSF. More-
over, the CuNPs/NH2-VMSF/ITO sensor we developed exhibits excellent reproducibility,
regeneration, and anti-interference capabilities, which have been successfully employed to
accurately measure the concentration of NO3

− in diverse environmental water samples,
including tap water, lake water, seawater, and rainwater.

2. Results and Discussion
2.1. Characterizations of NH2-VMSF/ITO and CuNPs/NH2-VMSF/ITO Electrodes

Figure 1 shows the schematic illustration of the preparation of a CuNPs/NH2-VMSF/ITO
sensor and the electrochemical reduction detection of NO3

−, which is divided into the
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following three sections: First, a binary film consisting of surfactant micelles (SM) and
VMSF-bearing amino groups, abbreviated as SM@NH2-VMSF/ITO, was grown onto the
patterned ITO electrode using the traditional electrochemical-assisted self-assembly (EASA)
method [47,48] (Figure 1a). EASA combines electrochemical deposition and self-assembly
techniques, inducing the self-assembly of SMs on the ITO electrode surface and the sol-
gel process of the silane precursors within several seconds. SMs consisting of CTAB
micelles are physically confined within the ultrasmall nanochannel space of the NH2-VMSF
and can be excluded by simple solvent extraction [49]. The addition of (3-aminopropyl)
triethoxysilane into the precursor solution can result in the silica nanochannels carrying
amino groups [50]. The NH2-VMSF/ITO with an ultrasmall, open nanochannel array
provided a confined nanospace for the stable synthesis of CuNPs with no protective
agents. CuNPs were grown into the nanochannels of the NH2-VMSF using a controllable
electrodeposition method to form the CuNPs/NH2-VMSF/ITO (Figure 1b), and their
fabrication conditions (electrodeposition time) were also optimized. Not only could the
CuNPs/NH2-VMSF/ITO enrich NO3

− through electrostatic interaction between the amino
groups of the NH2-VMSF and NO3

−, but it also exhibited the capacity to electrocatalytically
reduce NO3

− via CuNPs. NO3
− could enter into the nanochannels of the NH2-VMSF and

be electrochemically reduced to NO2
− in an acidic environment (Figure 1c), ultimately

giving rise to the reductive peak and enabling the quantitative determination of NO3
−.

The anti-fouling properties of NH2-VMSF make the proposed CuNPs/NH2-VMSF/ITO
sensor suitable for direct analysis of NO3

− in practical water samples.
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Figure 1. Schematic diagram of the preparation of an NH2-VMSF/ITO sensor (a) and a CuNPs/NH2-
VMSF/ITO sensor (b) and the electrochemical reduction detection of NO3

− (c).

An NH2-VMSF layer grown on the ITO surface was investigated by transmission
electron microscopy (TEM). As shown in Figure 2a, the NH2-VMSF, which was prepared
using the electrochemically assisted self-assembly method with a high level of ordering,
has a great deal of uniformly and hexagonally distributed nanopores (top-view TEM).
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The average pore diameter of the NH2-VMSF was in the range of 2~3 nm. Nanochannels
oriented orthogonally to the NH2-VMSF surface were parallel to each other with a length
of 92 nm (cross-sectional view SEM, Figure 2b). Modification of the NH2-VMSF layer with
the permselective properties of the ITO was able to give rise to distinct electrochemical
responses towards charged probes compared to a bare ITO electrode. Figure 2c,d shows the
cyclic voltammetry (CV) curves of bare ITO, NH2-VMSF/ITO and SM@NH2-VMSF/ITO
electrodes in a buffer solution containing either 50 µM Fe(CN)6

3− or 50 µM Ru(NH3)6
3+. As

can be seen, both Fe(CN)6
3− and Ru(NH3)6

3+ were able to generate a pair of reversible redox
peaks on the bare ITO (black curve). When insulating the NH2-VMSF with a SM inside
the nanochannels, no Faradic current was measured at the SM@NH2-VMSF/ITO electrode
(blue curve), because the templated SM molecules blocked access of charged hydrophilic
probes; this further indicates that intact the NH2-VMSF homogeneously covers the whole
ITO electrode surface. Effective exclusion of SMs from the nanochannels could be achieved
using a HCl–ethanol solution to obtain the NH2-VMSF/ITO with recovered electrode
accessibility [51]. Amino groups on the NH2-VMSF were exposed to the buffer solution and
carried positive charges under the measured experimental conditions (pH = 7.0), leading
to enhanced voltammetric currents for Fe(CN)6

