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Abstract: Poplar, a woody tree species, is widely used for industrial production and as a protec-
tive forest belt. Different clones of poplar exhibit clear variation in terms of morphological and
physiological features, however, the impact of the genetic variation on the composition and abun-
dance of wood metabolite have not been fully determined. In this study, ultra-high pressure liquid
chromatography-triple time of flight-mass spectrometer (UPLC-Triple-TOF-MS) was used to explore
the metabolite changes in poplar wood from three clones, including Populus deltoides CL. ‘55/65’, P.
deltoides CL. ‘Danhong’, and P. nigra CL. ‘N179’. A total of 699 metabolites were identified. Clustering
analysis and principal component analysis display that the metabolic differences of wood have al-
lowed distinguishing different species of poplar. Meanwhile, eight significantly different metabolites
were screened between P. deltoides and P. nigra, which may be considered as valuable markers for
chemotaxonomy. In addition, the highly discriminant 352 metabolites were obtained among the three
clones, and those may be closely related to the distinction in unique properties (e.g., growth, rigidity
and tolerance) of the poplar wood cultivars. This study provides a foundation for further studies
on wood metabolomics in poplar, and offers chemotaxonomic markers that will stimulate the early
screening of potentially superior trees.

Keywords: wood; Populus; genetic background; comparative metabolomics

1. Introduction

Wood is usually termed the secondary xylem and synthesized in many plant species in-
cluding short-lived annual species and long-lived perennials [1]. As the product of cambial
cell differentiation [2], wood is rich in various metabolites, including those involved in pri-
mary metabolism (e.g., amino acids, lipids and carbohydrates) and secondary metabolism
(e.g., alkaloids, terpenoids, polyphenols and tannins), which play a prominent part in
plant growth, development and defence against abiotic and biotic stresses [3–10]. Due to
the inherent physical properties and chemical component, wood is widely used for raw
material of papermaking, building, chemical industry and even foods [11,12]. Furthermore,
it is also a precious source of energy, as the renewable biofuels of solar-powered storage,
and one of the primary carbon pools in terrestrial ecosystems, that has played an essential
part in human life, industrial production and environmental fields [1,13–16].

Poplar (Populus spp., Salicaceae), one of the fast-growing pioneer trees with high
biomass, contains more than 100 species, which are found widely distributed throughout
in warm temperate and subtropical zones [17,18]. This plant has been long utilized in the
commercial production and as a protective forest belt, making it useful in wood production
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and ecosystem maintenance [19]. However, numerous internal and external factors influ-
ence the yield and quality of poplar wood, including genetic origin, a variety of biotic (e.g.,
pathogen infection and insect attack) and abiotic (e.g., cold, heat, flooding, drought and
salinity) stresses [5,9,20–26]. Therefore, based on the study of the molecular and biochemi-
cal mechanisms that control wood formation, various genetically modified poplar clones
with the particular traits (e.g., adapted to specific environmental stresses, improved wood
properties) are bred that will undoubtedly play a critical role in the economics and ecology
in woody species.

Metabolomics, a powerful tool, can provide detailed explanation of the mechanisms be-
hind various environmental (abiotic/biotic) and/or genetic stresses biological responses by
high-throughput, non-biased and comprehensive profiling of the metabolite alterations in
specific organisms or environmental conditions [27–30]. Currently, metabolomics strategies
that combine different sample-processing technologies with various MS-based analytical
platforms are used extensively for plant metabolomics analysis to achieve adequate cov-
erage of the complex metabolite compositions from an organism [31] and provide highly
efficient separation, identification and quantitative analysis of metabolites [7,28,32,33].

Currently, metabolomics studies on poplar clones are scarce and most of the anal-
ysis target is leaves of poplar in studies [24,34,35]. Herein, the metabolite compositions
in woods across three different poplar clones were detected using ultra-high pressure
liquid chromatography-triple time of flight-mass spectrometer (UPLC-Triple-TOF-MS)
(Applied Biosystems, Waltham, MA, USA), and the distinctions of metabolite constitute
were compared. The purpose was to understand the wood metabolites of the three poplar
clones, explore the impact of the genetic variation on the composition of wood metabolite,
and screen potentially useful chemotaxonomic markers that were identified to possibly
be biomarkers for poplar genetic response, so as provide a scientific reference for future
studies of genetic structure and early screening of potentially superior poplars.

