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Abstract: Large bone defects due to trauma, infections, and tumors are difficult to heal spontaneously
by the body’s repair mechanisms and have become a major hindrance to people’s daily lives and
economic development. However, autologous and allogeneic bone grafts, with their lack of donors,
more invasive surgery, immune rejection, and potential viral transmission, hinder the development
of bone repair. Hydrogel tissue bioengineered scaffolds have gained widespread attention in the
field of bone repair due to their good biocompatibility and three-dimensional network structure that
facilitates cell adhesion and proliferation. In addition, loading natural products with nanoparticles
and incorporating them into hydrogel tissue bioengineered scaffolds is one of the most effective
strategies to promote bone repair due to the good bioactivity and limitations of natural products.
Therefore, this paper presents a brief review of the application of hydrogels with different gel-forming
properties, hydrogels with different matrices, and nanoparticle-loaded natural products loaded and
incorporated into hydrogels for bone defect repair in recent years.

Keywords: hydrogel; tissue bioengineered scaffolds; bone repair; nanoparticles

1. Introduction

At the present time, the difficulty in healing critical bone defects has had a great
impact on the psychological health and socioeconomic development of patients [1]. The
bones of the human body play an important role in people’s daily lives, such as their ability
to support the body’s activities of daily living, protect organs, and balance calcium and
phosphorus levels in the body, which account for approximately 15% of body weight [2].
Bone tissue continues to maintain its normal physiological structure and mineral content,
with a balance between resorption by osteoclasts and bone formation by osteoblasts [3].
However, bone tissues are susceptible to injury, which causes bone defects mainly through
trauma, malignant tumors, infections, and congenital diseases [4]. In addition, bone defects
and osteoporosis caused by aging and disease also pose a problem in people’s lives [5].
Generally, smaller-sized bone defects are able to induce self-regeneration and repair by the
organism itself, but large, critical bone defects are unable to regenerate themselves [6,7].
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According to statistics, the repair of bone defects by bone grafting is performed millions
of times per year worldwide, accounting for about 10% of all orthopedic surgeries [8].
Autologous or allogeneic bone grafting is currently the predominant therapeutic approach
for the treatment of bone defects in clinical practice. However, the lack of donors, the more
invasive nature of the surgery, immune rejection, and the limitations of potential viral
transmission are all challenges that plague both patients and physicians [9]. In order to
promote bone tissue repair as well as to avoid the drawbacks of autologous and allogeneic
bone grafts, hydrogel tissue-engineered scaffolds have received widespread attention due
to their excellent properties.

Hydrogel is a polymer material with a three-dimensional network structure that uses
water as a dispersing medium [10], which has been a hot spot in medical tissue engineering
research due to its good biocompatibility, improved slow release of loaded drugs, unique
porous structure, permeability, and hydrophilicity, which enable it to mimic the natural
extracellular matrix (ECM) and provide a suitable microenvironment for cells [11–14].
In addition, the high swelling rate of hydrogels can effectively absorb wound exudate from
damaged tissues and reduce tissue infection. Higher porosity can promote the rate of gas
exchange and nutrient transfer at the wound site, which is conducive to promoting the
repair of damaged tissues [15,16]. The network structure of hydrogels has been reported
to facilitate the proliferation and adhesion of osteoblasts, and the structure of hydrogels
is very similar to the extracellular matrix of bone and cartilage, which makes hydrogels
suitable for bone repair and regeneration [17]. Meanwhile, the excellent swelling properties
of hydrogel can absorb tissue exudate from the damaged area of the tissue, thus reducing
recurrent inflammatory infiltration and infection [18–21]. Hydrogels also have excellent
hemostatic properties and tissue adhesion, which also positively modulate the repair of
bone defects [22–24]. The use of proteins and polysaccharides as hydrogel substrates has
become a hot topic in recent years. Protein-based hydrogels can form gels through various
mechanisms, such as adsorption, electrostatic binding, hydrogen bonding, van der Waals
forces, and covalent interactions. Compared with other gelation mechanisms, covalent
interaction has the advantages of more stable gelation, better sustained release, and superior
mechanical strength [25,26]. Due to the complex chemical structure of polysaccharides,
they are usually modified to cross-link with other polymers to prepare hydrogel scaffolds
for bone defect applications. The construction of chemical hydrogels usually utilizes the
reaction of crosslinkers with derivatives of polysaccharides, which are initiated by light,
electricity, or heat to form cross-linking networks through covalent bonds [27]. For example,
the aldehyde groups of oxidized polysaccharides can react with the amino groups in other
polymers to form hydrogel scaffolds [28], and the polysaccharide compounds esterified
with methacrylate can form hydrogels by photoinitiation curing [29]. In conclusion, the
formation of polysaccharide hydrogel can be achieved by azide-alkyneine cycloaddition,
Diels-Alder (DA) reaction, Michael addition reaction, Schiff base, disulfide bond, borate
ester, and coordination bond formation [30].

According to a previous study, Nabavi et al. [31] prepared a hydrogel with good
porosity and swelling ability and loaded it with tacrolimus using gelatin and polycaprolac-
tone. They demonstrated through in vivo experiments that their prepared hydrogel could
promote the repair of cranial bone defects in rats. Chen et al. [32] prepared a four-armed
benzaldehyde-capped polyethylene glycol and dodecyl-modified chitosan hybrid hydrogel
inspired by the multiple healing mechanisms coordinated by organisms that promote
wound repair by loading vascular endothelial growth factor (VEGF). Their study indi-
cated that this hydrogel could promote wound repair by promoting angiogenesis, collagen
deposition, macrophage polarization, and granulation tissue formation. Based on their
gel-forming properties, hydrogels can be classified as hydrogels, injectable hydrogels,
self-healing hydrogels, light-curing hydrogels, and temperature-sensitive hydrogels.

