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Abstract: Urate transporter 1 (URAT1) is a clinically validated target for the treatment of hyper-
uricemia and gout. Due to the absence of protein structures, the molecular design of new URAT1
inhibitors generally resorts to ligand-based approaches. Two series of biphenyl carboxylic acids were
designed based on the structures of URAT1 inhibitors Epaminurad and Telmisartan via a strategy
of pharmacophore fusion. Fifty-one novel compounds were synthesized and most of them showed
obvious inhibition against human URAT1. A1 and B21 were identified as the most potent URAT1
inhibitors in series A and B, respectively. They exhibited IC50 values of 0.93 µM and 0.17 µM, which
were comparable or superior to the clinical uricosuric drug benzbromarone. The results confirmed
the effectiveness of ligand-based approaches in identifying novel and potent URAT1 inhibitors.
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1. Introduction

High serum uric acid concentration is an important risk factor for the development
of gout. Chronically elevated uric acid levels, which is termed hyperuricemia, can lead
to deposition of monosodium urate crystals in articular and non-articular structures, and
hyperuricemia is the major cause of gout flares [1,2]. Besides anti-inflammatory treat-
ment during gout attacks, effective control of the uric acid level is a key strategy for the
prevention and treatment of gout. Urate lowering therapies (ULTs) aim to reverse hyper-
uricemia, which thereby dissolve monosodium urate crystals and prevent gout attacks in
the long term.

Insufficient urate excretion is the primary reason for high serum urate (SU) levels, and
urate excretion is predominantly regulated by urate transporters in the kidneys, specifically
URAT1 (SLC22A12) [3–6], GLUT9 (SLC2A9) [5,7], and ABCG2 [8]. Therefore, uricosuric
agents represented by URAT1 inhibitors are principal components of currently available
small-molecule ULTs [9–11].

URAT1 inhibitors can inhibit urate reabsorption, promote urate excretion, and thus
lower the serum urate level. Hence, URAT1 inhibitors have drawn extensive attention in re-
cent years as an effective urate-lowering therapy [11,12]. Currently, four URAT1 inhibitors,
namely Probenecid, Benzbromarone, Lesinurad, and Dotinurad (Figure 1), are used in
clinic for the management of hyperuricemia. Probenecid exerts its effects by inhibiting
both URAT1 and GLUT9. Despite its poor efficacy, Probenecid is still an option for patients
who cannot tolerate allopurinol or fail to achieve target SU in monotherapy with xanthine
oxidase (XO) inhibitors [9]. Benzbromarone is a highly active URAT1 inhibitor with an IC50
at submicromolar level. Although it is much more effective than Probenecid, occurrence
of liver toxicity has been occasionally reported. Therefore, liver function monitoring is re-
quired when prescribing this drug [9,13,14]. Lesinurad is a relatively weak URAT1 inhibitor
with an IC50 at micromolar level. Due to its poor efficacy, Lesinurad is usually used in clinic
in combination with XO inhibitors to achieve reasonable urate lowering effects [15,16].
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Dotinurad is a selective urate reabsorption inhibitor (SURI). It inhibits URAT1 selectively,
yet only shows minimal effects on ABCG2, OAT1, and OAT3. Dotinurad was approved in
Japan for the treatment of hyperuricemia and gout in 2020 [17–19]. The clinic application of
the marketed URAT1 inhibitors is more or less limited due to poor efficacy and potential
toxicity associated with these drugs. Thus, safe and effective management of hyperuricemia
is still an unmet clinic need. Most URAT1 inhibitors currently in clinical investigations
are structurally derived from the marketed drugs, which might inherently share similar
pharmacological and safety profiles with the previous drugs. Therefore, it is imperative to
discover new chemical prototypes of URAT1 inhibitors [20,21].
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Figure 1. The structures of representative URAT1 Inhibitors.

Due to the transmembrane nature of URAT1, its structure has not been resolved, and
the design of new URAT1 inhibitors mainly relies on ligand-based approaches [22–25].
Among the diverse URAT1 inhibitors reported, SHR4640 and Epaminurad (Figure 1) are
highlighted as representative inhibitors progressed to clinical investigations. SHR4640 is
a potent URAT1 inhibitor exhibiting good pharmacokinetic properties [26]. In a Phase
II clinical trial in China, SHR4640 exhibited obvious urate lowering effects and good
tolerability with a regimen of 5 mg or 10 mg once daily by oral administration for five
weeks. SHR4640 is currently undergoing a phase III clinical trial [27,28]. Epaminurad
(UR-1102) is a highly selective URAT1 inhibitor derived from benzbromarone, yet it has
selectivity and safety profiles superior to benzbromarone [13,29,30].

Drug repurposing is not only a promising field to identify new therapeutic uses
for existing drugs, but also an effective approach to recognize potential leads in drug
discovery [31]. For example, the angiotensin II–receptor blockers (ARBs) Losartan, Irbe-
sartan, and Telmisartan (Figure 2) are therapeutic drugs to treat hypertension. However,
urate-lowering effects were observed during their clinical application, and they were later
recognized as weak URAT1 inhibitors [32], which provided a new chemical prototype for
URAT1 inhibitors.
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Figure 2. Representative angiotensin II receptor blockers with URAT1 inhibitory activity.

Careful examination of the structures of representative URAT1 inhibitors revealed the
pharmacophore of URAT1 inhibitors, which includes anionic and hydrophobic components.
To identify novel URAT1 inhibitors with better therapeutic profiles, we exploited a pharma-
cophore fusion strategy based on the structures of Telmisartan and Epaminurad (Figure 3).
It was reported that the 3,5-dibromo-4-hydroxyphenyl fragment might be responsible
for metabolic activation and resultant hepatic toxicity of Benzbromarone derivatives [14].
The biphenyl carboxylic acid fragment from Telmisartan was thus taken as the anionic
component, while fragments similar to the 3,4-dihydro-2H-pyrido [4,3-b][1,4]oxazine part
in Epaminurad were introduced as the hydrophobic component. The two parts are fused
together through amide bonds to provide target compounds of series A (Figure 3), which
were designed to reduce toxicity (compared to Epaminurad) and improve chemical accessi-
bility (compared to Telmisartan) simultaneously. The amide bond in series A compounds
was replaced with 1,2,4-oxadiazol via a bioisosteric strategy, and a variety of aromatic
moieties were incorporated as the hydrophobic part to obtain target compounds of series B
(Figure 3). These two series of compounds were both featured by the presence of the
biphenyl carboxylic acid moiety, and we conducted preliminary structure–activity relation-
ship (SAR) exploration on these compound classes to discover new chemical prototypes as
potent URAT1 inhibitors.
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Figure 3. Novel biphenyl carboxylic acid-based URAT1 inhibitors designed by pharmacophore
fusion. The anionic (presented in red) and hydrophobic (presented in blue) components were derived
from Telmisartan and Epaminurad, respectively. The linker between the two parts was presented in
green. A and B represent the general formula for compounds in Series A and B, respectively.

2. Results and Discussion
2.1. Chemistry

The synthesis of the target compounds were demonstrated in Scheme 1. Briefly,
diphenic anhydride underwent amide condensation with substituted amines to form com-
pounds A1–A19. Intermediate I-1 was obtained through condensation of iodine substituted
benzoic acid with 1,2,3,4-tetrahydroquinoline. I-1 underwent a coupling reaction with
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carboxylic ester substituted phenylboronic acid to give intermediate I-2, which is then
hydrolyzed to provide compounds A20–A21. Cyanides reacted with hydroxylamine hy-
drochloride to afford intermediate I-3, which reacted with diphenic anhydride to furnish
the oxadiazole ring and provide compounds B1–B25. Compound B21 was subjected to
successive amidation and hydrolysis to obtain compound B26. Compound B27 was also
obtained from B21 by reacting with 4-bromobenzenesulfonamide. Intermediate I-3a con-
densed with iodine substituted benzoic acid to get intermediate I-5a, which was then
cyclized to give the oxadiazole intermediate I-6a. I-6a underwent Suzuki reaction with
substituted phenylboronic acid to produce compounds B28 and B29. Intermediate I-7
furnished the 1,3,4-oxadiazole ring through the hydrazine and carboxylic acid conden-
sation. I-7 then underwent Suzuki reaction with substituted phenylboronic acid to form
intermediate I-8, and subsequently hydrolyzed to obtain compound B30.
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Scheme 1. Synthetic routes of target compounds A1–A21, B1–B30. Reagents and conditions:
(a) Toluene, 120 ◦C; (b) Triethylamine, DMAP, CH2Cl2, r.t., then 1N aq. HCl; (c) HATU, Triethy-
lamine, Acetonitrile, r.t.; (d) K2CO3, Pd(PPh3)4, Toluene:95%Ethanol (1:1), 110 ◦C, N2; (e) LiOH.H2O,
Ethanol:H2O (4:1), r.t., then 1N aq. HCl; (f) NH2OH.HCl, Na2CO3, Ethanol:H2O (4:1), 60 ◦C;
(g) DMSO, r.t., then NaOH, r.t., then 1N aq. HCl; (h) Triethylamine, HATU, DMF, 60 ◦C; (i) EDCI,
DMAP, CH2Cl2, r.t.; (j) Triethylamine, HATU, CH2Cl2, r.t.; (k) Cs2CO3, DMSO, r.t.; (l) K2CO3,
Pd(PPh3)4, Toluene:95%Ethanol (1:1), 110 ◦C, N2, then 1N aq. HCl; (m) POCl3, 110 ◦C. DMAP:
4-dimethylaminopyridine; HATU: 2-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexaflu-
orophosphate; EDCI: 1-ethyl-(3-dimethylaminopropyl)carbodiimide hydrochloride.