2. Results
2.1. Metabolite Identification of Poplar Wood Based on UPLC-Triple-TOF-MS

To evaluate the metabolomic distinction of poplar wood from three clones, we con-
ducted untargeted metabolic profiling to analyse the metabolome of wood from three
poplar clones by using UPLC-Triple-TOF-MS.

After analysing the data matrix generated, 699 metabolites were predicted in poplar
wood from three clones by comparing the accurate m/z values, associated adduct and
MS/MS fragmentation data with those of the reference standards found in the databases
(Supplementary Materials Table S1). According to annotations in human metabolome
database (HMDB) (http://www.hmdb.ca/ (15 September 2021)), 606 metabolites were
matched into 9 superclasses, including 221 lipids and lipid-like molecules, 99 organic oxy-
gen compounds, 79 phenylpropanoids and polyketides, 72 organoheterocyclic compounds,
71 organic acids and derivatives, 41 benzenoids, 16 nucleotides and their derivatives, 4 lig-
nans, neolignans and related compounds, and 3 organic nitrogen compounds (Figure 1).
These metabolites were part of most of the primary and secondary metabolisms of poplar.

http://www.hmdb.ca/
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different poplar clones, PCA was conducted on the metabolic data for Populus deltoides CL. 
‘55/65’ (P1), P. deltoides CL. ‘Danhong’ (P2) and P. nigra CL. ‘N179’ (P3). The analysis re-
sults demonstrated that the first four significant PCs can explain 57.7% of the overall var-
iability, and PC1 and PC2 explain variation of 23.7% and 16.7%, respectively (Figure 2a). 
The first two PCs in the PCA plot (Figure 2b) display the three tested clones clearly clus-
tered into two distinct chemotype-groups, indicating their corresponding classification of 
species. The clone P1 and P2 clustered together, resulting in rather weak explain variances, 
that was clearly separated from P3, indicating that the metabolites from P3 are remarkably 
different from both of those from P1 and P2. In addition, Hotelling’s T2 analysis for iden-
tified sample outliers display that the observations almost were distributed within the 95% 
confidence regions, reflecting the observations were available (Figure 2c) and the PCA 
model presented in this study was stable and reliable. 

 
Figure 2. Principal component analysis (PCA). (a) Summary of fit. (b) PCA score plots of the metabolites 
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Figure 1. Classification of the identified metabolites.

2.2. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) of Poplar
Wood from Three Clones

For the preliminary assessment about the differences between metabolic profiles of
different poplar clones, PCA was conducted on the metabolic data for Populus deltoides CL.
‘55/65’ (P1), P. deltoides CL. ‘Danhong’ (P2) and P. nigra CL. ‘N179’ (P3). The analysis results
demonstrated that the first four significant PCs can explain 57.7% of the overall variability,
and PC1 and PC2 explain variation of 23.7% and 16.7%, respectively (Figure 2a). The first
two PCs in the PCA plot (Figure 2b) display the three tested clones clearly clustered into
two distinct chemotype-groups, indicating their corresponding classification of species.
The clone P1 and P2 clustered together, resulting in rather weak explain variances, that was
clearly separated from P3, indicating that the metabolites from P3 are remarkably different
from both of those from P1 and P2. In addition, Hotelling’s T2 analysis for identified sample
outliers display that the observations almost were distributed within the 95% confidence
regions, reflecting the observations were available (Figure 2c) and the PCA model presented
in this study was stable and reliable.
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Figure 2. Principal component analysis (PCA). (a) Summary of fit. (b) PCA score plots of the
metabolites in poplar wood from three clones, with quality control. (c) Hotelling’s T2 range line plot
of all samples.



Molecules 2023, 28, 7024 4 of 16

In addition, HCA of the metabolites of the poplar wood from three clones was carried
out. All identified metabolites are shown in Figure 3, substantial differences were observed
in terms of the relative amounts of metabolites between the different poplar clones. More-
over, three clones were clearly separated into two main clusters by species, namely, P. nigra
and P. deltoides. All samples that were initially characterized as P3 were clustered, while
the other cluster was formed by two clones of P1 and P2. The clustering result indicated
the expression profile of metabolites between two P. deltoides (P1 and P2) was similar, while
showing relatively obvious difference with P. nigra (P3). The result is supported by PCA.
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Figure 3. Cluster heatmap of the metabolites in poplar wood from three clones using HCA. Each
column represents a sample, and each row represents a metabolite. Different colours represent the
significant differences in the relative contents of metabolites between the different poplar clones, red
bars indicate high contents, yet blue bars represent low relative contents.