Bone tissue regeneration is a complex process that requires coordinated cellular be-
haviors such as bone immune response, precursor cell migration, osteoblast proliferation,
differentiation, and bone remodeling. Multiple cells and bioactive substances are involved
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in activating the ponderous bone regeneration-related signaling pathways in spatial and
temporal order to promote the bone repair process [33,34]. The bone repair cycle is shown
in Figure 1. Osteogenesis-related genes play an important role in promoting the process of
story repair, such as collagen I (CoL-I) [35], runt-related transcription factor 2 (Runx2) [36],
osteopontin (OPN) [37], bone morphogenetic protein (BMP) [38], alkaline phosphatase
(ALP) [39], and osteocalcin (OCN) [40]. Zhao et al. prepared a hydrogel based on peptide
self-assembly, and in vivo experiments demonstrated that this hydrogel could up-regulate
the expression of osteogenic factors, such as RUNX2, BMP2, OCN, and OPN, and promote
osteogenic differentiation. In addition, after fracture occurrence or tooth extraction, the
blood vessels in the bone rupture and bleed, and the damaged tissue cells and tissue
exudate release a large number of pro-inflammatory factors, such as IL-1β, TNF-α, and
IL-1α, which severely impede the differentiation of osteogenesis during the inflammatory
phase and slow down the bone repair process [41–43]. Therefore, adding natural products
with anti-inflammatory properties and promoting the expression of bone repair-related
genes to hydrogels is the focus of current research.
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In this paper, we review the relevant research on hydrogel tissue-engineered scaffolds
in the treatment of bone defects and describe five types of hydrogels with different gel-
forming mechanism types as well as the roles of hydrogels with different material matrices
in promoting bone repair. In addition, we elaborated on and analyzed the application
of natural products in promoting bone repair. Finally, we reviewed the application of
nanoparticles in bone repair hydrogels, expecting to provide a reference for nanoparticle-
loaded natural product hydrogels for promoting bone repair.

2. The Role of Hydrogels with Different Gel-Forming Mechanisms in Promoting
Bone Repair
2.1. Physically Cross-Linked Hydrogels

At present, most hydrogels are chemically cross-linked hydrogels, and the excessive
use of chemical cross-linking agents limits their application in fields such as biomedicine.
Hence, the method of physical cross-linking has received more and more attention from
researchers. Physically cross-linked hydrogels have the advantages of non-toxicity, good
mechanical properties, strong cell adhesion, and slow degradation, which make them
suitable for bone defect bioengineering scaffolds for bone regeneration [44–47]. Physical
hydrogel refers to the hydrogel formed by the interaction of non-covalent forces between
polymer chains, such as hydrogen bonding, ionic force, van der Waals interaction, polyelec-
trolyte complexation, stereocomplexation, and hydrophobic force [48]. To form a hydrogel,
the physically crosslinked hydrogel polymer network needs to satisfy the following condi-
tions: (a) having strong interchain interactions to form stable aggregates in the molecular
network; and (b) encouraging water molecules to enter and stay in the polymer network.
Hydrogels that meet these requirements can be prepared by non-covalent methods such
as electrostatic interactions, hydrogen bonding, and hydrophobic interactions between
polymer chains [49]. Among them, physically cross-linked hydrogels prepared on the basis
of polyvinyl alcohol (PVA) have received wide attention [50]. PVA hydrogel is considered
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a very promising material for replacing cartilage tissue due to its biocompatibility, chemical
resistance, swelling ability, and tribological behavior. While exposed to low temperatures,
the water in solution freezes and the movement of the PVA molecular chains slows down,
forming aggregation zones. The PVA chains form PVA microcrystals when they come into
close contact with each other. When the hydrogel thaws, these microcrystals remain intact,
forming a three-dimensional hydrogel network [51].

According to previous reports, Samadi et al. [52] prepared physically cross-linked
tri-networked hydrogels using PVA, graphene, and agar by repeated freezing and thawing
(Figure 2). Agar and graphene are the first physical cross-linking networks constructed
through hydrogen bonding, and the microcrystals of PVA form the second physical cross-
linking network. Meanwhile, a considerable portion of polymer chains are physically
adsorbed on the surface of graphene nanosheets by forming hydrogen bonds, which is
the third physical crosslinking network. The results of mechanical and self-healing tests
revealed that the incorporation of PVA greatly improved the mechanical strength of the
hydrogels. In addition, the tensile strength of the tri-network hydrogel was 1157 kPa, and
the strain was close to 500%; moreover, the hydrogel also possessed self-healing properties;
therefore, this tri-network structure hydrogel meets the requirements of tissue engineering
scaffolds for bone repair, and it can be applied in bioengineering such as cartilage repair.
Similarly, Schweizer et al. [53] developed a PVA-based hydrogel as a replacement for
cartilage by comparing the casting-drying method with repeated freeze-thawing, and their
work showed that the properties of PVA-based physically crosslinked hydrogels can be
easily tailored by adapting the production method or by combining the PVA with other
compounds to produce a material that most closely resembles human cartilage and that
can be used as a replacement for articular cartilage tissue.
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from Elsevier.

In addition, chitosan-based, physically cross-linked hydrogels are also a hot topic of
current research. However, the chitosan-based, physically cross-linked hydrogels reported
so far are limited in tissue engineering repair due to their low toughness and short in vivo
duration [54]. In order to improve the shortcomings of chitosan-based physically cross-
linked hydrogels, researchers prepared chitosan-poly(vinyl alcohol)-physically cross-linked
dual-network hydrogels by repeating three cycles of freezing and thawing, and then
hydroxyapatite nanocrystals superimposed on the surface layer of the hydrogel were
prepared by the in-situ mineralization method, and it was found through the performance
investigation that the new hydrogel had the characteristics of high strength, high porosity,
and biodegradability, which could promote the repair of rabbit femur lateral condylar bone
defects with potentials for use in the repair of bone tissue [55].



Molecules 2023, 28, 7039 5 of 23

According to reports, collagen II is a cartilage ECM molecule found mainly in cartilage
and developing bone and is thought to play an important role in both fracture healing and
long bone development, and loading collagen II into tissue bioengineered scaffolds can
effectively promote bone regeneration [56]. Additionally, some in vitro experiments have
confirmed that collagen II can induce osteogenic differentiation of MSCs [57]. Lan et al. [58]
formulated a double-crosslinked network hydrogel with PVA/collagen II as the cartilage
layer and PVA/biphasic calcium phosphate/carbon nanotubes as the bone layer. The bi-
layer hydrogels exhibited good mechanical properties (tensile modulus up to 7.14 ± 3 MPa).
In addition, they evaluated the biocompatibility of the hydrogels in vitro using two types
of cells, and in vivo experiments demonstrated that the prepared hydrogels could induce
the formation of cartilage regeneration.