2.2. In Vitro Evaluation and Structure–Activity Relationships

All the target compounds were evaluated for their URAT1 inhibitory activities in
HEK293-URAT1 cells using 14C-labeled uric acid as the substrate. The activity data are
listed in Tables 1 and 2. Currently available data revealed some SAR clues. The SAR
exploration on series A compounds mainly focused on the hydrophobic component. Re-
gioisomers A1, A20 and A21 were first investigated to determine the regioselectivity for
URAT1 inhibition, and the ortho-substituted pattern (A1) emerged to be optimal. With the
ortho-substituted biphenyl carboxylic acid fixed, a variety of hydrophobic components
were introduced as R. This molecular area seemed sensitive to steric hindrance. Moieties
with sizes similar to tetrahydroquinoline in A1 are prone to maintain certain URAT1 in-
hibitory activities (A2–A11), though the activity was more or less decreased. However,
moieties with sizes much larger (A12, A14) or smaller (A16–A19) than tetrahydroquinoline
generally led to significantly decreased inhibitory activity. A13 and A15 were exceptions.
The introduction of an electron-deficient pyridyl retained the URAT1 inhibitory activity
(A13), while tetrahydroisoquinoline as R caused significant loss of activity (A15). These
results implied the involvement of factors other than steric hindrance in affecting the
inhibitory activity. For series B compounds, the ortho-substituted biphenyl carboxylic acid
was initially kept, and various aromatic components were incorporated (B1–B25). Sub-
stituted phenyl (B1–B7), furanyl (B8), thienyl (B9 and B10), pyrimidyl (B11), and pyridyl
(B12–B14) were initially attempted, and only compound B14 with 4-pyridyl showed sig-
nificant inhibitory activity. Different substituents were introduced onto the 4-pyridyl
(B15–B21). Except dimethyl substitution (B20), all the other substitution patterns led to
increased inhibitory activities. In contrast, quinolyl (B22–B24) or methoxyl substituted
naphthyl (B25) resulted in decreased URAT1 inhibition. Extending the carboxyl acid with
β-alanine (B26) caused dramatic loss of activity, yet amidation of the carboxyl acid with 4-
bromobenzenesulfonamide (B27) retained considerable inhibition. Regioisomers B28–B30
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were also explored, and ortho-substituted biphenyl carboxylic acid and 1,2,4-oxadiazole
were preferred.

Table 1. Structures and URAT1 inhibitory activities of compounds A1–A21.
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3. Materials and Methods
3.1. Chemistry

High-resolution mass spectra (HR-MS) were measured with an Agilent 6530 Accurate-
Mass Quadrupole Time-of-Flight (Q-TOF) LC/MS system equipped with electrospray
ionization (ESI). 1H NMR and 13C NMR spectra were recorded on a Quantum-I 400 or
AVANCE NEO 700 spectrometer with TMS as the internal standard. All reagents and
solvents were commercially obtained from local suppliers and were used directly without
further purification.

General preparation of compounds A1–A17. The diphenic anhydride (1.0 eq) and
substituted amines (1.0 eq) were mixed in 20 mL toluene. The mixture was stirred at 110 ◦C
for 12 h, and the solvent was evaporated in a vacuum. The residue was purified by column
chromatography to give A1–A17.

Compound A1: Yield 61%; white solid; mp: 147–149 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ7.84–7.77 (m, 1H), 7.50–7.37 (m, 5H), 7.21–7.15 (m, 1H), 7.14–7.09 (m, 1H), 7.03–6.96 (m,
2H), 6.92 (ddd, J = 14.6, 7.1, 1.8 Hz, 2H), 3.45 (t, J = 6.0 Hz, 2H), 2.43 (t, J = 6.9 Hz, 2H), 1.59
(p, J = 6.6 Hz, 2H); 13C NMR (176 MHz, DMSO-d6) δ168.07, 167.40, 139.05, 137.64, 137.03,
135.38, 130.89, 130.08, 129.13, 128.06, 126.97, 126.73, 124.36, 123.47, 25.22, 22.05; HR-ESI-MS:
m/z = 358.1455 [M + H]+, calculated for C23H20NO3: 358.1438.

Compound A2: Yield 63%; white solid; mp: 174–176 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.36 (s, 1H), 7.87–7.74 (m, 1H), 7.55–7.37 (m, 6H), 7.24 (dd, J = 6.3, 2.3 Hz, 1H), 7.08
(s, 1H), 6.95 (td, J = 7.8, 1.6 Hz, 1H), 6.81–6.62 (m, 2H), 3.83 (s, 2H), 3.70–3.42 (m, 2H);
HR-ESI-MS: m/z = 360.1252 [M + H]+, calculated for C22H18NO4: 360.1230.

Compound A3: Yield 51%; white solid; mp: 193–195 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.22 (s, 1H), 8.01–7.78 (m, 1H), 7.55–7.36 (m, 5H), 7.20 (d, J = 7.3 Hz, 1H), 7.09–7.02 (m,
2H), 7.00–6.94 (m, 1H), 6.92–6.77 (m, 2H), 3.71 (s, 2H), 2.93 (t, J = 5.5 Hz, 2H); HR-ESI-MS:
m/z = 376.1001 [M + H]+, calculated for C22H18NO3S: 376.1002.

Compound A4: Yield 66%; whsite solid; mp: 195–196 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.72 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.77 (dd, J = 7.7, 1.4 Hz, 1H), 7.57–7.43 (m, 4H),
7.37 (dt, J = 8.9, 7.2 Hz, 2H), 7.28 (d, J = 6.9 Hz, 1H), 7.21–7.08 (m, 2H), 6.99 (d, J = 7.7 Hz, 1H),
3.79 (s, 2H), 2.87 (s, 2H); HR-ESI-MS: m/z = 344.1277 [M + H]+, calculated for C22H18NO3:
344.1281.

Compound A5: Yield 64%; white solid; mp: 215–217 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ7.86 (d, J = 7.6 Hz, 1H), 7.63–6.93 (m, 10H), 6.75–6.59 (m, 1H), 3.25 (s, 2H), 2.56 (s, 1H),
1.57 (m, 4H); HR-ESI-MS: m/z = 372.1594 [M + H]+, calculated for C24H22NO3: 372.1594.

Compound A6: Yield 66%; white solid; mp: 231–233 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.29 (s, 1H), 7.86–7.77 (m, 1H), 7.52–7.36 (m, 6H), 7.25–7.20 (m, 1H), 7.12 (dd, J = 8.2,
2.0 Hz, 1H), 7.05–6.99 (m, 1H), 6.96 (d, J = 8.2 Hz, 1H), 3.43 (t, J = 6.0 Hz, 2H), 2.39 (d,
J = 6.9 Hz, 2H), 1.56 (p, J = 6.5 Hz, 2H); HR-ESI-MS: m/z = 436.0553 [M + H]+, calculated
for C23H19BrNO3: 436.0543.

Compound A7: Yield 65%; white solid; mp: 261–262 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.27 (s, 1H), 7.81 (dd, J = 6.7, 2.3 Hz, 1H), 7.51–7.37 (m, 5H), 7.20 (q, J = 2.8 Hz, 2H),
7.13–7.01 (m, 3H), 3.43 (t, J = 6.0 Hz, 2H), 2.44 (d, J = 6.9 Hz, 2H), 1.58 (p, J = 6.5 Hz, 2H);
HR-ESI-MS: m/z = 436.0544 [M + H]+, calculated for C23H19BrNO3: 436.0543.