2.3. Supervised Orthogonal Partial Least Squares Discriminate Analysis (OPLS-DA) for
All Samples

To explore the variation of metabolic profile across the wood of three clones further,
an OPLS-DA model was performed to determine differential metabolites between the
comparison groups from three clones investigated, namely, P1 vs. P3, P2 vs. P3, P1 vs.
P2. As shown in Figures 4a, 5a and 6a, the comparison group of samples that belong
to the three clones were obviously divided into distinct chemotype-cluster according to
their metabolite profiles, and the separation of the clone samples was based on the genetic
background, which demonstrates that the variation of metabolic profiles across the wood
of three clones is correlated for the discrimination among variety.

To evaluate the overfitting possibility of the OPLS-DA model, permutation testing
with 200 iterations was performed. In theory, all the values of R2 and Q2 for the model
fitting (on the left) are below the points of the original model (on the top-right corner),
and the regression line of the Q2-point intersects the vertical axis on the left at zero or less,
indicating that the original model is valid [36]. As shown in Figures 4b, 5b and 6b, the
permutation plots of all comparison groups display that the models are satisfactory and
could be applied for further analysis of the metabolite variation.
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Figure 4. Differential metabolites analysis for the comparison group of P1 vs. P3 using OPLS-
DA. (a) OPLS-DA score plot (R2X = 0.422, R2 = 0.999, Q2 = 0.957). (b) Permutation test plot with
200 iterations. (c) OPLS-DA (V + S)-plot, the potential differential metabolites situated on the lower
left and upper right end of the “S”, the same are the upper of both side of the “V”, the deeper the colour
of dots the more important metabolites. (d) Volcano plot. Each dot represents an identified metabolite;
the blue dots on the left, the red dots on the right and the grey dots on the middle of diagram indicate
down-regulated, up-regulated and insignificant differential metabolites, respectively.
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Figure 5. Differential metabolites analysis for the comparison group of P2 vs. P3 using OPLS-
DA. (a) OPLS-DA score plot (R2X = 0.524, R2 = 0.995, Q2 = 0.945). (b) Permutation test plot with
200 iterations. (c) OPLS-DA (V + S)-plot, the potential differential metabolites situated on the lower
left and upper right end of the “S”, the same are the upper of both side of the “V”, the deeper the colour
of dots the more important metabolites. (d) Volcano plot. Each dot represents an identified metabolite;
the blue dots on the left, the red dots on the right and the grey dots on the middle of diagram indicate
down-regulated, up-regulated and insignificant differential metabolites, respectively.
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Figure 6. Differential metabolites analysis for the comparison group of P1 vs. P2 using OPLS-
DA. (a) OPLS-DA score plot (R2X = 0.379, R2 = 0.990, Q2 = 0.745). (b) Permutation test plot with
200 iterations. (c) OPLS-DA (V + S)-plot, the potential differential metabolites situated on the lower
left and upper right end of the “S”, the same are the upper of both side of the “V”, the deeper the colour
of dots the more important metabolites. (d) Volcano plot. Each dot represents an identified metabolite;
the blue dots on the left, the red dots on the right and the grey dots on the middle of diagram indicate
down-regulated, up-regulated and insignificant differential metabolites, respectively.

2.4. Comparison of Metabolic Variations between Three Clones

To screen statistically differential metabolites, a (V + S)-plot was constructed from the
OPLS-DA model. As shown in Figures 4c, 5c and 6c, the variables with variable importance
in the projection (VIP) ≥ 1 had higher p and p (corr) values, which are generally situated on
the lower left and upper right end of the “S”, and were usually regarded as the potential
differential metabolites associated with distinguishing the comparison groups. There are
205 potential differential metabolites between the comparison group of P1 and P3, 212
between P2 and P3, and 251 between P1 and P2 were screened out according to VIP ≥ 1
and p < 0.05.