Moreover, there are many studies on the preparation of hydrogel tissue engineering
scaffolds for bone repair by physical cross-linking (Table 1). Compared with other hydrogel-
forming mechanisms, physically crosslinked hydrogels have good mechanical properties
and a slow degradation rate, which make them suitable for tissue engineering scaffolds
for bone repair. However, physically cross-linked hydrogels are generally not suitable
for irregular bone defect models and have limitations in application. Therefore, it is
important to overcome the shortcomings of physically cross-linked hydrogels and develop
injectable hydrogels, self-healing hydrogels, light-curing hydrogels, and temperature-
sensitive hydrogels for bone repair applications.

Table 1. Physically cross-linked hydrogels for bone repair applications.

Hydrogel Matrix Preparation Methods Applications Ref.

Nanoclay and guanidine
radicalization chitosan Self-assembly Promoting osteogenic

differentiation of MSCs [59]

Polyetheretherketone/polyvinyl
alcohol/β-tricalcium phosphate Repeated freezing and thawing To promote the repair of knee

joint defects in rabbits [60]

Polyvinyl alcohol/polyacrylic acid Repeated freezing and thawing Promoting the repair of medial
condylar bone defects in rabbits [61]

Hydroxyapatite/collagen/polyvinyl
alcohol Repeated freezing and thawing Promoting the repair of femoral

defects in goats [62]

Methacryl gelatin/magnesium oxide Sulfhydryl-ene click reaction Promoting cranial bone repair
in rats [63]

Magnesium
oxide/hydroxyapatite/cysteine
modified γ-polyglutamic acid

The mixture was homogenized
by ultrasound

Promoting tibial repair in
diabetic rats [64]

Alginate/hyaluronic
acid/hydroxyapatite Ion cross-link

It is a potential bone repair
material with a good

degradation rate and swelling
[65]

2.2. Injectable Hydrogels

The development of injectable hydrogel scaffolds to effectively heal and regenerate
defective bone tissue following minimally invasive implantation procedures has received
considerable attention in recent years. Such scaffolds offer several advantages, as they can
be injected into irregularly shaped defects and act as low-density aqueous reservoirs con-
taining the components needed to repair and enhance bone tissue. Injectable scaffolds also
promote wound healing and resultant scarring when delivered to the target site through
minimally invasive surgical procedures [66]. Injectable hydrogels are in a flowable state
prior to injection and can be injected through a syringe, thus having flow properties [67,68],
and then the injected fluid becomes a gel in situ, resulting in the formation of tissue bioengi-
neered scaffolds used for cell proliferation, differentiation, and adherence for the formation
of new bone tissue. Such scaffolds are able to fill regular or irregular bone defects and are of
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great clinical importance [69]. Additionally, injectable hydrogels can also promote wound
healing, tendon, and ligament repair through the delivery of natural products [70,71].

Liu et al. [72] were inspired by mussel materials to decorate nanohydroxyapatite with
dopamine to form polydopamine-modified nanoparticles, and then the nanoparticles were
added to sodium alginate oxide and gelatin to prepare injectable hydrogels via the Schiff
base reaction. The results of in vitro experiments showed that the prepared injectable
hydrogel had good bioactivity, promoted the proliferation and differentiation of bone
marrow mesenchymal stem cells, and could promote the repair of rabbit bone defects in
the in vivo model. Similarly, Wang et al. [73] were inspired by mussel materials to prepare
nano-hydroxyapatite/poly (L-glutamic acid)-dextran injectable hydrogels for a rat cranial
bone defect model by Schiff base reaction. Where the aldehyde group of aldehyde-catechol
difunctionalized dextran (Dex-CHO-DP) reacts with the hydrazine group in bisphosphonyl
hydrazine difunctionalized poly(L-glutamic acid) (PLGA-BP-ADH) in a Schiff-base reaction
to prepare an injectable hydrogel.

Chen et al. [74] prepared magnetic hydroxyapatite/gelatin microspheres by emulsion
cross-linking and incorporated them into injectable hydrogels prepared by the Schiff base
reaction using carboxymethyl chitosan and oxidized gellan gum. The results of in vitro
experiments demonstrated that hydrogel has excellent bacteriostatic ability, prolongs the
release time of the drug, and promotes the proliferation of mouse osteoblasts, which can be
used for bone repair. In addition, some researchers have also prepared injectable hydrogels
by enzyme cross-linking, photocross-linking, and ultrasonic cross-linking. Zhang et al. [75]
first isolated BMSC from the bone marrow of rats and used hyaluronic acid-tyramine and
chondroitin-tyramine sulfate in the presence of hydrogen peroxide and horseradish peroxi-
dase by enzyme-catalyzed cross-linking to form an injectable hydrogel tissue-engineered
scaffold containing bone marrow mesenchymal stem cells (BMSCs), and the experimental
results showed that this hydrogel containing BMSCs not only provided a suitable microen-
vironment for the adhesion, proliferation, and differentiation of the mesenchymal stem
cells in vitro but also promoted bone regeneration in vivo. Ma et al. [76] used bioprinting
technology to encapsulate periodontal ligament stem cells in an injectable, photocrosslink-
able composite hydrogel composed of gelatin methacrylate and poly (ethylene glycol)
dimethacrylate to promote alveolar bone regeneration and repair. Yuan et al. [77] devel-
oped an injectable hydrogel using silk fibroin using the ultrasonic cross-linking method.
Silk fibroin hydrogel has good cytocompatibility with rabbit chondrocytes and may be
a potential candidate for cartilage repair and regeneration.

In addition, many researchers have prepared injectable hydrogels for bone repair tissue
engineering scaffolds (Table 2), which are clinically important and can effectively reduce
patients’ pain and alleviate social pressure. However, the poor mechanical properties of
injectable hydrogels and the long gelation time limit the potential of injectable hydrogels
to become tissue bioengineering scaffolds; therefore, the addition of injectable hydrogels
that can improve the mechanical properties as well as adjusting the appropriate ratio to
promote the gelation time is the focus of the study.

Table 2. Injectable hydrogels for bone repair applications.

Hydrogel Matrix Methods of Preparation Mode of Crosslinking Applications Ref.