Compound A8: Yield 61%; white solid; mp: 201–202 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.26 (s, 1H), 7.82 (dt, J = 6.7, 2.1 Hz, 1H), 7.52–7.37 (m, 5H), 7.27 (d, J = 7.9 Hz, 1H),
7.17 (dt, J = 6.5, 2.0 Hz, 1H), 7.04 (d, J = 8.3 Hz, 1H), 6.88 (tt, J = 9.9, 8.1, 3.5 Hz, 2H), 3.45 (t,
J = 5.8 Hz, 2H), 2.40 (t, J = 7.2 Hz, 2H), 1.59 (t, J = 6.5 Hz, 2H); HR-ESI-MS: m/z = 436.0552
[M + H]+, calculated for C23H19BrNO3: 436.0543.

Compound A9: Yield 65%; white solid; mp: 233–234 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.27 (s, 1H), 7.83 (dt, J = 7.4, 1.7 Hz, 1H), 7.53–7.38 (m, 5H), 7.31–7.19 (m, 2H), 7.08–6.93
(m, 3H), 3.43 (t, J = 6.1 Hz, 2H), 2.43 (t, J = 6.9 Hz, 2H), 1.57 (t, J = 6.4 Hz, 2H); HR-ESI-MS:
m/z = 392.1064 [M + H]+, calculated for C23H19ClNO3: 392.1048.

Compound A10: Yield 65%; white solid; mp: 198–200 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.27 (s, 1H), 7.87–7.74 (m, 1H), 7.48–7.35 (m, 5H), 7.18 (dq, J = 4.2, 2.4 Hz, 1H), 7.05 (s,
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2H), 6.58 (d, J = 2.9 Hz, 1H), 6.52 (dd, J = 8.9, 2.9 Hz, 1H), 3.69 (s, 3H), 3.41 (t, J = 6.1 Hz,
2H), 2.41 (d, J = 8.5 Hz, 2H), 1.57 (p, J = 6.4 Hz, 2H); HR-ESI-MS: m/z = 388.1536 [M + H]+,
calculated for C24H22NO4: 388.1543.

Compound A11: Yield 67%; white solid; mp: 220–222 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ7.89–7.72 (m, 1H), 7.41 (dq, J = 5.3, 2.5, 1.9 Hz, 5H), 7.26–7.15 (m, 1H), 7.01 (s, 2H), 6.81
(d, J = 2.0 Hz, 1H), 6.73 (dd, J = 8.3, 2.1 Hz, 1H), 3.42 (t, J = 6.1 Hz, 2H), 2.40 (t, J = 6.9 Hz,
2H), 2.19 (s, 3H), 1.57 (p, J = 6.5 Hz, 2H); HR-ESI-MS: m/z = 372.1588 [M + H]+, calculated
for C24H22NO3: 372.1594.

Compound A12: Yield 55%; white solid; mp: 245–246 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.07 (s, 1H), 7.82 (dd, J = 7.0, 2.2 Hz, 1H), 7.59–7.12 (m, 12H), 7.05 (d, J = 7.9 Hz, 1H),
6.85 (d, J = 6.9 Hz, 1H), 3.50 (t, J = 6.0 Hz, 2H), 2.40 (d, J = 6.8 Hz, 2H), 1.59 (p, J = 6.4 Hz,
2H); HR-ESI-MS: m/z = 452.1649 [M + H]+, calculated for C29H23FNO3: 452.1656.

Compound A13: Yield 55%; white solid; mp: 266–268 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.22 (s, 1H), 8.62–8.40 (m, 2H), 7.96–7.76 (m, 1H), 7.58 (dd, J = 7.0, 2.0 Hz, 1H), 7.49
(dtd, J = 14.1, 7.4, 1.7 Hz, 2H), 7.44–7.31 (m, 4H), 7.28 (d, J = 5.1 Hz, 2H), 7.19 (dd, J = 7.0,
1.9 Hz, 1H), 7.11 (d, J = 7.9 Hz, 1H), 6.85 (s, 1H), 3.49 (d, J = 6.1 Hz, 2H), 2.40 (s, 2H), 1.58 (p,
J = 6.4 Hz, 2H); HR-ESI-MS: m/z = 435.1696 [M + H]+, calculated for C28H23N2O3: 435.1703.

Compound A14: Yield 54%; white solid; mp: 177–179 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.19 (s, 1H), 7.81 (dd, J = 7.4, 1.7 Hz, 1H), 7.60–7.53 (m, 1H), 7.51–7.44 (m, 2H),
7.43–7.34 (m, 2H), 7.28 (t, J = 7.9 Hz, 1H), 7.20 (ddd, J = 13.1, 7.5, 2.2 Hz, 3H), 7.04 (d,
J = 7.9 Hz, 1H), 6.93–6.75 (m, 4H), 3.80 (s, 3H), 3.50 (s, 2H), 2.38 (s, 2H), 1.58 (t, J = 6.4 Hz,
2H); HR-ESI-MS: m/z = 464.1849 [M + H]+, calculated for C30H26NO4: 464.1856.

Compound A15: Yield 62%; white solid; mp: 171–173 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.74 (s, 1H), 7.76 (dd, J = 7.7, 1.5 Hz, 1H), 7.50–6.48 (m, 11H), 4.29 (s, 2H), 3.33 (s,
2H), 2.73–2.17 (m, 2H); HR-ESI-MS: m/z = 358.1448 [M + H]+, calculated for C23H20NO3:
358.1438.

Compound A16: Yield 53%; white solid; mp: 169–172 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.64 (s, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.69–6.66 (m, 12H), 3.04 (s, 3H); HR-ESI-MS:
m/z = 332.1284 [M + H]+, calculated for C21H18NO3: 332.1281.

Compound A17: Yield 58%; white solid; mp: 118–120 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.74 (s, 1H), 8.42 (t, J = 6.1 Hz, 1H), 8.39–8.31 (m, 2H), 7.81 (dd, J = 7.5, 1.7 Hz, 1H),
7.59–7.41 (m, 5H), 7.16 (td, J = 6.4, 2.4 Hz, 2H), 6.90–6.83 (m, 2H), 4.25 (d, J = 5.9 Hz, 2H);
HR-ESI-MS: m/z = 333.1246 [M + H]+, calculated for C20H17N2O3: 333.1234.

General preparation of compounds A18 and A19. The diphenic anhydride (1.0 eq),
aromatic amines (1.0 eq), triethylamine (3.0 eq), and 4-dimethylaminopyridine (0.2 eq) were
mixed in 20 mL dichloromethane. The mixture was stirred at room temperature for 10 h,
and the solvent was evaporated in a vacuum. The reaction mixture was poured into water
(50 mL), 1 M HCl solution was added dropwise to separated water phase to adjust the pH
to 6 and the aqueous residue was extracted with dichloromethane. The combined organic
solution was washed with saturated aqueous sodium chloride solution (30 mL × 3) and
dried over anhydrous Na2SO4. The residue was purified by column chromatography to
A18 and A19.

Compound A18: Yield 55%; white solid; mp: 190–191 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.63 (s, 1H), 8.33–8.25 (m, 2H), 7.68–7.56 (m, 2H), 7.52–7.43 (m, 2H), 7.39–7.35 (m, 2H),
7.27 (tt, J = 7.4, 5.7 Hz, 2H), 7.16–7.05 (m, 1H), 6.99–6.91 (m, 1H); HR-ESI-MS: m/z = 319.1092
[M + H]+, calculated for C19H14N2O3: 319.1077.

Compound A19: Yield 53%; white solid; mp: 176–178 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ8.68 (d, J = 5.0 Hz, 1H), 7.88 (dd, J = 12.7, 8.5 Hz, 2H), 7.82 (d, J = 5.0 Hz, 1H), 7.70–7.61
(m, 2H), 7.52–7.45 (m, 3H), 7.39 (t, J = 7.7 Hz, 1H), 7.24 (dd, J = 6.2, 2.8 Hz, 2H), 7.10 (dd,
J = 5.9, 3.0 Hz, 1H), 7.05 (d, J = 4.0 Hz, 1H); HR-ESI-MS: m/z = 369.1253 [M + H]+, calculated
for C23H17N2O3: 369.1234.

General preparation of intermediate I-1. Iodine substituted benzoic acid (1.2 eq) and
1,2,3,4-tetrahydroquinoline (1.0 eq) were dissolved in 20 mL acetonitrile, then HATU (1.5 eq)
and triethylamine (2.0 eq) were added. The mixture was stirred at room temperature for
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10 h, and the solvent was evaporated in a vacuum. The residue was purified by column
chromatography to give intermediate I-1.