Additionally, volcano plots were constructed to visualise the significantly differen-
tial metabolites in the comparison group. As shown in Figures 4d, 5d and 6d, the dots
located farther to the left, right side and top of the volcano plot represent greatly differ-
ential metabolites. By adding the threshold of fold-change score of ≥1.1 (up-regulated)
or ≤0.9 (down-regulated), the significantly differential metabolites were screened in the
comparison groups.

Based on the comparison between P1 and P3, 122 significantly differential metabolites
were identified, including 43 lipids and lipid-like molecules, 19 organoheterocyclic com-
pounds, 18 phenylpropanoids and polyketides, 16 organic acids and derivatives, 16 organic
oxygen compounds, 4 benzenoids and 6 others (Figure 7a), among which 48 metabolites
display down-regulated and 74 metabolites display up-regulated in P1. The comparison
between P2 and P3 revealed that 161 metabolites were significantly different, and they
contain 45 lipids and lipid-like molecules, 30 phenylpropanoids and polyketides, 16 organic
acids and derivatives, 21 organic oxygen compounds, 19 organoheterocyclic compounds,
10 benzenoids and 20 others (Figure 7b). Among the 161 differential metabolites, there were
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93 down-regulated metabolites, and 68 up-regulated metabolites in clone P2. Furthermore,
based on the comparison between P1 and P2, 80 significantly differential metabolites (19
down-regulated and 61 up-regulated in clone P1) were found, covering 38 lipids and lipid-
like molecules, 16 organic acids and derivatives, 11 phenylpropanoids and polyketides,
5 organic oxygen compounds, 4 benzenoids, 4 organoheterocyclic compounds and 2 others
(Figure 7c). The differences of metabolites profiles among the three clones were shown in
these results, which may be correlated to the genetic diversity between different clones.
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Figure 7. Analysis of differential metabolites data for the three comparison groups. Classification of
the significant differential metabolites between the comparison groups of (a) P1 vs. P3; (b) P2 vs. P3;
(c) P1 vs. P2. (d) The number of differential metabolites between P1 vs. P3, P2 vs. P3, P1 vs. P2,
respectively. Up-regulated differential metabolites were represented red pillars; down-regulated
differential metabolites were represented blue pillars. (e) The Venn diagram of differential metabolites
of the comparison groups P1 vs. P3, P2 vs. P3, P1 vs. P2, respectively.
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As shown in Figure 7d, the number of differential metabolites were fewer in the P. del-
toides comparison group (P1 vs. P2) than in the two other comparison groups (P1 vs. P3, P2
vs. P3), illustrating that the difference of metabolites profile was relatively smaller within
the individual species considering their similar genetic backgrounds, while a more signif-
icant difference was observed between the two species. Therefore, analysis of metabolic
variations might be useful for the distinctions of clone or species within genus Populus.

2.5. Screening of Potential Markers between P. nigra and P. deltoides

Venn diagram analysis was conducted to visualise the overlap and distinctions of
differential metabolites among the three comparison groups of Populus, and 78 commonly
differential metabolites were discovered between P1 versus P3 and P2 versus P3, including
68 metabolites with significant differences that may be related to the inter-specific difference
within genus Populus (Figure 7e).

Based on the analysis of significant differential metabolites among species screened
in the comparison groups, the screened metabolites were primarily involved in three
superclasses, including lipids and lipid-like molecules, organoheterocyclic and organic
oxygen compounds, and phenylpropanoids and polyketides. Altogether, compared with
P. nigra, eight significantly changed metabolites were screened out in P. deltoides. As shown
in Figure 8, four significantly differential metabolites were significantly increased, including
liqcoumarin, 4-methyldaphnetin, N-(3-methylbutyl) acetamide and musabalbisiane A;
while the other four were significantly reduced, including cinnamoside, lysoPE (0:0/24:1
(15Z)), L-urobilinogen and isopropyl apiosylglucoside. Those significant metabolites were
chosen as the metabolic difference markers to separate P. nigra and P. deltoides.
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2.6. Screening for the Differential Metabolites in the Three Clones of Poplar

To estimate the contribution of metabolites to distinction between the three investi-
gated clones, one-way analysis of variance (ANOVA) was performed, where a p-value of
<0.05 was considered significant, and 352 metabolites with significant correlation were ob-
tained among P1, P2 and P3. Lipids, amino acids and carbohydrates are three categories of
important metabolites that dominate the classification of the wood samples from different
poplar clones, making up approximately 50% of 352 metabolites.