Sulfhydrylated hyaluronic
acid/type I collagen

Disulfide bond
crosslinking

Promotes the
regeneration of cartilage [78]

Bisphosphonate modified
hyaluronic acid

Non-covalent
crosslinking

Promoting the repair of
femoral head necrosis

in rabbits
[79]
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Table 2. Cont.

Hydrogel Matrix Methods of Preparation Mode of Crosslinking Applications Ref.

Polyethylene glycol
diacrylate/sodium alginate Photocross-link

Repair of irregular bone
defects in

hyperlipidemic rats
[80]

Ethylene glycol
chitosan/benzaldehyde
terminated polyethylene

oxide derivatives

Benzoic acid-imine
linkage

Promoting repair of
cartilage defects in the

rabbit knee
[81]

N-succinyl-chitosan/hyaluronic
acid

The precursor matrix was
dissolved and mixed Schiff base reaction Promote the survival of

articular chondrocytes [82]

Collagen/chitosan/hyaluronic
acid/silica

The precursor solution
was mixed Genipin cross-linking

Promote the osteogenic
differentiation of bone
marrow stromal cells

[83]

Gelatin
methacrylate/self-adhesive

polymer
Microfluidic devices Optical crosslinking

It has a significant
therapeutic effect on the

development of
osteoarthritis

[84]

Gelatin-
hydroxyphenylpropionic

acid

The precursor matrix was
dissolved and mixed Enzyme crosslinking

To promote the repair of
osteochondral defects

in rabbits
[85]

2.3. Self-Healing Hydrogel

Hydrogels are notably characterized as bio-tissue-engineered scaffolds for tissue regen-
eration and drug release maintenance [86]. As a result of normal daily body movements,
hydrogels may be subjected to mechanical attacks and their structure disrupted. Loss
of hydrogel integrity may reduce functional efficiency and lead to loss of the hydrogel’s
role as a tissue bioengineering scaffold by causing damage and the presence of cracks
and cavities [87]. Self-healing materials are defined as materials that can automatically
repair and restore damage [88,89]. Self-healing hydrogels allow hydrogels to self-repair
within a short period of time after damage, thereby increasing the longevity and safety
of the material. The self-repairing property of self-healing hydrogels improves the fatal
drawbacks of poor mechanical properties of hydrogels and the inability to self-recovery
after damage, which greatly facilitates the development of hydrogels into multifunctional
composite hydrogels and further broadens the application of hydrogels in biomedical
fields [90].

Self-healing capacity in hydrogels is chemically or compositionally doped directly
into the polymer structure by doping reversible bonds (cross-linking/reacting) [91]. Self-
healing hydrogels based on chitosan to repair damaged tissues have gained widespread
attention [92,93]. For example, Lee et al. [94] prepared hydrogels with self-healing proper-
ties through the assembly of phytochemically modified chitosan and silica-rich inorganic
nanoclay and demonstrated through in vivo experiments that the hydrogels could promote
bone regeneration of non-healing cranial defects by modulating the Wnt/β-catenin signal-
ing pathway. Li et al. [95] prepared self-healing hydrogels using PVA and methacrylate
gelatin and prepared polylactide-hydroxy acetate copolymer nanofibrous membranes as
a fibrous layer for bone repair scaffolds by electrostatic spinning. The mechanical and
self-healing properties of the hydrogel are shown in Figure 3. These results showed that all
three hydrogels were self-healing in the presence or absence of cross-linking agents due to
dynamic non-covalent and covalent interactions involving the polymer-polymer network
of the hydrogels. It was demonstrated by establishing a rat cranial bone defect model that
this bilayer hydrogel scaffold could be used as an integrated bone grafting device with mul-
tifunctional components and has the potential to be used as a tissue-engineered scaffold for
clinical bone repair. Chen et al. [96] integrated stromal cell-derived factor 1α (SDF-1α) and
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M2 macrophage-derived exosome (M2D-Exos) with hyaluronic acid (HA)-based hydrogel
precursor solution to synthesize an HA@SDF-1α/M2D-Exos hydrogel with injectable and
self-healing properties, and their results showed that HA@SDF-1α/M2D-Exos hydrogel
can induce a local antimicrobial microenvironment favorable for fracture healing and has
good antimicrobial activity and biocompatibility. One point to consider in their study
is that the controlled release of SDF-1α accelerated the migration of BMSCs and human
umbilical vein endothelial cells (HUVECs), whereas M2D-Exos improved cell proliferation,
BMSC mineral deposition, and the formation of HUVEC tubes. Overall, the whole hydrogel
tissue engineering scaffold was designed to complement the natural healing process of the
fracture, which could limit infection while accelerating fracture healing.
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In conclusion, self-healing hydrogels are suitable for potential use in bioengineered
scaffolds for human tissue repair due to the specificity of their properties. However, most
self-healing hydrogels are still in the basic research stage and have not been widely used
in practical applications due to their poor mechanical properties and inability to adapt to
the in vivo environment and the pericellular environment. Therefore, how to improve the
mechanical properties of self-healing hydrogels is also one of the focuses of future research.
Whether self-healing hydrogels are hazardous to humans due to the need for a chemical
reaction in the hydrogel matrix still needs to be further explored.

2.4. Photocurable Hydrogels

Photocurable hydrogels have gained the attention of many researchers in recent
years, and the photocurable reaction is usually initiated by ultraviolet (UV) or visible
light. Photocurable smart hydrogels with high efficiency and strong controllability of cross-
linking reactions are commonly reported in studies of tissue engineering, cell encapsulation,
and drug delivery [97,98]. There are two main modes of photocuring: photopolymeriza-
tion of polyfunctional monomers or mixtures of monomers and cross-linking agents into
cross-linked networks, or conversion of thermoplastics into thermosets by photoreactions
between polymer chains or with chains and suitable cross-linking agents [99]. Currently,
photocurable hydrogels have gained widespread attention in the application of bone repair
due to their ease of curing.