3− (anodic peak current, Iox, 33.7 µA vs.
24.4 µA (bare ITO)), while decreasing signals for Ru(NH3)6

3+ (Iox, 33.7 µA vs. 24.4 µA
(bare ITO)) at the NH2-VMSF/ITO electrode. The values of the peak-to-peak separation
obtained at the NH2-VMSF/ITO electrode were slightly larger than those at the bare ITO,
suggesting the transport of probes into the nanochannels of NH2-VMSF is effective. This
anion-selective permeability of the NH2-VMSF/ITO is due to the protonation of amino
groups on the channel walls of the NH2-VMSF and to pronounced electrostatic interaction
within the tiny space [52].

The surface appearance of the NH2-VMSF before and after the confined growth of
CuNPs for an electrodeposition time of 10 s and 15 s (abbreviated as CuNPs10s/NH2-
VMSF/ITO and CuNPs15s/NH2-VMSF/ITO) was examined via scanning electron mi-
croscopy (SEM). As seen in Figure 3a–c, the CuNPs10s/NH2-VMSF/ITO gave rise to a
smooth surface, which was similar to that of the NH2-VMSF/ITO, suggesting that electrode-
posited CuNPs were inside the tiny nanochannels of the NH2-VMSF. However, numerous
nanoparticles were observed at the surface of the CuNPs15s/NH2-VMSF/ITO (Figure 3c),
which resulted from the formation of inhomogeneous, large CuNPs on the top surface
of the NH2-VMSF when the electrodeposition time for the CuNPs was extended to 15 s
(Figure 3d). Therefore, longer electrodeposition time can lead to the extended growth
of CuNPs from the nanochannel to the surface of the NH2-VMSF/ITO. CuNPs on the
surface of the NH2-VMSF/ITO are unstable and easily fall off the electrode surface, while
those inside the silica nanochannels exhibit high stability due to the confinement effect.
Considering the stability issue of the fabricated electrode, 10s was selected as the opti-
mal electrodeposition time to guarantee the growth of CuNPs inside the nanochannels.
Figure 3e shows CV curves for the NH2-VMSF/ITO and CuNPs/NH2-VMSF/ITO elec-
trodes in a 0.1 M KCl solution. By comparison, the CuNPs/NH2-VMSF/ITO electrode
exhibited the characteristic peaks of CuNPs, namely anodic peaks at −0.15 V and 0.10 V,
corresponding to the oxidation of Cu(0) to Cu(I) and Cu(I) to Cu(II), and cathodic peaks
at −0.09 V and −0.50 V, corresponding to the reduction of Cu(II) to Cu(I) and Cu(I) to
Cu(0). Figure 3f shows the XPS spectrum of the CuNPs/NH2-VMSF/ITO, and the inset
shows a magnified view of the peak of Cu 2p, demonstrating the presence of CuNPs. All of
these results confirm the successful confinement of CuNPs inside the nanochannels of the
NH2-VMSF via the electrodeposition procedure.
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Figure 2. (a) Top-view and (b) cross-sectional TEM images of the NH2-VMSF. The inset in (a) is
the corresponding magnified image showing hexagonally distributed nanopores. CV responses
of ITO (black), VMSF/ITO (red) and SM@VMSF/ITO (blue) to 50 µM Fe(CN)6

3− (c) and 50 µM
Ru(NH3)6

3+ (d) at a scan rate of 50 mV/s. The supporting electrolytes for Fe(CN)6
3− and Ru(NH3)6

3+

are 0.05 M KHP.

2.2. Electrocatalytic Reduction of NO3
− Using CuNPs/NH2-VMSF/ITO

Figure 4a depicts the electrochemical reduction ability of the fabricated CuNPs/NH2-
VMSF/ITO electrode towards NO3

−. Upon the addition of 300 µM NO3
− into a 0.1 M

Na2SO4 (pH = 3.0) solution, an obvious cathodic peak was observed at the CuNPs/NH2-
VMSF/ITO electrode, which was attributed to the electrocatalytic reduction of NO3

− at the
fabricated electrode. Figure 4b compares the CV and DPV responses of the CuNPs/NH2-
VMSF/ITO, NH2-VMSF/ITO and bare ITO electrodes towards 300 µM NO3