General preparation of intermediate I-2. The intermediate I-1 (1.0 eq), substituted
phenylboronic acids (1.0 eq), potassium carbonate (3.0 eq), and tetrakis(triphenylphosphi-
ne)palladium (0.2 eq) were added into 20 mL of a mixed solvent of toluene: 95%ethanol (1:1).
The mixture was stirred at 110 ◦C under N2 for 12 h. The solvent was then evaporated in a
vacuum and the residue was purified by column chromatography to get intermediate I-2.

General preparation of compounds A20 and A21. The intermediate I-2 (1.0 eq) and
lithium hydroxide monohydrate (2.0 eq) were dissolved in 20 mL of a mixed solvent of
ethanol: H2O (4:1). The mixture was stirred at room temperature for 8 h, and the solvent
was evaporated in a vacuum. The reaction mixture was poured into water (50 mL). 1 M
HCl solution was added dropwise to adjust the pH to 2. The mixture was extracted with
ethyl acetate (50 mL × 3). The combined organic solution was washed with saturated
aqueous sodium chloride solution (30 mL × 3) and dried over anhydrous Na2SO4. The
residue was purified by column chromatography to A20 and A21.

Compound A20: Yield 59%; white solid; mp: 165–167 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ7.74 (dd, J = 7.7, 1.4 Hz, 1H), 7.66–7.53 (m, 2H), 7.47 (td, J = 7.5, 1.3 Hz, 1H), 7.42–7.34
(m, 3H), 7.33–7.28 (m, 2H), 7.23–7.15 (m, 1H), 7.01 (td, J = 7.3, 1.6 Hz, 1H), 6.93 (dd, J = 14.9,
7.8 Hz, 2H), 3.77 (t, J = 6.6 Hz, 2H), 2.83 (t, J = 6.6 Hz, 2H), 1.96 (p, J = 6.6 Hz, 2H); 13C
NMR (176 MHz, DMSO-d6) δ168.71, 168.60, 142.00, 139.68, 138.20, 134.56, 130.49, 130.35,
129.79, 128.67, 128.12, 127.94, 127.49(2C), 127.27(2C), 127.04, 124.83, 124.32, 123.68, 44.09,
25.62, 22.96; HR-ESI-MS: m/z = 358.1445 [M + H]+, calculated for C23H20NO3: 358.1438.

Compound A21: Yield 62%; white solid; mp: 100–102 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.85 (s, 1H), 7.74 (dd, J = 7.7, 1.4 Hz, 1H), 7.53 (td, J = 7.5, 1.5 Hz, 1H), 7.45 (td, J = 7.6,
1.3 Hz, 1H), 7.39–7.34 (m, 2H), 7.33–7.25 (m, 2H), 7.18 (ddd, J = 9.5, 7.5, 1.5 Hz, 2H), 7.02
(td, J = 7.4, 1.4 Hz, 1H), 6.94 (td, J = 7.7, 7.2, 1.6 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 3.77
(t, J = 6.6 Hz, 2H), 2.81 (t, J = 6.6 Hz, 2H), 1.95 (p, J = 6.6 Hz, 2H); 13C NMR (176 MHz,
DMSO-d6) δ168.78, 168.51, 140.16, 139.60, 138.24, 135.55, 130.69, 130.24, 129.71, 129.29,
128.67, 127.87, 127.36 (d, J = 3.3 Hz), 126.96, 126.17, 124.84, 124.50, 123.68, 43.96, 25.62, 22.99;
HR-ESI-MS: m/z = 358.1443 [M + H]+, calculated for C23H20NO3: 358.1438

General preparation of intermediate I-3. The aromatic cyanides (1.0 eq), hydroxy-
lamine hydrochloride (1.5 eq), and sodium carbonate (2.0 eq) were added into 20 mL of a
mixed solvent of ethanol: H2O (4:1). The mixture was stirred at 60 ◦C for 6 h. The solvent
was then evaporated in a vacuum and the residue was purified by column chromatography
to provide intermediate I-3.

General preparation of compounds B1–B25. The diphenic anhydride (1.0 eq) and
intermediate I-3 (1.0 eq) were mixed in 20 mL dimethyl sulfoxide. The mixture was stirred
at room temperature for 2 h, then sodium hydroxide (2.0 eq) was added to the reaction
solution, the mixture was stirred at room temperature for 1 h. The reaction mixture was
poured into water (50 mL), 1 M HCl solution was added dropwise to separated water phase
to adjust the pH to 5, and the solid precipitates were filtered. The residue was purified by
column chromatography to afford B1–B25.

Compound B1: Yield 55%; white solid; mp: 150–153 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.54 (s, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.94–7.86 (m, 2H),
7.76–7.67 (m, 1H), 7.68–7.59 (m, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.38 (t, J = 8.9 Hz, 3H), 7.28
(d, J = 7.5 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 175.95, 167.61, 166.67, 163.92 (d,
J = 249.1 Hz), 142.53, 141.07, 132.28, 131.58, 130.77 (2C), 130.71, 129.69 (2C), 129.44, 129.35,
129.25, 127.85 (d, J = 13.9 Hz, 2C), 122.66 (d, J = 2.4 Hz), 122.33, 116.39 (d, J = 22.2 Hz, 2C);
HR-MS(ESI) m/z = 361.0983 [M + H]+, calculated for C21H14FN2O3: 361.0983.

Compound B2: Yield 59%; white solid; mp: 173–175 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.56 (s, 1H), 8.20 (d, J = 7.3 Hz, 1H), 8.06 (d, J = 8.1 Hz, 2H), 7.97 (d, J = 7.5 Hz, 1H),
7.90 (d, J = 8.3 Hz, 2H), 7.72 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 7.5 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H),
7.40 (d, J = 7.4 Hz, 1H), 7.29 (d, J = 7.1 Hz, 1H); 13C NMR (101MHz, DMSO-d6) δ 176.37,
167.64, 166.54, 142.59, 141.00, 132.43, 131.61, 131.39 (d, J = 32.1 Hz), 130.77, 130.75, 129.94,
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129.73, 129.34, 127.90 (d, J = 15.6 Hz, 2C), 127.72 (3C), 126.21 (d, J = 3.5 Hz, 2C), 123.80 (d,
J = 272.6 Hz), 122.22; HR-ESI-MS: m/z = 411.0946 [M + H]+, calculated for C22H14F3N2O3:
411.0951.

Compound B3: Yield 59%; white solid; mp: 154–156 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.55 (s, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.86 (d, J = 8.7 Hz, 2H),
7.72 (t, J = 7.3 Hz, 1H), 7.66–7.59 (m, 4H), 7.55 (t, J = 7.4 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.28
(d, J = 7.5 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 176.09, 167.61, 166.68, 142.53, 141.03,
136.30, 132.32, 131.59, 130.77, 130.72 (2C), 129.71, 129.39 (2C), 129.29, 128.65 (2C), 127.94,
127.79, 124.94, 122.30; HR-ESI-MS: m/z = 377.0684 [M + H]+, calculated for C21H14ClN2O3:
377.0687.

Compound B4: Yield 51%; white solid; mp: 148–150 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.54 (s, 1H), 8.18 (d, J = 7.7 Hz, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 8.5 Hz, 2H),
7.74 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 7.5 Hz, 1H), 7.62 (t, J = 7.2 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H),
7.39 (d, J = 7.5 Hz, 1H), 7.28 (d, J = 7.4 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ176.10,
167.61, 166.79, 142.53, 141.02, 132.31 (3C), 131.59, 130.77, 130.72, 129.71, 129.30, 128.81 (3C),
127.94, 127.79, 125.28, 125.16, 122.29; HR-ESI-MS: m/z = 421.0187 [M + H]+, calculated for
C21H14BrN2O3: 421.0182.

Compound B5: Yield 51%; white solid; mp: 154–157 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.53 (s, 1H), 8.17 (dd, J = 1.2, 7.8 Hz, 1H), 7.97 (dd, J = 1.3, 7.7 Hz, 1H), 7.83–7.75 (m,
2H), 7.70 (td, J = 1.3, 7.6 Hz, 1H), 7.65–7.58 (m, 2H), 7.55 (td, J = 1.3, 7.6 Hz, 1H), 7.38 (dd,
J = 1.1, 7.6 Hz, 1H), 7.27 (dd, J = 1.2, 7.5 Hz, 1H), 7.10–7.02 (m, 2H), 3.81(s, 3H); 13C NMR
(101 MHz, DMSO-d6) δ 175.50, 167.61, 167.18, 161.68, 142.52, 141.21, 132.10, 131.55, 130.76
(2C), 130.66, 129.71, 129.18, 128.57 (2C), 127.87, 127.73, 122.49, 118.38, 114.58 (2C), 55.38;
HR-ESI-MS: m/z = 373.1179 [M + H]+, calculated for C22H17N2O4: 373.1183.