Zhang et al. [100] prepared a novel in situ photo-triggered-imide-crosslinked (PIC)
three-component biomimetic composite hydrogel using HA, gelatin, and hydroxyapatite
nanoparticles (n-HAp) as raw materials. The bionic composite hydrogel-forming mech-
anism involved grafting o-nitrobenzyl derivatives (NB) onto HA (HA-NB), followed by
photoexcitation of o-nitrobenzaldehyde under 365 nm UV irradiation, and the subsequent
reaction with gelatin-bearing amino groups to construct the hydrogel via imine linkage
(HA-NB/gelatin/n-HAp). Micro-CT, fluorescent labeling, and histological observations
showed significant enhancement of new bone in the composite hydrogel group, demon-
strating that the photo-triggered-imine-crosslinked HA-NB/gelatin/n-HAp hydrogel can
be used as a bone defect repair application.

The use of acrylamide-based polymers to modify polymers for the preparation of
hydrogels has received extensive attention from researchers. Acrylic is a monomer that is
cross-linked to produce hydrogels with high water-absorbent capacity as a single or multi-
component system. Acrylic acid has a carboxylic acid group with the carboxyl end attached
to the vinyl group. Acrylamide-based polymers can be used to prepare hydrogel tissue
bioengineering scaffolds by photocross-linking, among which methacrylamide in bone
repair hydrogels is of wide interest. For example, Xing et al. [101] prepared carboxymethyl
chitosan methacrylate (CMCS-MA) by modifying carboxymethyl chitosan and grafting
a photosensitive methacrylate group (MA) to obtain CMCS-MA, which was cured by ultra-
violet light of a specific wavelength. The preparation schematic of this hydrogel is shown
in Figure 4. This new CMCS-MA hydrogel has rapid light curing, good biocompatibility,
bacterial inhibition, and the appropriate degradation rate, which possesses the prospect of
promoting convenience and flexibility in periodontal tissue regeneration. Wu et al. [102]
prepared a light-curing bilayer hydrogel scaffold for the repair of osteochondral defects
in rabbits. The cartilage layer of this bilayer hydrogel is similar to natural cartilage in
surface morphology and mechanical strength, and the porous subchondral bone layer
loaded with human bone morphogenetic protein-2 (BMP-2) promotes the osteogenic dif-
ferentiation of bone marrow stromal cells (BMSCs). Second, they developed a silk fibroin
methacrylate sealer (Sil-MA) loaded with transforming growth factor β3 (TGF-β3) to pro-
mote chondrocyte migration and differentiation. Their findings suggest that the novel
method of sealing Sil-MA hydrogel around the edge of the cartilage layer of the bilayer
scaffold has great potential for clinical application in osteochondral regeneration. The use of
methacrylate-modified polymers for the preparation of light-curing hydrogels has received
much attention from researchers. For example, Wu et al. [103] injectable and light-curing
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hydrogel tissue engineering scaffolds based on alginate methacrylate, alginate-grafted
dopamine, and polydopamine-functionalized Ti3C2 MXene (MXene@PDA) nanosheets
have been reasonably designed for near-infrared-mediated bone regeneration, synergistic
immune regulation, osteogenesis, and the elimination of bacteria.
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In a word, photocurable hydrogel may become an excellent scaffold for bone repair,
but the demand for photoinitiators limits its application in some fields, and the selection of
photoinitiators becomes a key factor in determining the polymerization efficiency and the
required light wavelength. Therefore, these factors must be considered before preparing
photocurable hydrogels.

2.5. Temperature-Sensitive Hydrogels

In recent years, temperature-sensitive hydrogels have been widely used in tissue
repair engineering based on their temperature sensitivity. Such as nerve repair [104],
treatment of periodontitis [105], cardiac tissue repair [106], skin repair [107], and bone
repair [108]. Temperature-sensitive hydrogels for cartilage tissue engineering have many
advantages: (1) drugs can be easily encapsulated in the gel; (2) thermosensitive hydrogels
can fill irregular cartilage defects and prevent undesirable diffusion of precursor fluids;
and (3) they can easily trigger gelation under mild physiological conditions compared to
other injectable hydrogels, avoiding any organic solvent damage to tissues [109,110].

Temperature-sensitive star-shaped poly-b-methoxy polyethylene glycol block copoly-
mers (PLGA-mPEG) have good biodegradability. In one study, PLGA-mPEG block copoly-
mer microspheres loaded with vascular endothelial growth factor (VEGF) were com-
pounded with vascular endothelial cells to form a hydrogel, and in vivo experiments
demonstrated that injectable temperature-sensitive hydrogel-loaded VEGF microspheres
could be used for vascularization and bone regeneration in femoral head necrosis [111].
Sodium β-glycerophosphate (β-GP) has been shown to be one of the potential candidates
for the preparation of temperature-sensitive injectable hydrogels [112–115]. In addition, to
enhance the bioactivity of hydrogel scaffolds, β-GP matrix temperature-sensitive hydrogels
are often used in combination with chitosan [116]. Wang et al. [117] used chitosan in
combination with β-GP to prepare a temperature-sensitive hydrogel for the promotion
of periodontitis repair and bone regeneration, and their research found that berberine
thermosensitive hydrogel may be an effective treatment for periodontitis, which can ex-
ert anti-inflammatory and osteogenic effects through the PI3K/AKT signaling pathway.
Lu et al. [118] prepared a thermosensitive hybridized hydrogel scaffold using collagen I
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(Col-I) and chondroitin sulfate (CS) as a matrix crosslinked with genipin, which has the
advantages of being injectable, temperature-responsive, rapidly crosslinked, and biocom-
patible, which are favorable for clinical applications. In addition, they demonstrated in
their previous report that the deletion of Stat3 impaired the osteogenesis of mesenchymal
progenitor cells in vivo and in vitro [119], so they explored the bone-repairing effect of the
hydrogel by knocking out the Stat3 gene in mice. Therefore, they investigated the bone
repair effect of hydrogel by knocking out the Stat3 gene in mice. The use of hydrogel
significantly improved the healing of bone defects, as demonstrated by the experimental
results (Figure 5), and the role of hydrogel in promoting bone repair was also demonstrated
by the histopathological staining results and micro-CT results.
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Figure 5. Effect of type I collagen/chondroitin sulfate hydrogel on bone repair. (A) Surgical flow
chart. (B) A 1.0 mm hole was made in the tibial single cortical defect, penetrating one piece of cortical
bone and entering the marrow cavity, but leaving the second cortical intact site of injury. (C) Micro-CT
image of the bone defect 7 days after surgery. H&E staining of bone defect sections of (D). (E) Sections
stained with aniline blue. (F) Quantitative analysis of the micro-CT index (** p < 0.01, * p < 0.05,
NS: No significant difference, Comparison with PBS-treated group). BV/TV: bone volume fraction;
Tb.N: number of bone trabeculae; Tb.Th: trabecular bone thickness; Tb.Sp: separation of trabecular
bone [118], with permission from Elsevier.
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Based on previous studies showing that poloxamer is also a temperature-responsive
material, poloxamer temperature-sensitive hydrogels can be used as tissue engineering
scaffolds for repairing damaged tissues by transforming the solution into a gel when close
to the body’s temperature [120,121]. Liu et al. [122] grafted poloxamer onto alginate and
combined optimally synthesized alginate-poloxamer copolymers with filipin proteins in
order to prepare temperature-sensitive hydrogels with covalent and physically cross-linked
networks. They found that the formulated temperature-sensitive hydrogels could undergo
a sol-gel transition at near-physiological temperatures and pH values and demonstrated
in vitro results that this temperature-sensitive hydrogel could support the ability of chon-
drocytes to grow inward while effectively maintaining their chondrogenic phenotype.
Therefore, this temperature-sensitive hydrogel has the property of becoming an alterna-
tive biomaterial for cartilage tissue engineering. In addition, osteoporosis leads to poor
osseointegration and decreases implant stability. Fu et al. [123] promoted bone regenera-
tion through the preparation of a poloxamer temperature-sensitive hydrogel loaded with
simvastatin and demonstrated through in vivo experiments that the simvastatin-loaded
temperature-sensitive hydrogel increased the volume fraction, thickness, and number of
trabeculars, decreased trabecular segregation, and that the rate of de Osteo formation and
mineral deposition was significantly increased in the treatment group.