− in a 0.1 M
Na2SO4 (pH = 3.0) solution. As shown, no cathodic peak signal was observed at the bare
ITO electrode and a weak signal was obtained at the NH2-VMSF/ITO electrode due to the
electrostatic interaction between the positively charged channel walls and the negatively
charged NO3

−. After electrodeposition of CuNPs into the nanochannels, the CuNPs/NH2-
VMSF/ITO exhibited a significantly increased cathodic peak current for NO3

−, which was
attributed to the excellent electrocatalytic ability of CuNPs and the porous nanostructure of
the NH2-VMSF for the growth of numerous CuNPs. Therefore, the inherent nanocatalytic
properties of CuNPs and the electrostatic accumulation ability were combined to obtain a
highly sensitive determination of NO3

−, showing superior analytical performance.
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Figure 4. (a) CV curves of a fabricated CuNPs/NH2-VMSF/ITO electrode in 0.1 M Na2SO4 (pH = 3.0)
in the absence and presence of 300 µM NO3

−. (b) CV responses of bare ITO, NH2-VMSF/ITO, and
CuNPs/NH2-VMSF/ITO electrodes towards 300 µM NO3

− in 0.1 M Na2SO4 (pH = 3.0). The inset in
(b) shows the corresponding DPV curves for 300 µM NO3

−.

The mechanism for the electrocatalytic reduction of NO3
− on the CuNPs/NH2-

VMSF/ITO electrode was investigated via CV and differential pulse voltammetry (DPV).
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Figure 5a shows the CV curves of 300 µM NO3
− in 0.1 M Na2SO4 (pH = 3.0) at the

CuNPs/NH2-VMSF/ITO under different scan rates. The cathodic peak current (Ipc) and
cathodic peak (Epc) of 300 µM NO3

− at the CuNPs/NH2-VMSF/ITO were extracted from
Figure 5a and plotted as a function of scan rate (v) and natural logarithm (ln v), respectively.
As shown in Figure 5b, the Ipc was linearly proportional to the v within the range of 60 to
220 mV/s, suggesting a surface-controlled electrocatalytic reduction process of NO3

− at
the CuNPs/NH2-VMSF/ITO. The relation between Epc and ln v was linear as shown in
Figure 5c and can be expressed as the following equation:

Epc = −0.0243ln v− 0.6310
(

R2 = 0.9903
)

(1)
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Figure 5. (a) CV curves for 300 µM NO3
− in 0.1 M Na2SO4 (pH = 3.0) at the CuNPs/NH2-VMSF/ITO

under different scan rates (from top to bottom: 60, 80, 100, 120, 140, 160, 180, 200, and 220 mV/s).
(b) The plot of the cathodic peak current (Ipc) obtained from (a) against scan rate (v). (c) The plot of
the cathodic peak (Epc) obtained from (a) against the natural logarithm of the scan rate (lnv). (d) DPV
responses of the CuNPs/NH2-VMSF/ITO for 300 µM NO3

− in 0.1 M Na2SO4, adjusted to various pH
values. The plots of the Epc (e) and cathodic peak current (f) obtained from (d) against the pH value.

The Laviron equation was used as follows to describe the relationship between Epc
and ln v:

Epc = E′0 +
(

RT
αnF

)
ln
(

RTKs

αnF

)
−

(
RT
αnF

)
ln v (2)

where E′0, Ks, α, and n are the standard electrode potential, the standard heterogeneous
rate constant, the transfer coefficient, and the number of electrons involved in the rate-
determining step, respectively. Other symbols have their usual physical meanings: R,
gas constant (8.314 J moL−1 K−1); T, absolute temperature (298 K); F, Faraday constant
(96,485 C moL−1).
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The following can be deduced from Equations (1) and (2):(
RT
αnF

)
= 0.0243 (3)

According to Equation (3), the value of αn was calculated to be 1.05. Given a α of 0.5 in
the completely irreversible electrochemical reaction, n was calculated to be 2.1, indicating
that the reduction process of NO3

− involves two electrons.
The slope of the fitting linear relationship between Epc and pH could be used to

determine the ratio of electrons and protons participating in the electrochemical reaction
on the electrode surface. Figure 5d shows the DPV curves of the CuNPs/NH2-VMSF/ITO
electrode for 300 µM NO3

− in 0.1 M Na2SO4, adjusted to various pH values. As the curves
demonstrate, Epc became more negative as the pH increased. The good linear relationship
shown in Figure 5e in the range of 2.5 to 4.5 can be expressed as follows:

Epc = −0.0596pH− 0.555
(

R2 = 0.991
)

(4)

Given that dEpc
dpH = 2.303 mRT

nF , where m is the number of protons and the other symbols
are the same as above, the calculated m/n for the NO3

− reduction process was 1.01,
indicating equal involvement of protons and electrons in the electrochemical reduction of
NO3

−. Combining an n of 2 as obtained above, it could be inferred that the electrochemical
reduction reaction of NO3

− is a two-electron coupled, two-proton process, which can be
shown as follows:

NO−3 + 2H+ + 2e− → NO−2 + H2O (5)

2.3. Influence of Experimental Conditions on Electrochemical Detection of NO3
−

To obtain good analytical performance, the influence of the pH value of the Na2SO4
solution on the reduction of NO3

− was investigated. Figure 5f shows the cathodic peak
current for 300 µM NO3

− in 0.1 M Na2SO4 at the CuNPs/NH2-VMSF/ITO at different
pH values. The cathodic peak current initially increased with increasing pH, reaching a
maximum at pH 3, and then decreased as the pH continued to increase. When the pH was
less than 3, a hydrogen evolution reaction occurred at a less negative potential in strongly
acidic media, which could affect the reduction of NO3

−. When the pH was greater than 3,
a decrease in the cathodic peak current of NO3

− was found. This is because the hydrogen
ions participate in the electrochemical reduction reaction of NO3

− to NO2
−. An increase in

pH made the chemical equilibrium (Equation (5)) shift to the left, leading to the decreased
cathodic peak current. Therefore, pH 3 was selected as the optimum condition.

Optimizing the amount of CuNPs inside the nanochannels of the NH2-VMSF was
crucial to the effective accumulation of NO3

− for achieving the highest sensitivity. The
electrodeposition time of CuNPs can be used for determining the amount of CuNPs
inside the nanochannels, which was studied in Figure 6a. As shown here, when the
electrodeposition time of the CuNPs increased from 0 s to 10 s, the electrochemical reduction
signal of NO3

− gradually improved, because having more CuNPs inside the nanochannels
enhanced the electrocatalytic capacity for NO3

− reduction. But further increasing the
electrodeposition time causes excessive aggregation of CuNPs on the outer surface of
the NH2-VMSF channels. Therefore, the optimal electrodeposition time for the growth
of CuNPs was achieved at 10 s. The inner walls of the NH2-VMSF channels are rich in
amino groups, which carry positive charges in acidic environments and exhibit electrostatic
adsorption towards NO3

−. When the CuNPs/NH2-VMSF/ITO was magnetically stirred
in a buffer solution containing 100 µM NO3

−, the achieved cathodic peak current signal
increased significantly from 0 to 6 min (Figure 6b), which was due to more NO3

− having
diffused to the underlying electrode surface through the nanochannels of the NH2-VMSF.
After 6 min, the cathodic peak current of NO3

− remained unchanged. Therefore, the
accumulation time of 6 min was employed for the subsequent test.
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Figure 6. Effects of electrodeposition time (a) on the growth of CuNPs and of mechanical stirring
time (b) for the preconcentration of NO3

− on the electrochemical responses for 100 µM NO3
− at the

CuNPs/NH2-VMSF/ITO in a Na2SO4 (0.1 M, pH = 3) solution.

2.4. Electroanalytical Performance of NO3
− Using CuNPs/NH2-VMSF/ITO

The differential pulse voltammetry (DPV) technique was used to determine different
concentrations of NO3

− in a 0.1 M Na2SO4 solution using the CuNPs/NH2-VMSF/ITO
electrode. Figure 7 shows the DPV signals and calibration curves of NO3

− in the range of
5 µM−1 mM. As presented, the cathodic peak current of NO3

− tested at the CuNPs/NH2-
VMSF/ITO electrode grew linearly with concentration. The linear regression equation
in the range of 5–100 µM can be expressed as I (µA) = 0.051 C (µM) + 0.29 (R2 = 0.996),
and the other linear regression equation in the range of 100–1000 µM as I (µA) = 0.021 C
(µM) + 3.77 (R2 = 0.998). The limit of detection (LOD) was estimated to be 2.3 µM at a
signal-to-noise ratio of three using the formula of LOD = 3SD/k (where SD and k are the
standard deviation of the blank solution and the slope of the calibration curve, respectively).
Note that the LOD value is far below the concentration limit (806 µM) for NO3

− in the
water quality standard specified by World Health Organization. Moreover, the proposed
CuNPs/NH2-VMSF/ITO has several advantages over other electrodes reported in the
literature, such as a lower LOD, a wider dynamic linear range, and easy fabrication steps
(Table 1).