Compound B6: Yield 60%; white solid; mp: 151–153 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.52 (s, 1H), 8.18 (d, J = 7.7 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 8.0 Hz, 2H),
7.71 (t, J = 7.5 Hz, 1H), 7.67–7.59 (m, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H),
7.33 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.5 Hz, 1H), 2.36 (s, 3H); 13C NMR (101 MHz, DMSO-d6)
δ 175.69, 167.60, 167.43, 142.52, 141.48, 141.17, 132.15, 131.56, 130.77, 130.74, 130.67, 129.71
(3C), 129.21, 127.88, 127.75, 126.83 (2C), 123.33, 122.47, 21.06; HR-ESI-MS: m/z = 357.1229
[M + H]+, calculated for C22H17N2O3: 357.1234.

Compound B7: Yield 55%; white solid; mp: 119–121 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.55 (s, 1H), 8.19 (d, J = 7.8 Hz, 1H), 8.00–7.93 (m, 2H), 7.86 (d, J = 7.8 Hz, 1H),
7.81–7.75 (m, 1H), 7.72 (td, J = 1.2, 7.6 Hz, 1H), 7.67–7.59 (m, 2H), 7.56 (td, J = 1.1, 7.6 Hz,
1H), 7.49 (t, J = 7.9 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H); 13C NMR(101
MHz, DMSO-d6) δ 176.05, 167.61, 166.31, 142.61, 141.06, 134.30, 132.40, 131.60, 131.47, 130.78
(2C), 130.69, 129.65, 129.48, 129.25, 128.23, 127.90, 127.81, 125.75, 122.27, 122.17; HR-ESI-MS:
m/z = 421.0177 [M + H]+, calculated for C21H14BrN2O3: 421.0182.

Compound B8: Yield 58%; white solid; mp: 171–175 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.56 (s, 1H), 8.15 (d, J = 7.7 Hz, 1H), 7.94 (d, J = 9.2 Hz, 2H), 7.75–7.67 (m, 1H), 7.65
–7.58 (m, 2H), 7.58–7.50 (m, 1H), 7.38 (d, J = 7.5 Hz, 1H), 7.27 (d, J = 7.5 Hz, 1H), 7.06
(d, J = 3.4 Hz, 1H), 6.77–6.67 (m, 1H); 13C NMR (101 MHz, DMSO-d6) δ175.83, 167.60,
160.49, 146.43, 142.48, 141.39, 140.93, 132.33, 131.59, 130.78, 130.72, 130.67, 129.76, 129.38,
127.96, 127.79, 122.25, 114.34, 112.22; HR-ESI-MS: m/z = 333.0869 [M + H]+, calculated for
C19H13N2O4: 333.0870.

Compound B9: Yield 58%; white solid; mp: 140–142 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.54 (s, 1H), 8.16 (d, J = 7.5 Hz, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.84 (d, J = 4.9 Hz, 1H),
7.71 (t, J = 7.6 Hz, 1H), 7.67–7.58 (m, 3H), 7.54 (t, J = 7.4 Hz, 1H), 7.38 (d, J = 7.5 Hz, 1H), 7.28
(d, J = 7.4 Hz, 1H), 7.23 (t, J = 4.4 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ175.77, 167.59,
163.64, 142.56, 141.02, 132.32, 131.58, 130.76 (2C), 130.69, 130.67, 129.79, 129.75, 129.29,
128.45, 127.93, 127.78, 127.34, 122.21; HR-ESI-MS: m/z = 349.0635 [M + H]+, calculated for
C19H13N2O3S: 349.0641.

Compound B10: Yield 50%; white solid; mp: 146–148 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.53 (s, 1H), 8.16 (d, J = 7.7 Hz, 1H), 8.10 (d, J = 2.8 Hz, 1H), 7.95 (d, J = 7.5 Hz,
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1H), 7.74 (dd, J = 3.0, 5.0 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.62 (t, J = 7.4 Hz, 2H), 7.54 (t, J
=7.6 Hz, 1H), 7.45 (d, J = 5.0 Hz, 1H), 7.38 (d, J = 7.5 Hz, 1H), 7.27 (d, J = 7.3 Hz, 1H);13C
NMR (101 MHz, DMSO-d6) δ 175.61, 167.61, 164.11, 142.51, 141.09, 132.18, 131.55, 130.77
(2C), 130.67, 129.72, 129.25, 128.63, 128.37, 127.92, 127.74, 127.45, 125.55, 122.41; HR-ESI-MS:
m/z = 349.0636 [M + H]+, calculated for C19H13N2O3S: 349.0641.

Compound B11: Yield 58%; white solid; mp: 167–169 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.59 (s, 1H), 9.38 (d, J = 1.4 Hz, 1H), 9.07 (d, J = 5.1 Hz, 1H), 8.21 (dd, J = 7.8, 1.4 Hz,
1H), 7.96 (dd, J = 7.7, 1.5 Hz, 1H), 7.90 (dd, J = 5.1, 1.4 Hz, 1H), 7.74 (td, J = 7.6, 1.4 Hz, 1H),
7.64 (tdd, J = 7.5, 2.5, 1.5 Hz, 2H), 7.56 (td, J = 7.6, 1.4 Hz, 1H), 7.40 (dd, J = 7.7, 1.3 Hz, 1H),
7.30 (dd, J = 7.6, 1.4 Hz, 1H); 13C NMR (176 MHz, DMSO-d6) δ177.47, 168.14, 166.91, 159.90,
159.60, 153.03, 142.99, 141.29, 133.09, 132.16, 131.28, 131.16, 130.24, 129.98, 128.56, 128.39,
122.60, 120.13; HR-ESI-MS: m/z = 345.0996 [M + H]+, calculated for C19H13N4O3: 345.0982.

Compound B12: Yield 50%; white solid; mp: 190–193 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.56 (s, 1H), 8.76–8.70 (m, 1H), 8.20 (d, J = 7.8 Hz, 1H), 8.03–7.93 (m, 2H), 7.86 (dd,
J = 0.8, 8.0 Hz, 1H), 7.72 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 7.4 Hz, 2H), 7.60–7.52 (m, 2H), 7.39 (d,
J = 7.6 Hz, 1H), 7.30 (d, J = 7.5 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ176.24, 167.64,
167.53, 150.27 (2C), 145.69, 142.47, 141.03, 137.62, 132.28, 131.61, 130.80, 130.74 (2C), 129.76,
129.37, 127.96, 127.81, 126.07, 123.18, 122.45; HR-ESI-MS: m/z = 344.1026 [M + H]+, cal
calculated cd for C20H14N3O3: 344.1030.

Compound B13: Yield 52%; white solid; mp: 210–212 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.56 (s, 1H), 9.00(s, 1H), 8.75 (s, 1H), 8.20 (d, J = 7.5 Hz, 2H), 7.97 (d, J = 7.7 Hz, 1H),
7.72 (t, J = 7.5Hz, 1H), 7.63 (t, J = 7.3 Hz, 2H), 7.60–7.52 (m, 2H), 7.40 (d, J = 7.5 Hz, 1H), 7.29
(d, J = 7.4 Hz, 1H); 13C NMR (176 MHz, DMSO-d6) δ175.58, 167.04, 165.16, 151.74, 147.08,
142.02, 140.42, 133.78, 131.86, 131.03, 130.19, 130.18, 130.14, 129.09, 128.70, 127.37, 127.24,
123.69, 121.74, 121.53; HR-ESI-MS: m/z = 344.1028 [M + H]+, calculated for C20H14N3O3:
344.1030.

Compound B14: Yield 65%; white solid; mp: 188–191 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.56 (s, 1H), 8.80 –8.75 (m, 2H), 8.20 (dd, J = 1.3, 7.8 Hz, 1H), 7.96 (dd, J = 1.4, 7.7 Hz,
1H), 7.81–7.76(m, 2H), 7.73 (td, J = 1.4, 7.6 Hz, 1H), 7.68–7.61 (m, 2H), 7.56 (td, J = 1.3,
7.6 Hz, 1H), 7.41 (dd, J = 1.2, 7.6 Hz, 1H), 7.30 (dd, J = 1.2, 7.5 Hz, 1H); 13C NMR (176
MHz, DMSO-d6) δ176.00, 167.03, 165.58, 150.25, 141.99, 140.31, 132.72, 131.93, 131.04, 130.19,
130.16, 130.14, 129.11, 128.76, 127.41, 127.26, 121.50, 120.18; HR-ESI-MS: m/z = 344.1027 [M
+ H]+, calculated for C20H14N3O3: 344.1030.