In a word, based on the characteristics of thermosensitive hydrogel, thermosensitive
hydrogel can be used as a tissue engineering scaffold to repair bone defects and treat
various types of bone defects. In addition, temperature-sensitive hydrogel can be injected
into the damaged, irregular human tissue to repair the damaged tissue. Compared with
other synthetic polymers or modified hydrogel matrices, temperature-responsive hydrogel
can avoid the harm of chemical reactions to the human body. However, the gelation rate
and mechanical strength of temperature-responsive hydrogels are still important factors
limiting their development.

2.6. Stimuli-Responsive Hydrogels

Stimulus-responsive hydrogels can promote tissue repair by controlling drug release
by detecting environmental changes in the body [124,125]. Enzyme-stimulated responsive
hydrogels bind enzymes directly to polymers through covalent bonding or encapsulation,
and they can also interact directly with enzyme-reactive hydrogel polymers [126]. BMP, as
an osteogenesis-related gene, can induce the osteogenic differentiation of mesenchymal
stem cells (MSCs) to promote bone repair. It has excellent potential to promote bone defect
repair when loaded into hydrogel scaffolds as an active factor. It is beneficial to repair bone
defects [127].

In addition, pH-responsive hydrogels have been widely used in tissue repair engi-
neering. pH-loud stimulus-responsive hydrogels have a controlled release mechanism in
which the drug is released on demand when the pH of the body is less than the normal
value of the body, thus achieving the purpose of controlled release [128]. Components
with pH sensitivity are added to pH-responsive hydrogels. They include polyacrylic acid,
sulfadimethoxine oligomer (SMO), polyelectrolyte N-palmitoyl CH, and oligosulfamet-
hazine [129]. Hydroxyapatite (HAP) is an inorganic component of bone, making up 60% of
natural bone. When HAP is added to pH-stimulation-responsive hydrogels, it promotes
cell proliferation as well as the expression of late osteogenic markers, evidence that suggests
the potential of such pH-responsive hydrogels to promote bone repair [130].

The application of ROS-responsive hydrogels in tissue repair is currently a topical area
of research. When a bone defect occurs, a large amount of ROS is generated in the organism,
and the excess of ROS leads to sustained cell/tissue damage and induces an amplification
of the inflammatory cycle, which can further destroy the bone [131]. Hydrogel matrices
can be designed to contain redox-sensitive components such as disulfide, tellurium, and
diselenide bonds. These components can be broken down in the presence of reducing
agents such as glutathione and dithiothreitol to control the degradation of the material
and the release of drugs, growth factors, and cells [132]. In addition, the borate bond, as
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a covalent bond, also has ROS-responsive properties, and hydrogel coatings with borate
bonds have been shown to have slow degradation in simulated ROS environments through
in vitro simulated release experiments and to promote osteoblast proliferation and repair
in a rat femoral defect model in vitro and in vivo [132].

Bone repair is often accompanied by inflammatory responses, and hydrogel scaffolds
containing drug-loaded magnetic microspheres can inhibit bacterial growth and reduce in-
flammatory responses [74]. Bioactive factors can be combined with magnetic nanoparticles,
which are guided and intelligently delivered to specific areas in the presence of an external
magnetic field. Magnetic fields can act as external stimuli to induce specific biomechan-
ical signals that modulate human cell behavior, such as proliferation, differentiation, or
apoptosis [133]. Previous studies have demonstrated that magnetic nanomicrospheres
Fe2O3 can promote the proliferation of BMSCs, and the incorporation of magnetic na-
nomicrospheres Fe2O3 and HAP into hydrogel scaffolds with PVA matrix can promote the
expression of chondrocyte-associated osteoblastic genes, which has the potential to repair
bone defects [134].

Electroresponsive hydrogels possess good response time, deformation, and memory.
To date, electrically responsive hydrogels have been widely used in several smart device
fields, such as sensors, membrane separation devices, and drug delivery systems [135].
The commonly used conductive materials in hydrogels are mainly conductive polymers,
such as polyaniline (PAn), polypyrrole (PPy), polythiophene (PTh), polyphenylene methy-
lene (PPv), and their copolymers and derivatives. In addition, metal nanoparticles and
carbon-based nanoconductive materials such as graphene and carbon nanotubes (CNTs)
have been used in hydrogel materials [136]. Conductive hydrogels have been shown to
promote tissue repair [137], and the doping of magnesium-modified black phosphorus
(BP@Mg) in methacrylate-modified gelatin can provide hydrogel scaffolds with photother-
mal conductivity. Hydrogel scaffolds in this system possess strong antimicrobial activity,
improve the inflammatory microenvironment, and reduce bacterial-induced damage to
bone tissue. Additionally, this photothermal-to-store hydrogel can promote the growth
and migration of osteoblasts and can promote the repair of bone defect sites in an infected
cranial defect model.