2.5. Anti-Interference, Regeneration, Reproducibility, and Stability of CuNPs/NH2-VMSF/ITO

The selectivity of the prepared CuNPs/NH2-VMSF/ITO sensor for NO3
− detection

was evaluated in the presence of common interfering ions, such as 1 mM Na2+, K+, Ca2+,
Mg2+, Na+, NO2

−, Cl−, Br−, SO4
2−, PO4

3−, and SO3
2−. As shown in Figure 8a, a ten-fold

concentration of these interfering ions produced minimal interference for the determination
of 100 µM NO3

− at the CuNPs/NH2-VMSF/ITO, indicating the good selectivity and
anti-interference ability of the proposed sensor. To assess the electrode’s regeneration
capacity, the same CuNPs/NH2-VMSF/ITO electrode was used to repeatedly measure
300 µM NO3

−; the used electrode was washed with a 0.1 M HCl–ethanol solution for
5 min prior to testing. As shown in Figure 8b, no significant decrease in the current signal
was observed at our fabricated sensor after five-time elution, demonstrating the excellent
regeneration ability of the sensor. Five batches of CuNPs/NH2-VMSF/ITO electrodes were
prepared under the same conditions and used to test 300 µM NO3

− in order to examine
the reproducibility of the electrode. The calculated relative standard deviation (RSD) of
the measured results from the five electrodes was 1.8% (Figure 8c), confirming the high
reproducibility of the CuNPs/NH2-VMSF/ITO electrode. Additionally, the stability of
the fabricated CuNPs/NH2-VMSF/ITO electrode was studied by comparing the initial
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cathodic peak current of NO3
− with that obtained after five days in storage. The data

shown in Figure 8d prove the good stability of CuNPs/NH2-VMSF/ITO electrode under a
nitrogen atmosphere compared with storage under an air atmosphere.
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Figure 7. (a) DPV responses of the CuNPs/NH2-VMSF/ITO to the successive addition of various
concentrations of NO3

− in a Na2SO4 (0.1 M, pH 3.0) solution. The concentrations of NO3
− range from

5 µM to 1000 µM. (b) The cathodic peak current—concentration plot for the CuNPs/NH2-VMSF/ITO
electrode with the addition of various concentrations of NO3

− in a Na2SO4 (0.1 M, pH 3.0) solution.
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error bars in (b) represent the standard deviations of three measurements.

Table 1. Analytical results of several modified electrodes for the detection of NO3
−.

Electrode Detection
Method

Linear Range
(µM)

LOD
(µM) Real Sample Ref.

Cu-NWs/copper tape LSV 10.0–1.5 × 103 9.1 river, rainwater
and drinking [53]

PEG-SH/SePs/AuNPs/PCE DPV 16.0–5 × 103 8.6 lake water [54]

Cu@TiO2-Nf/PAR/GCE DPV 5.0–7.5 × 103 2.1 river water
and tap water [55]

Cu/MWCNT/RGO/GCE SWV 0.1 × 75 0.02 mineral water
tap water and [56]

Pt/Ag/ITO CV 266–4.4 × 103 134.0 simulated ground water [57]

IIP-Cu-NPs/PANI/GCE EIS
LSV 1.0–1 × 103 31.0

5.0
mineral water

well water [58]

Cu-NWs/Cu wire LSV 50.0–600 12.2 not shown [59]

CuNPs/NH2-VMSF/ITO DPV 5.0–1 × 103 2.3 tap water, pond water,
seawater and rainwater This work

Cu-NWs: copper nanowires. PEG-SH: poly(ethyleneglycol) methylether thiol. SePs: selenium particles. AuNPs:
gold nanoparticles. PCE: paper carbon electrode. Nf: nafion. PAR: polyalizarin yellowe R. MWCNT: multiwall
carbon nanotubes. RGO: reduced graphene oxide. IIP: ion-imprinted polymer. PANI: polyaniline.
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tive layer on the electrode surface and has been used to design many electrochemical 

Figure 8. (a) Cathodic peak current ratio obtained at the developed CuNPs/NH2-VMSF/ITO elec-
trode for the detection of 100 µM NO3