Compound B15: Yield 39%; white solid; mp: 165–168 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.57 (s, 1H), 8.59 (d, J = 5.0 Hz, 1H), 8.21 (d, J = 7.7 Hz, 1H), 7.96 (d, J = 7.7 Hz, 1H),
7.93 (s, 1H), 7.84 (d, J = 5.1 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.64 (t, J = 7.4 Hz, 2H), 7.56
(t, J = 7.1 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H); 13C NMR (101 MHz,
DMSO-d6) δ 176.72, 167.63, 165.05, 151.80 (2C), 142.67, 142.21, 140.88, 136.32, 132.68, 131.65,
130.79 (2C), 129.65, 129.37, 127.98, 127.88, 124.98, 121.88, 120.36; HR-ESI-MS: m/z = 422.0133
[M + H]+, calculated for C20H13BrN3O3: 422.0135.

Compound B16: Yield 61%; white solid; mp: 145–147 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.57 (s, 1H), 8.69–8.59 (m, 1H), 8.22 (dd, J = 7.8, 1.3 Hz, 1H), 7.96 (dd, J = 7.8, 1.4 Hz,
1H), 7.84–7.79 (m, 2H), 7.74 (td, J = 7.6, 1.4 Hz, 1H), 7.64 (tt, J = 7.5, 1.4 Hz, 2H), 7.56 (td,
J = 7.6, 1.4 Hz, 1H), 7.41 (dd, J = 7.7, 1.2 Hz, 1H), 7.30 (dd, J = 7.6, 1.3 Hz, 1H).; 13C NMR
(176 MHz, DMSO-d6) δ 176.16, 167.04, 164.61, 150.80, 150.71, 142.07, 140.27, 136.13, 132.09,
131.07, 130.19, 130.18, 129.07, 128.79, 127.41, 127.29, 121.28, 120.75, 119.57; HR-ESI-MS:
m/z = 378.0712 [M + H]+, calculated for C20H13ClN3O3: 378.0640.

Compound B17: Yield 61%; white solid; mp: 98–100 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.57 (s, 1H), 8.46 (d, J = 5.1 Hz, 1H), 8.21 (dd, J = 7.7, 1.3 Hz, 1H), 7.96 (dd, J = 7.6,
1.4 Hz, 1H), 7.78–7.70 (m, 2H), 7.68–7.60 (m, 2H), 7.56 (td, J = 7.6, 1.4 Hz, 1H), 7.51 (s, 1H),
7.41 (dd, J = 7.6, 1.4 Hz, 1H), 7.30 (dd, J = 7.6, 1.3 Hz, 1H); 13C NMR (176 MHz, DMSO-d6)
δ 176.18, 167.04, 164.75 (d, J = 3.9 Hz), 162.89 (d, J = 236.0 Hz), 148.80, 148.72, 142.06,
140.25, 138.39 (d, J = 8.7 Hz), 132.08, 131.06, 130.19, 129.08, 128.79, 127.43, 127.29, 121.31,
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118.71 (d, J = 4.2 Hz), 106.65, 106.42; HR-ESI-MS: m/z =362.0945 [M + H]+, calculated for
C20H13FN3O3: 362.0935.

Compound B18: Yield 61%; white solid; mp: 228–230 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.56 (s, 1H), 8.63 (dd, J = 5.2, 0.9 Hz, 1H), 8.20 (dd, J = 7.8, 1.4 Hz, 1H), 7.96 (dd,
J = 7.8, 1.5 Hz, 1H), 7.73 (td, J = 7.6, 1.4 Hz, 1H), 7.68–7.60 (m, 3H), 7.60–7.52 (m, 2H), 7.40
(dd, J = 7.6, 1.3 Hz, 1H), 7.29 (dd, J = 7.5, 1.4 Hz, 1H), 2.55 (s, 3H); 13C NMR (176 MHz,
DMSO-d6) δ175.90, 167.07, 165.69, 158.77, 149.57, 142.03, 140.33, 132.95, 131.89, 130.99,
130.26, 130.17, 130.13, 129.11, 128.73, 127.36, 127.23, 121.55, 119.49, 117.31, 23.45; HR-ESI-MS:
m/z = 358.1198 [M + H]+, calculated for C21H16N3O3: 358.1186.

Compound B19: Yield 57%; white solid; mp: 154–156 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.54 (s, 1H), 8.34 (d, J = 5.3 Hz, 1H), 8.19 (dd, J = 7.8, 1.4 Hz, 1H), 7.96 (dd, J = 7.7,
1.5 Hz, 1H), 7.73 (td, J = 7.6, 1.4 Hz, 1H), 7.63 (td, J = 7.5, 1.5 Hz, 2H), 7.56 (td, J = 7.6, 1.4 Hz,
1H), 7.42–7.37 (m, 2H), 7.29 (dd, J = 7.6, 1.3 Hz, 1H), 7.12 (t, J = 1.1 Hz, 1H), 3.90 (s, 3H); 13C
NMR (176 MHz, DMSO-d6) δ 175.81, 167.03, 165.42, 163.61, 147.84 (d, J = 2.4 Hz), 142.05,
140.37, 135.70, 131.93, 131.03, 130.19, 130.18, 130.15, 129.07, 128.69, 127.38, 127.25, 121.42,
113.42, 107.36, 53.01; HR-ESI-MS: m/z = 374.1152 [M + H]+, calculated for C21H16N3O4:
374.1135.

Compound B20: Yield 57%; white solid; mp: 214–216 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.55 (s, 1H), 8.19 (dd, J = 7.8, 1.4 Hz, 1H), 7.96 (dd, J = 7.7, 1.4 Hz, 1H), 7.73 (td, J = 7.6,
1.4 Hz, 1H), 7.63 (tdd, J = 7.6, 2.7, 1.4 Hz, 2H), 7.56 (td, J = 7.6, 1.4 Hz, 1H), 7.45 (s, 2H),
7.40 (dd, J = 7.7, 1.3 Hz, 1H), 7.29 (dd, J = 7.5, 1.3 Hz, 1H), 2.49 (s, 6H); 13C NMR (176
MHz, DMSO-d6) δ176.88, 168.19, 166.81, 159.16, 142.96, 141.41, 134.47, 133.05, 132.23, 131.23,
131.10, 130.15, 129.77, 128.49, 128.37, 122.56, 117.81, 24.24(2C); HR-ESI-MS: m/z = 372.1361
[M + H]+, calculated for C22H18N3O3: 372.1343.

Compound B21: Yield 59%; white solid; mp: 233–235 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.57 (s, 1H), 8.85 (d, J = 0.6 Hz, 1H), 8.70 (d, J = 5.0 Hz, 1H), 8.20 (dd, J = 7.9, 1.3 Hz,
1H), 7.96 (dd, J = 7.8, 1.4 Hz, 1H), 7.77 (dd, J = 5.0, 0.6 Hz, 1H), 7.74 (td, J = 7.6, 1.5 Hz, 1H),
7.64 (tdd, J = 7.5, 3.8, 1.4 Hz, 2H), 7.55 (td, J = 7.6, 1.4 Hz, 1H), 7.40 (dd, J = 7.7, 1.3 Hz,
1H), 7.30 (dd, J = 7.6, 1.3 Hz, 1H).; 13C NMR (176 MHz, DMSO-d6) δ175.33, 166.99, 164.27,
150.18, 148.02, 142.05, 140.35, 131.98, 131.69, 131.08, 130.20, 130.18, 130.01, 129.23, 128.79,
128.41, 127.38, 127.28, 123.89, 121.36; HR-ESI-MS: m/z = 378.0698 [M + H]+, calculated for
C20H13ClN3O3: 378.0640.

Compound B22: Yield 58%; white solid; mp: 258–259 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.56 (s, 1H), 9.06 (d, J = 4.4 Hz, 1H), 8.42 (dd, J = 8.6, 1.4 Hz, 1H), 8.25 (dd, J = 7.8,
1.4 Hz, 1H), 8.14 (dd, J = 8.5, 1.3 Hz, 1H), 8.00 (dd, J = 7.8, 1.5 Hz, 1H), 7.96 (d, J = 4.4 Hz,
1H), 7.87 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.76 (td, J = 7.5, 1.4 Hz, 1H), 7.72–7.64 (m, 3H), 7.61
(td, J = 7.5, 1.4 Hz, 1H), 7.43 (dd, J = 7.7, 1.3 Hz, 1H), 7.36 (dd, J = 7.5, 1.4 Hz, 1H); 13C NMR
(176 MHz, DMSO-d6) δ176.23, 168.19, 167.29, 150.82, 148.72, 143.09, 141.47, 133.05, 132.26,
131.33, 131.30, 131.15, 131.12, 130.65, 130.32, 130.18, 129.82, 128.61, 128.51, 128.44, 126.14,
124.37, 122.57, 122.28; HR-ESI-MS: m/z = 394.1208 [M + H]+, calculated for C24H16N3O3:
394.1186.