For complex in vivo environments, a single stimulus-responsive hydrogel is no longer
able to meet the requirements of repairing tissues, and different stimulus-responsive
hydrogels can be used in combination to guide the controlled release of drugs more
accurately from hydrogel scaffolds. Microenvironmental disease changes favor the design
of responsive hydrogels that work only in specific pathological states, and the premature
degradation of hydrogel scaffolds should be avoided, resulting in the loss of cellular
support for hydrogel scaffolds and the inability to promote cellular proliferation. Thus, the
selection of polymers for stimuli-responsive hydrogels is also a major challenge.

3. Role of Different Material Matrix Hydrogels in Promoting Bone Repair
3.1. Hydroxyapatite

Bone is a biological hard tissue composed mainly of hierarchically assembled nano-
hydroxyapatite (HAP) and organic matrix, which account for 60% of the natural bone
ECM [138]. However, injuries to bones, such as critical-sized bone defects, cannot be cured
by bone regeneration itself due to their complex composition and structure, which can
lead to loss of self-independence, disability, or even death if not treated appropriately. The
addition of HAP to hydrogels helps to promote bone regeneration in bone defect models,
and HAP promotes osteogenesis mainly by increasing the expression of bone markers such
as osteopontin, osteocalcin, and alkaline phosphatase (ALP) [139].

Liang et al. [140] prepared an osteomimetic osteogenic hydrogel (BOH) loaded with
HAP and demonstrated by in vitro experiments that the hydrogel could promote bone min-
eralization, the construction of an immune microenvironment, and angiogenesis. In vivo
experiments demonstrated that BOH showed excellent osteogenic effects in vivo and
could promote regeneration and reconstruction of cranial defects in rats within 8 weeks.
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According to the previous report, the addition of the hydroxyapatite phase to chitosan-
based materials showed better cell and protein adhesion, enhanced cell proliferation, and
higher osteogenic gene expression [141]. Ressler et al. [130] prepared an injectable hy-
drogel loaded with mesenchymal stem cells using chitosan and HAP as substrates and
confirmed the role of the hydrogel in promoting osteogenic differentiation by immunos-
taining for the osteogenesis-related genes Runx2, type I collagen, osteocalcin, and alkaline
phosphatase quantification.

3.2. Polysaccharide Compounds

Currently, polysaccharide-based natural products have likewise received extensive
attention in tissue repair hydrogel-engineered scaffolds, such as sodium alginate (SA) [142],
hyaluronic acid (HA) [143], and chitosan (CS) [144].

Chen et al. [145] developed a biomimetic injectable hydrogel system based on oxidized
pectin grafted with HA-adipic dihydrazide and the oligopeptide G4RGDS, and the results
of the in vitro experiments demonstrated that a certain amount of G4RGDS oligopeptide
doped into the HA/pectin-based hydrogel could serve as a biologically active microenvi-
ronment to support the chondrocyte phenotype and to promote cartilage formation, which
is expected to be a tissue-engineered scaffold used for the regeneration of cartilaginous tis-
sues. Liu et al. [146] prepared SA/gelatin (Gel) hydrogel scaffolds loaded with nano-bumpy
clay by 3D printing. The surface microstructure, hydrophilicity, and mechanical properties
were comprehensively evaluated. In addition, BMSCs were cultured in vitro with the
composite hydrogel and evaluated for proliferation and osteoblast differentiation. A rabbit
tibial plateau defect model was used to evaluate the osteogenic potential of the composite
hydrogel in vivo. The experimental results demonstrated that the composite hydrogel
loaded with nanobumpy clay exhibited good biocompatibility and effectively promoted the
osteogenesis of BMSCs. Finally, histological analysis showed that the Gel/SA/nano-ATP
composite hydrogel effectively promoted bone regeneration in rabbit tibial plateau defects.
In addition, dextran has been reported to be a water-soluble, non-toxic, and biodegrad-
able polysaccharide capable of forming hydrogels with various other components [147].
Ritz et al. [148] used dextran cross-linked derivatives to make hydrogels, and in order
to improve the bone repair ability of the hydrogels, they also loaded SDF-1 and BMP-2
into the hydrogels. The experimental results indicated the fundamental potential of this
multicomponent polysaccharide hydrogel composite as a bone regeneration biomaterial.

3.3. Silk Fibroin

Silk fibroin (SF) is a typical natural protein polymer with unique chemical and physical
properties. SF has the distinct advantage of excellent mechanical strength to overcome the
mechanical limitations encountered in other natural polymer hydrogels [149]. SF is one of
the most popular biopolymers for tissue bioengineering scaffolds and holds great promise
for tissue engineering applications. According to a previous study, the incorporation
of SF can promote the wound repair ability of wound dressings, cell proliferation, and
angiogenesis in damaged tissues [150]. These advantages of SF are also good improvements
for repairing bone defects.

Photothermal effect nanoparticle hydrogel has good photothermal, antimicrobial, tu-
mor growth inhibition, and drug release control properties under near-infrared irradiation,
which is beneficial to inhibit the growth of osteosarcoma and promote the regeneration
of bone tissue [151,152]. Hao et al. [153] prepared SF-based hydrogel scaffolds loaded
with nanoparticles acting with photothermal effects, and the experimental results proved
that the hydrogel scaffolds have great potential as bifunctional materials for photothermal
treatment of tumors and bone regeneration. Furthermore, SF can be used to prepare hydro-
gels with other active substances for the repair of articular cartilage damage. For example,
SF and chondroitin sulfate were used to prepare tissue bioscaffolds for the repair of ar-
ticular cartilage defects in articulated rabbits by salt-impregnation, freeze-drying, and
cross-linking methods [154]. Similarly, one study similarly prepared SF-based hydrogel
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scaffolds and loaded tanshinone to promote the repair of articular cartilage defects in
rabbits with hydrogel scaffolds [155].