− before (I0) and after (I) the addition of 1 mM of various
interfering substances to a Na2SO4 solution (0.1 M pH = 3). (b) DPV signals of 300 µM NO3

−

measured repeatedly after multiple elutions of the CuNPs/NH2-VMSF/ITO electrode. (c) DPV
signals of 300 µM NO3

− in a Na2SO4 solution (0.1 M pH = 3) measured using five different electrodes
prepared in parallel. (d) DPV signals of the CuNPs/NH2-VMSF/ITO electrodes for the detection
of 300 µM NO3

− in a 0.1 M Na2SO4 (pH = 3) solution after storage for different numbers of days
in air and nitrogen atmospheres, respectively. The error bars represent the standard deviations of
three measurements.

2.6. Direct Analysis of NO3
− in Water Samples

According to the previous reports, NH2-VMSF serves as a good anti-fouling protective
layer on the electrode surface and has been used to design many electrochemical sensors in
rather complicated real samples [38]. Environmental water samples including tap water,
rainwater, lake water, and seawater were selected to validate the practical applicability of
our fabricated CuNPs/NH2-VMSF/ITO electrode. The pH of these collected water samples
was adjusted to 3 using sulfuric acid, and several known concentrations of NO3

− were
added. The CuNPs/NH2-VMSF/ITO electrode was then used to analyze the above samples
using the DPV technique. Table 2 shows the quantitative results for NO3

− in water samples
using the standard addition method. As shown, our proposed CuNPs/NH2-VMSF/ITO
electrode exhibited excellent recovery values ranging from 97.8% to 109%, demonstrating
the good analytical performance of the developed sensor in real water samples.
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Table 2. Quantification of NO3
− in real samples using CuNPs/NH2-VMSF/ITO electrode.

Sample Added (µM) Found (µM) Recovery (%) RSD (%, n = 3)

10.0 10.2 102 0.9
Tap Water 100 103 103 1.9

500 495 99.0 3.1

30.0 32.8 109 3.9
Pond Water 100 97.8 97.8 3.4

500 503 101 1.2

30.0 29.9 99.6 2.6
Rainwater 100 100 100 1.6

500 505 101 0.8

30.0 30.9 103 2.3
Seawater 100 101 101 3.4

500 518 104 1.3

3. Materials and Methods
3.1. Chemicals and Instrumentations

All analytical grade chemicals and reagents in this study were used as received without
further purification. Ultrapure water was obtained from the Millipore Milli-Q system
(18 MΩ cm). Tetraethoxysilane (TEOS), cetyltrimethylammonium bromide (CTAB), and
(3-aminopropyl) triethoxysilane (APTES) were purchased from Sigma-Aldrich. Potassium
ferricyanide (K3[Fe(CN)6]), hexaammineruthenium (III) chloride ([Ru(NH3)6Cl3]), and
acetone were ordered from Shanghai Aladdin Biochemical Technology Co., Ltd. Sodium
sulfate (Na2SO4), sodium sulfite (Na2SO3), sodium nitrite (NaNO2), sodium phosphate
(Na3PO4), sodium chloride (NaCl), potassium chloride (KCl), potassium bromide (KBr),
potassium nitrate (KNO3), and copper (II) sulfate pentahydrate (CuSO4·5H2O) were bought
from Shanghai Macklin Biochemical Technology Co., Ltd. (Shanghai, China) Indium tin
oxide (ITO) conductive glass (surface resistivity < 17 Ω/square, thickness of 100 ± 20 nm)
were purchased from Zhuhai Kaivo Optoelectronics Technology Co., Ltd. (Zhuhai, China)
The ITO glass was sonicated with 1 M aqueous sodium hydroxide for two hours, followed
by acetone, ethanol, and deionized water sonication for ten minutes each. Finally, the ITO
glass was dried at 60 ◦C prior to use.

The shape and thickness of the NH2-VMSF were determined using transmission
electron microscopy (TEM, HT7700, Hitachi, Japan) and scanning electron microscopy
(SEM, SU8010, Hitachi, Japan) at accelerating voltages of 200 kV and 5 kV, respectively.
A PHI5300 electron spectrometer (PE Ltd., Boston, MA, USA) was used to conduct an
X-ray photoelectron spectroscopy (XPS) examination with 250 W, 14 kV Mg K radiation.
Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential
pulse voltammetry (DPV) measurements were carried out using an Autolab electrochemical
workstation (PGSTAT302N, Metrohm, Switzerland). Measurements of electrochemical
reactions were performed using a conventional three-electrode system. A bare ITO or
modified ITO (0.5 × 1 cm2), an Ag/AgCl (saturated with KCl solution), and a platinum
wire were selected as the working electrode, the reference electrode, and the counter
electrode, respectively.