Compound B23: Yield 52%; white solid; mp: 236–238 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.57 (s, 1H), 9.27 (d, J = 2.1 Hz, 1H), 8.90 (dd, J = 2.2, 0.8 Hz, 1H), 8.26 (dd, J = 7.8,
1.4 Hz, 1H), 8.17 (dd, J = 8.3, 1.5 Hz, 1H), 8.11 (dd, J = 8.4, 1.1 Hz, 1H), 8.00 (dd, J = 7.7,
1.5 Hz, 1H), 7.90 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.74 (qd, J = 7.2, 1.3 Hz, 2H), 7.66 (td, J = 7.7,
1.4 Hz, 2H), 7.59 (td, J = 7.6, 1.4 Hz, 1H), 7.43 (dd, J = 7.6, 1.3 Hz, 1H), 7.32 (dd, J = 7.5,
1.4 Hz, 1H); 13C NMR (176 MHz, DMSO-d6) δ175.64, 165.27, 147.91, 147.12, 134.47, 131.86,
131.05, 130.90, 130.19, 130.16, 129.12, 128.75, 128.47, 128.33, 127.38, 127.20, 126.26, 121.59,
118.88; HR-ESI-MS: m/z = 394.1180 [M + H]+, calculated for C24H16N3O3: 394.1186.

Compound B24: Yield 51%; white solid; mp: 264–266 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.57 (s, 1H), 9.00 (dd, J = 4.2, 1.7 Hz, 1H), 8.57 (d, J = 1.8 Hz, 1H), 8.53 (dd, J = 8.3,
1.7 Hz, 1H), 8.25 (dd, J = 7.9, 1.4 Hz, 1H), 8.20–8.11 (m, 2H), 8.00 (dd, J = 7.8, 1.5 Hz, 1H),
7.73 (dd, J = 7.6, 1.4 Hz, 1H), 7.69–7.62 (m, 3H), 7.59 (td, J = 7.6, 1.4 Hz, 1H), 7.42 (dd, J = 7.7,
1.3 Hz, 1H), 7.32 (dd, J = 7.5, 1.4 Hz, 1H); 13C NMR (176 MHz, DMSO-d6) δ176.67, 168.16,
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167.59, 152.73, 149.09, 143.04, 141.55, 137.48, 132.87, 132.17, 131.29, 131.23, 131.19, 130.57,
130.25, 129.83, 128.50, 128.32, 128.27, 128.16, 127.38, 124.48, 123.02, 122.83; HR-ESI-MS:
m/z = 394.1205 [M + H]+, calculated for C24H16N3O3: 394.1186.

Compound B25: Yield 51%; white solid; mp: 169–171 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.55 (s, 1H), 8.60–8.45 (m, 1H), 8.29–8.24 (m, 1H), 8.22 (dd, J = 7.8, 1.4 Hz, 1H),
8.07–7.96 (m, 2H), 7.73 (td, J = 7.5, 1.4 Hz, 1H), 7.69–7.54 (m, 5H), 7.41 (dd, J = 7.6, 1.3 Hz,
1H), 7.34 (dd, J = 7.5, 1.4 Hz, 1H), 7.10 (d, J = 8.3 Hz, 1H), 4.05 (s, 3H); 13C NMR (176
MHz, DMSO-d6) δ174.95, 168.55, 168.16, 157.97, 143.00, 141.72, 132.65, 132.18, 131.29, 131.20,
131.19, 131.11, 130.84, 130.29, 129.65, 128.53, 128.39, 128.32, 126.39, 125.97, 125.39, 122.94,
122.50, 115.42, 104.52, 56.49; HR-ESI-MS: m/z = 421.1184 [M-H]-, calculated for C26H17N2O4:
421.1183.

The procedure for the synthesis of intermediate I-4. Compound B21 (1.0 eq) and
methyl 3-aminopropionate hydrochloride (1.2 eq) were dissolved in 20 mL N,N-
dimethylformamide, then HATU (1.5 eq) and triethylamine (2 eq) were added. The mixture
was stirred at 60 ◦C for 10 h, and the solvent was evaporated in a vacuum. The reaction
mixture was poured into water (50 mL). The mixture was extracted with ethyl acetate
(50 mL × 3). The combined organic solution was washed with saturated aqueous sodium
chloride solution (30 mL × 3) and dried over anhydrous Na2SO4. The residue was purified
by column chromatography to I-4.

The procedure for the synthesis of compound B26. The intermediate I-4 (1.0 eq) and
lithium hydroxide monohydrate (2.0 eq) were dissolved in 20 mL of a mixed solvent of
ethanol: H2O (4:1). The mixture was stirred at room temperature for 8 h, and the solvent
was evaporated in a vacuum. The reaction mixture was poured into water (50 mL). 1 M
HCl solution was added dropwise to adjust the pH to 5. The mixture was extracted with
ethyl acetate (50 mL × 3). The combined organic solution was washed with saturated
aqueous sodium chloride solution (30 mL × 3) and dried over anhydrous Na2SO4. The
residue was purified by column chromatography to B26.

Compound B26: Yield 53%; white solid; mp: 240–242 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ8.84 (s, 1H), 8.70 (d, J = 5.0 Hz, 1H), 8.14 (dd, J = 7.8, 1.4 Hz, 1H), 8.00 (s, 1H), 7.82
(d, J = 5.0 Hz, 1H), 7.70 (td, J = 7.6, 1.4 Hz, 1H), 7.61 (td, J = 7.6, 1.4 Hz, 1H), 7.54–7.44
(m, 3H), 7.39 (dd, J = 7.7, 1.3 Hz, 1H), 7.29 (dd, J = 7.8, 1.7 Hz, 1H), 3.03 (d, J = 7.0 Hz,
2H), 1.83 (t, J = 7.4 Hz, 2H); 13C NMR (176 MHz, DMSO-d6) δ176.54, 167.71, 165.22, 151.16,
149.12, 141.97, 138.92, 136.97, 132.92, 131.63, 130.70, 130.19, 129.86, 129.47, 128.47, 128.23,
127.46, 125.18, 122.89, 37.00, 36.91; HR-ESI-MS: m/z = 449.1032 [M + H]+, calculated for
C23H18ClN4O4: 449.1011.

The procedure for the synthesis of compound B27. The compound B21 (1.0 eq) and
4-bromobenzenesulfonamide (1.2 eq) were dissolved in 20 mL N, N-dimethylformamide
in an ice bath, then 4-dimethylaminopyridine (1.5 eq) and EDCI (1.2 eq) were added. The
mixture was stirred at room temperature for 6 h. The solvent was evaporated in a vacuum.
The residue was purified by column chromatography to give B27.

Compound B27: Yield 49%; white solid; mp: 188–190 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ8.84 (d, J = 0.5 Hz, 1H), 8.70 (d, J = 5.0 Hz, 1H), 8.11–8.04 (m, 1H), 7.86 (dd, J = 4.9,
0.6 Hz, 1H), 7.82–7.77 (m, 1H), 7.60–7.46 (m, 2H), 7.42–7.30 (m, 6H), 7.21–7.14 (m, 1H),
7.07–7.00 (m, 1H); 13C NMR (176 MHz, DMSO-d6) δ175.62, 170.76, 163.81, 150.05, 147.93,
144.64, 143.32, 139.34, 138.44, 131.99, 131.26, 130.27, 129.59, 129.25, 128.62, 128.34, 128.17,
127.88, 127.51, 126.30, 126.15, 124.19, 122.23, 121.45; HR-ESI-MS: m/z = 594.9864 [M + H]+,
calculated for C26H17BrClN4O4S: 594.9837.

The procedure for the synthesis of Intermediate I-5a. Iodine substituted benzoic acid
(1.2 eq) and intermediate I-3a (1.0 eq) were dissolved in 20 mL dichloromethane, then
HATU (1.5 eq) and triethylamine (2 eq) were added. The mixture was stirred at room
temperature for 10 h, and the solvent was evaporated in a vacuum. The residue was
purified by column chromatography to give intermediate I-5a.