To further screen the metabolites that contributed the greatest to the distinction be-
tween clones, a biplot was constructed based on the dataset that includes 18 samples
and 352 different metabolites, which were significantly correlated with variation between
the three investigated clones (Figure 9a). The biplot could simultaneously display and
illuminate the relationship among PCA scores and loadings, indicating which variable
mainly determined the position of the samples in the PCA. Figure 9a shows the composition
and contents of different metabolites among three clones in a biplot, which were clearly
clustered into three distinct groups, thus improving the explained variances (43.5% for
PC-1 and 22.1% for PC-2). Subsequently, the discriminant capacity of these metabolites was
ranked according to the contribution to distinction between clones. The top 30 metabolites
and their correct classification are shown in Table 1. These metabolites were highly dis-
criminant metabolites between the poplar clones, containing ten lipids, five organic oxygen
compounds, five organic acids and derivatives, four phenylpropanoid and polyketides,
four benzenoids, one organoheterocyclic compound, and one nucleosides, nucleotides,
and analogues.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 17 
 

 

Figure 8. The relative abundance of the eight significantly differential metabolites between P. nigra 
and P. deltoides. (a) Liqcoumarin; (b) 4-methyldaphnetin; (c) N-(3-methylbutyl) acetamide; (d) Mu-
sabalbisiane A; (e) Cinnamoside; (f) LysoPE (0:0/24:1 (15Z)); (g) L-urobilinogen; (h) Isopropyl api-
osylglucoside. 

2.6. Screening for the Differential Metabolites in the Three Clones of Poplar 
To estimate the contribution of metabolites to distinction between the three investi-

gated clones, one-way analysis of variance (ANOVA) was performed, where a p-value of 
<0.05 was considered significant, and 352 metabolites with significant correlation were 
obtained among P1, P2 and P3. Lipids, amino acids and carbohydrates are three categories 
of important metabolites that dominate the classification of the wood samples from dif-
ferent poplar clones, making up approximately 50% of 352 metabolites. 

To further screen the metabolites that contributed the greatest to the distinction be-
tween clones, a biplot was constructed based on the dataset that includes 18 samples and 
352 different metabolites, which were significantly correlated with variation between the 
three investigated clones (Figure 9a). The biplot could simultaneously display and illumi-
nate the relationship among PCA scores and loadings, indicating which variable mainly 
determined the position of the samples in the PCA. Figure 9a shows the composition and 
contents of different metabolites among three clones in a biplot, which were clearly clus-
tered into three distinct groups, thus improving the explained variances (43.5% for PC-1 
and 22.1% for PC-2). Subsequently, the discriminant capacity of these metabolites was 
ranked according to the contribution to distinction between clones. The top 30 metabolites 
and their correct classification are shown in Table 1. These metabolites were highly discri-
minant metabolites between the poplar clones, containing ten lipids, five organic oxygen 
compounds, five organic acids and derivatives, four phenylpropanoid and polyketides, 
four benzenoids, one organoheterocyclic compound, and one nucleosides, nucleotides, 
and analogues. 

 
Figure 9. Preliminary analysis of discriminant metabolites data of three clones. (a) PCA /biplot of all 
samples constructed using 352 discriminant metabolites of three clones. The colour depth of dot 
represents the relative content in bases of the discriminant metabolites, and when the different me-
tabolites situated near the respective clone cluster in the score plot, they were considered to be 
highly discriminant. (b) The metabolic pathways assignment of differential metabolites from three 
clone woods. Y-axis represents the logarithmic transformation of p values estimated by enrichment 
analysis. X-axis show the pathway impact value was calculated by topology analysis. Different sizes 
of bubbles represent impact value. 

  

Figure 9. Preliminary analysis of discriminant metabolites data of three clones. (a) PCA /biplot
of all samples constructed using 352 discriminant metabolites of three clones. The colour depth of
dot represents the relative content in bases of the discriminant metabolites, and when the different
metabolites situated near the respective clone cluster in the score plot, they were considered to be
highly discriminant. (b) The metabolic pathways assignment of differential metabolites from three
clone woods. Y-axis represents the logarithmic transformation of p values estimated by enrichment
analysis. X-axis show the pathway impact value was calculated by topology analysis. Different sizes
of bubbles represent impact value.

Table 1. The top 30 metabolites that contributed significantly to the correct classification of P1, P2
and P3.