3.2. Preparation of the NH2-VMSF/ITO Electrode

The NH2-VMSF was grown on a conductive ITO electrode using the electrochemically
assisted self-assembly (EASA) method [35]. A mixed solution composed of 20 mL ethanol,
20 mL 0.1 M NaNO3, 13.6 mM “TEOS + APTES” (9:1 molar ratio), and 4.35 mM CTAB were
first prepared. After adjusting the pH to 3.0 with hydrochloric acid (HCl, 3 M), the precursor
solution was stirred for 2.5 h at room temperature. A clean ITO (0.5× 1 cm2) was immersed
into the precursor solution and electrodeposited at a constant current of −0.35 mA for 10 s.
The resulting electrode was immediately removed from the growth solution, thoroughly
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rinsed with ultrapure water, dried under a nitrogen atmosphere, and aged overnight at
120 ◦C. During the preparation process, a surfactant micelle (SM) consisting of CTAB served
as a template and remained in the nanochannels of the NH2-VMSF; this was given the
designation SM@NH2-VMSF/ITO. SMs can be easily eliminated by stirring in 50 mL of an
ethanol solution containing 0.1 M hydrochloric acid for 5 min. The resulting electrode was
designated as the NH2-VMSF/ITO electrode.

3.3. Electrochemical Deposition of CuNPs

The electrochemical deposition of CuNPs into the NH2-VMSF was modified slightly
according to reference [56] as follows: 0.5 mmol CuSO4·5H2O was added to 50 mL of a 0.1 M
sulfuric acid solution and sonicated for 5 min to obtain the electrodeposition solution. Then,
the NH2-VMSF/ITO/ITO electrode was placed in the above electrodeposition solution and
was subjected to a constant potential of−0.6 V for 10 s using a platinum sheet as the counter
electrode and Ag/AgCl as the reference electrode. Finally, the resulting electrode was
rinsed with ultrapure water and blow-dried with nitrogen gas, yielding the CuNPs/NH2-
VMSF/ITO electrode.

3.4. Detection of NO3
−

Before the electrochemical test, the Na2SO4 solution (0.1 M and pH adjusted to 3.0
with sulfuric acid) was deoxygenated by bubbling nitrogen gas in the solution for 30 min.
Various concentrations of NO3

− were added to the above solution and determined using
the CuNPs/NH2-VMSF/ITO electrode under a nitrogen atmosphere. The DPV parameters
included a step potential of 0.005 V, a pulse amplitude of 0.05 V, an interpulse time of 0.2 s,
and a pulse time of 0.05 s.

3.5. Actual Sample Testing

Tap water, rainwater, lake water, and seawater were selected as actual samples to verify
the accuracy of the CuNPs/NH2-VMSF/ITO sensor using the standard addition method.
Tap water, lake water, and rainwater in the samples were sourced locally (Hangzhou,
China), and seawater produced in Qingdao (Shandong, China) was purchased from Taobao.
The pH of these environmental water samples was adjusted to 3 using sulfuric acid (0.1 M)
without dilution. Different concentrations of NO3

− were added to the water samples and
then determined using the CuNPs/NH2-VMSF/ITO sensor.

4. Conclusions

A simple and highly sensitive NO3
− electrochemical sensor was developed based on

an NH2-VMSF and CuNPs confined in the nanochannels. Physical confinement of CuNPs
was achieved via a controllable one-step electrodeposition procedure. The immobilization
of the CuNPs in the tiny nanochannels endows the electrode with the electrocatalytic
capacity for reducing NO3

− and conducting highly sensitive NO3
− measurements. Not

only can the NH2-VMSF serve as a hard template for the stable growth of CuNPs, but it
can also provide the electrostatic accumulation capacity for the target NO3

−. The detection
limit for this kind of CuNPs/NH2-VMSF/ITO sensor is as low as 2.3 µM with a linear range
extending from 5.0 µM to 1 mM for NO3

− determinations. Furthermore, direct analysis of
NO3

− concentrations in various environmental samples using our proposed sensor was
evaluated, revealing acceptable accuracy and great promise for fast NO3

− monitoring in
samples of polluted water such as sewage.
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