The procedure for the synthesis of intermediate I-6a. Intermediate I-5a (1.0 eq) and cesium
carbonate (1.0 eq) were dissolved in 20 mL dimethyl sulfoxide. The mixture was stirred at room
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temperature for 10 h, the reaction mixture was poured into water (50 mL), the mixture was
extracted with ethyl acetate (50 mL × 3). The combined organic solution was washed with
saturated aqueous sodium chloride solution (30 mL× 3) and dried over anhydrous Na2SO4.
The residue was purified by column chromatography to intermediate I-6a.

General preparation of compounds B28 and B29. The intermediate I-6a (1.0 eq), substi-
tuted phenylboronic acids (1.0 eq), potassium carbonate (3.0 eq), and tetrakis(triphenylpho-
sphine)palladium (0.2 eq) were added into 20 mL of a mixed solvent of toluene: 95%ethanol
(1:1). The mixture was stirred at 110 ◦C under N2 for 12 h. The solvent was then evapo-
rated in a vacuum, the reaction mixture was poured into water (50 mL). 1 M HCl solution
was added dropwise to adjust the pH to 5. The mixture was extracted with ethyl acetate
(50 mL × 3). The combined organic solution was washed with saturated aqueous sodium
chloride solution (30 mL × 3) and dried over anhydrous Na2SO4. The residue was purified
by column chromatography to B28 and B29.

Compound B28: Yield 55%; white solid; mp: 288–289 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ13.07 (s, 1H), 8.82–8.73 (m, 2H), 8.17 (dd, J = 7.8, 1.4 Hz, 1H), 7.98 (dt, J = 6.8, 1.9 Hz,
1H), 7.88–7.78 (m, 4H), 7.71 (td, J = 7.6, 1.3 Hz, 1H), 7.64 (dd, J = 7.7, 1.3 Hz, 1H), 7.60–7.52
(m, 2H); 13C NMR (176 MHz, DMSO-d6) δ176.20, 166.46, 165.81, 150.32(2C), 140.64, 139.18,
132.65, 132.52, 130.74, 130.23, 128.81, 128.09, 128.07, 128.02, 121.42, 120.26(2C); HR-ESI-MS:
m/z = 344.1041 [M + H]+, calculated for C20H14N3O3: 344.1030.

Compound B29: Yield 54%; white solid; mp: 258–260 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ8.85–8.75 (m, 2H), 8.08 (dd, J = 7.8, 1.4 Hz, 1H), 7.94–7.89 (m, 2H), 7.86–7.82 (m, 2H),
7.78 (td, J = 7.6, 1.4 Hz, 1H), 7.65 (td, J = 7.6, 1.3 Hz, 1H), 7.60 (dd, J = 7.8, 1.2 Hz, 1H),
7.19–7.14 (m, 2H); 13C NMR (176 MHz, DMSO-d6) δ176.78, 167.92, 165.81, 150.30(2C),
141.97, 140.00, 138.65, 132.74, 132.23, 130.56, 130.22, 128.38(2C), 127.33, 126.77(2C), 121.56,
120.34(2C); HR-ESI-MS: m/z = 344.1043 [M + H]+, calculated for C20H14N3O3: 344.1030.

The procedure for the synthesis of intermediate I-7. The isoniazid (1.0 eq) and 2-
bromobenzoic acid (1.05 eq) were dissolved in 20 mL phosphorus oxychloride. The mixture
was stirred at 110 ◦C for 10 h. Saturated sodium bicarbonate solution was added dropwise
until there were no bubbles in the reaction solution. The mixture was extracted with ethyl
acetate (50 mL × 3). The combined organic solution was washed with saturated aqueous
sodium chloride solution (30 mL × 3) and dried over anhydrous Na2SO4. The residue was
purified by column chromatography to obtain I-7.

The procedure for the synthesis of intermediate I-8. The intermediate I-7 (1.0 eq), sub-
stituted phenylboronic acid (1.0 eq), potassium carbonate (3.0 eq), and tetrakis(triphenylpho-
sphine)palladium (0.2 eq) were added into 20 mL of a mixed solvent of toluene: 95%ethanol
(1:1). The mixture was stirred at 110 ◦C under N2 for 12 h. The solvent was then evaporated
in a vacuum and the residue was purified by column chromatography to intermediate I-8.

The procedure for the synthesis of compound B30. The intermediate I-8 (1.0 eq) and
lithium hydroxide monohydrate (2.0 eq) were dissolved in 20 mL of a mixed solvent of
ethanol: H2O (4:1). The mixture was stirred at room temperature for 8 h, and the solvent
was evaporated in a vacuum. The reaction mixture was poured into water (50 mL). 1 M
HCl solution was added dropwise to adjust the pH to 5. The mixture was extracted with
ethyl acetate (50 mL × 3). The combined organic solution was washed with saturated
aqueous sodium chloride solution (30 mL × 3) and dried over anhydrous Na2SO4. The
residue was purified by column chromatography to B30.

Compound B30: Yield 58%; white solid; mp: 237–239 ◦C; 1H NMR (400 MHz, DMSO-
d6) δ12.60 (s, 1H), 8.80–8.67 (m, 2H), 8.19 (dt, J = 7.7, 1.8 Hz, 1H), 7.95 (dt, J = 7.7, 1.8 Hz,
1H), 7.72–7.56 (m, 4H), 7.51–7.46 (m, 2H), 7.40 (dd, J = 7.6, 1.4 Hz, 1H), 7.33 (dd, J = 7.6,
1.5 Hz, 1H); 13C NMR (176 MHz, DMSO-d6) δ168.24, 165.58, 162.46, 151.35, 142.00, 141.48,
132.12, 132.10, 131.36, 131.22, 131.10, 130.54, 130.11, 128.96, 128.45, 128.33, 122.26, 120.16;
HR-ESI-MS: m/z = 344.1026 [M + H]+, calculated for C20H14N3O3: 344.1030.

Spectral data, including HR-ESI-MS, 1H-NMR and 1C-NMR, for compounds A1–A21
and B1–B30 are provided in Supplementary Materials.
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3.2. Biology

In Vitro URAT1 Inhibitory Assay. A transient expression system of human URAT1
in HEK293T cells was constructed to measure 14C-uric acid transport. The HEK293T cells
were obtained from ATCC (catalogue No.: CRL-11268). The cell cryovials were removed
from liquid nitrogen storage, and immediately placed on dry ice prior to thawing. The
frozen cell vials were placed briefly (30 s to 1 min) in a 37 ◦C water bath, until only small
ice crystals left and the cell pellet was almost completely thawed. The cell suspension
was transferred into a 15 mL centrifuge tube, and 10 mL complete medium (DMEM +10%
FBS +500 µg/mL G418 +1% P/S) was added. After centrifugation at 1000 rpm for 5 min,
the supernatant was discarded, and cell precipitation was resuspended in 5 mL complete
medium and transferred to a T75 culture flask. 15 mL of the assay complete medium was
added into a T75 flask and incubated at 37 ◦C and 5% CO2. The uptake assay test could
be carried out after cell culture adherent to the well in the 96-well plate. Then, the cells
were washed with 200 µL/well of pre-warmed Cl- free HBSS buffer, and all buffer was
removed at the last washing. 50 µL/well of Cl- free HBSS Buffer containing Uric acid [8-14C]
(2.5 µCi/mL) and samples were added to the cells, and incubated for 8 min. Then, the cells
were washed three times with Cl- free HBSS Buffer and all buffer was removed at the last
washing. 50 µL/well of lysis buffer (100 mM NaOH) was added to the lysate cells and
stirred at 900 rpm for 5 min. 150 µL/well MicroScint™-40 cocktail was added and agitated
at 900 rpm for 5 min. Finally, the 96-plate was counted in a MicroBeta2 (PerkinElmer). The
data were analyzed and IC50 values was calculated with GraphPad Prism 6 software.

The IC50 curves for the compounds are provided in Supplementary Materials.

4. Conclusions

Based on the known URAT1 inhibitors Epaminurad and Telmisartan, two series of
biphenyl carboxylic acid-based URAT1 inhibitors were recognized, and SAR clues were
provided. Both series afforded potent URAT1 inhibitors, and A1 and B21 exhibited IC50
values of 0.93 µM and 0.17 µM, respectively. These new inhibitors not only represent a
new chemical prototype of potent URAT1 inhibitors, but are expected to have reduced
toxicity and improved chemical accessibility compared to Epaminurad and Telmisartan.
The results confirmed that ligand-based approaches could be an effective way to identify
novel and potent URAT1 inhibitors.

5. Patents

A Chinese patent (202211251941.3) derived from results presented herein was applied
in 2022.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28217415/s1.
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