Metabolite p_Value FDR A B C Superclass

cis-3-Hexenyl hexanoate 6.85 × 10−5 1.58 × 10−3 1.888 1.841 2.277 a
3-hydroxy-3-methyl-Glutaric acid 1.00 × 10−2 3.46 × 10−2 3.059 3.030 3.331 a

(−)-11-Hydroxy-9,15,16-trioxooctadec-anoic acid 4.03 × 10−3 1.93 × 10−2 3.848 3.698 3.723 a
Myristoleic acid 1.28 × 10−4 2.24 × 10−3 3.026 3.079 3.265 a
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Table 1. Cont.

Metabolite p_Value FDR A B C Superclass

Alpha-Linolenic acid 3.61 × 10−2 6.68 × 10−2 3.574 3.273 3.243 a
1,11-Undecanedicarboxylic acid 4.20 × 10−4 4.64 × 10−3 2.931 2.976 3.182 a

Capsidiol 7.49 × 10−4 6.61 × 10−3 2.032 2.007 2.231 a
Furanofukinin 1.05 × 10−2 3.56 × 10−2 2.580 2.800 2.515 a
Stachyoside A 3.18 × 10−3 1.67 × 10−2 3.474 3.434 3.636 a

Sorbitan laurate 4.19 × 10−2 9.08 × 10−2 2.687 2.604 2.562 a
L-Phenylalanine 3.99 × 10−4 3.44 × 10−3 0.059 0.056 0.108 b

Neuromedin B (1-3) 5.32 × 10−3 2.33 × 10−2 3.406 3.579 3.343 b
6-Oxopiperidine-2-carboxylic acid 3.36 × 10−2 7.80 × 10−2 1.957 2.159 1.976 b

Glutamylglycine 2.32 × 10−2 4.82 × 10−2 2.284 1.652 1.584 b
3-Hydroxy-L-proline 7.23 × 10−3 2.15 × 10−2 2.540 2.296 2.270 b

Natamycin 5.18 × 10−4 3.91 × 10−3 2.330 2.576 2.342 c
Glucosylisomaltol 1.24 × 10−3 6.98 × 10−3 2.177 2.106 2.513 c

6-(4-ethyl-3-hydroxyphenoxy)-3,4,5-
trihydroxyoxane-2-carboxylic

acid
1.31 × 10−2 4.12 × 10−2 2.592 2.725 2.542 c

Kinetin-7-N-glucoside 2.95 × 10−3 1.19 × 10−2 3.433 3.357 3.341 c
3-Hydroxy-1-(4-hydroxyphenyl)-1-propanone 9.00 × 10−3 3.25 × 10−2 2.510 2.653 2.496 c

Tipranavir 1.18 × 10−4 2.15 × 10−3 2.677 2.583 3.065 d
Oxacyclotetradecan-2-one 5.95 × 10−3 2.50 × 10−2 1.759 1.841 2.226 d

6′′-O-Acetylglycitin 4.92 × 10−2 8.43 × 10−2 2.401 2.231 2.221 d
Caffeic Acid 4.64 × 10−2 8.10 × 10−2 2.856 2.641 2.662 d

Hovenolactone 1.98 × 10−3 1.24 × 10−2 2.909 3.002 3.406 e
Benzoic acid 3.36 × 10−2 6.32 × 10−2 1.664 1.463 1.488 e

4-ethenyl-6-methoxybenzene-1,3-diol 3.24 × 10−2 7.58 × 10−2 3.365 3.451 3.337 e
2′-Hydroxyacetophenone 9.17 × 10−3 3.29 × 10−2 1.854 2.075 1.805 e

1-(4-methoxy-1-benzofuran-5-yl) ethan-1-ol 3.38 × 10−2 6.34 × 10−2 2.040 1.856 1.778 f
5-Methyldeoxycytidine 5.76 × 10−5 9.70 × 10−4 3.910 3.627 4.415 g

The p-value and FDR indicate the significance and false discovery rate of metabolites difference among three
clones, respectively. A, P1_mean; B, P2_mean; C, P3_mean. a, lipids and lipid-like molecules; b, organic
acids and derivatives; c, organic oxygen compounds; d, phenylpropanoids and polyketides; e, benzenoids; f,
organoheterocyclic compounds; g, nucleosides, nucleotides, and analogues.