In summary, SF is a natural product with good biosafety and can improve the me-
chanical properties of scaffolds after incorporation into tissue-bioengineered scaffolds.
Additionally, SF has good hydrophilicity and can promote cell adhesion and proliferation,
which has broad application potential. However, how to improve the SF with better water
solubility is still a limiting issue for the development of the SF.

4. Hydrogels Loaded with Natural Product Nanoparticles for Bone
Repair Applications

The natural product has good antioxidant, anti-inflammatory, antibacterial, tumor in-
hibition, anti-osteoporosis, and tissue growth-promoting pharmacological effects [156–160].
Loading natural products into hydrogels with different properties can improve the bioac-
tivity of tissue-engineered scaffolds to promote tissue regeneration and repair [161,162].
However, some natural products have some drawbacks that affect their bioavailability, such
as poor water solubility, toxicity, and poor stability. Loading natural products into nanopar-
ticles can improve the bioavailability, toxicity, and stability of drugs. Resveratrol is a natural
product of trans-3,4′,5-trihydroxystilbene, which has a number of health-promoting bioac-
tivities, but exposure to oxygen, light, temperature, and oxidizing enzymes changes the
structure to cis and reduces the bioactivity of resveratrol [163]. A study encapsulating
resveratrol in casein nanoparticles showed that the oral bioavailability of resveratrol when
loaded into casein nanoparticles was 26.5%, which was 10 times higher than that of resvera-
trol when administered as an oral solution [164]. It can be seen that the addition of natural
product-loaded nanoparticles to hydrogel tissue bioengineering scaffolds can effectively
improve the bioavailability of natural products to promote bone regeneration.

Periodontitis is a common oral disease caused by bacteria, and its progression can
lead to gum recession. Nonetheless, due to the limited regenerative capacity of periodontal
bone tissue, it is difficult to promote bone tissue regeneration [165–167]. Therefore, tissue-
bioengineered scaffolds loaded with natural products are needed to promote periodontal
bone tissue regeneration. In order to avoid the side effects of conventional treatments,
it has been investigated to achieve the synergistic functions of NIR photosensitization
and bactericidal and periodontal tissue regeneration by gallate (EGCG) loading into gold
nanoparticle-modified hydrogels (E-Au@H). In vitro research demonstrated that the NIR-
irradiated composites increased the inhibition of Escherichia coli and Staphylococcus aureus
biofilms by 92% and 94%, respectively, and increased the alkaline phosphatase activity of
mesenchymal stem cells by 7-fold after 5 days and the mineralization rate of the extracellular
matrix by 21-fold after 3 days. The results indicated that the composites could be used for
the treatment of periodontal tissue regeneration with NIR-irradiated composites. The rat
periodontitis model successfully demonstrated that E-Au@H irradiated with near-infrared
light inhibited 87% of dental plaque and promoted alveolar bone regeneration [168].

Silymarin is a natural flavonoid lignan with excellent biological activity; nevertheless,
the low water solubility of silymarin reduces its bioavailability and aqueous solubility,
which limits its clinical action [169]. In order to investigate the bone-repairing effects of
silymarin and to improve the bioavailability of silymarin, a study prepared silymarin-
loaded chitosan nanoparticles by ionic gel technology and loaded them onto SA/Gel
hydrogel tissue engineering scaffolds to evaluate their osteogenic effects. The in vitro
results demonstrated that silymarin had a slow release from the scaffolds, which stimulated
the differentiation of mouse mesenchymal stem cells into osteoblasts at the cellular and
molecular levels [170].

In conclusion, nanoparticles loaded with natural products have been used less in
hydrogel tissue bioengineering scaffolds, and nanoparticles loaded with natural products
can effectively improve the slow release, bioavailability, and stability of natural products,
which is clinically important for promoting bone repair.
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5. Discussion and Future Trends

The use of hydrogels as tissue-bioengineered scaffolds for the repair of bone defects
has been extensively studied, but there are still significant limitations to their clinical
application. Compared with other synthetic polymer matrix hydrogels, natural product
matrix hydrogels have the advantages of better biocompatibility, a simpler source, and
avoiding the hazardous effects of substances produced by chemical synthesis on the human
body. In addition, the purification of synthetic polymers is also a technical challenge. The
different preparation methods of hydrogels with different gel-forming properties and the
presence of chemical reactions limit the use of hydrogels in clinical practice, and the tissue
adhesion and mechanical properties of hydrogels are also important evaluation indexes for
assessing hydrogels as tissue bioengineering scaffolds for repairing bone defects. Therefore,
whatever the gel-forming properties of hydrogels as scaffolds for bone defect repair, further
studies are needed to address their shortcomings.

Three-dimensional (3D) and four-dimensional (4D) printing of biomaterials offers an
interesting alternative for the production of allogeneic tissues and organs to circumvent the
occurrence of donor scarcity and organ shortages. 3D printing allows the construction of
objects by depositing materials layer by layer, allowing precise control of the dimensions
and properties of complex printed structures. However, the emerging 4D printing technol-
ogy allows the structure to change its shape, function, or properties over time after being
exposed to specific external stimuli after fabrication, which shares some characteristics
with responsive hydrogels. 4D printing of hydrogel composites is an advanced technology
that can be used to fabricate scaffolds for various electrical, mechanical, and medical ap-
plications. Bioink-printed hydrogels have been extensively studied for bone repair. The
hydrogel matrix can be used as a bio-glue for printing bone defects. However, due to the
poor printability of hydrogels, 4D printing of detailed devices based on hydrogels remains
challenging and requires improved mechanical properties and biological activity.

In addition, loading natural products into nanoparticles to solve the disadvantages
of natural products and incorporating hydrogel into tissue bioengineering scaffolds for
bone repair are also effective strategies to promote the bone repair ability of hydrogels.
In addition, further research is needed to explore the mechanism of natural products in
promoting bone repair, which can also lay the foundation for subsequent research on
different types of bone defects. Hydrogels of various properties have the potential to
promote bone regeneration, but they are still in the small-scale production stage in the
laboratory, and the application of large-scale production is still a challenge. There are still
concerns about the biocompatibility of hydrogels involving chemical reactions, so future
research directions should consider the production and clinical application. This is of great
significance to promote the development of green bioengineering scaffolds.
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