2.7. Metabolic Pathway Enrichment Analysis for Differential Metabolites

To characterize the metabolic pathway of the differential metabolites that can discrim-
inate different poplar clones, the Kyoto Encyclopaedia of Genes and Genomes (KEGG)
pathway enrichment analysis was performed. A total of 352 metabolites were mainly
enriched in four metabolic processes related to the biosynthesis of phenylpropanoid, pheny-
lalanine metabolism, citrate cycle (TCA cycle) and nicotinate and nicotinamide metabolism
(Figure 9b). The biosynthesis of phenylpropanoid displayed the highest score in the four
metabolic pathways and contained some differential metabolites including caffeic acid,
trans-cinnamic acid, sinapyl alcohol, L-phenylalanine, ferulic acid, cinnamaldehyde, cis-β-
D-glucosyl-2-hydroxycinnamate and 4-hydroxycinnamyl aldehyde.

3. Discussion

Woody tissue, a unique component to ligneous plants, consists primarily of cellulose,
hemicellulose, lignin, and extractives, and contributes significantly to a wide range of
important physiological functions in tree, such as structural support, water and nutrient
transport, reserve substances storage, and defence to pathogen infections and herbivore
attacks [37]. The metabolites, as end-products of cellular regulatory processes and the key to
the growth and development of trees, have levels influenced by environmental conditions
and genetic variance [3,5–7,21,38]. These factors may change the biosynthetic pathways of
metabolites, which regulates the relative abundance and composition of metabolites [39].
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Understanding of the influence of genetic background on metabolites of wood is of
important significance in tree improvement and exploring the variability trends of wood
characteristic in species with long harvest periods. At present, the information in regard to
the relevance of genetic background on metabolic variation among different cultivars is
scarce. In the few studies of this kind, the most common platform used for analysis was
GC-MS [21,35,40].

In this work, the components and variation of metabolites in the wood of one P.
nigra (P3) and two P. deltoides clones (P1 and P2) in poplar were investigated using UPLC-
Triple-TOF-MS with non-targeted metabolic analysis, in order to detect significant genetic
variation for metabolites and understand if the different poplar genotypes can be distin-
guished according to their metabolites, and if so, which metabolites are the marker of the
distinction.

P1, P2 and P3 are all important cultivars of forest poplar in China, and vary in growth
and wood properties [38,41,42]. The variety, P2, is an intraspecific hybrid that was bred
by artificial pollination with P1 as the female parent and P. deltoides CL. ‘2KEN8’ as the
male parent [43]. Compared to its parents, P2 is superior to other poplar species in terms
of growth and wood traits, including faster growth rate, straighter trunk, and stronger
resistance against pests [44]. P1 had better physical and mechanical properties than P3,
as a previous study has shown [45]. In this research, no difference in age and growing
conditions existed among the three clones as they came from the same forest farm and were
simultaneously grown and cut. The effect of the genotype itself on the metabolomics profile
of three poplar clones wood is revealed. In that sense, the unique metabolic properties of
different clones that were obtained in this study could be applied to define the difference of
genetic backgrounds among them.

In three clones, a total of 699 metabolites were obtained. A large amount of information
about metabolites of poplar wood provides the foundation for the isolation and further
development and utilization of valuable components.

PCA and HCA made from the variation of the metabolite abundance in the different
poplar clones allowed the initial distinction of the metabolite profile in three clusters,
consistent with the initial classification of the samples conducted on their intra-specific
diversity that might be caused different clones or varieties in a same species [38,41,42].
Moreover, the farther distinction between P1, P2 and P3 samples is also consistent with
the most frequently used classification of the various clones of genus poplar into different
species [46], which places P3 under P. nigra and P1 and P2 under P. deltoides. Therefore, the
PCA and HCA reveals the composition and relative abundance of the wood metabolites of
three poplar clones that can be used for chemotaxonomic purposes.

Herein, two phenylpropanoids and polyketides, two lipids and lipid-like molecules,
one organic acid and derivative, one diterpenoid, one organoheterocyclic compound,
and one organic oxygen compound, all of which display significant variation in P. nigra
and P. deltoides comparisons, were screened out. These significantly changed metabolites
included liqcoumarin, 4-methyldaphnetin, N-(3-methylbutyl) acetamide, musabalbisiane
A, cinnamoside, lysoPE (0:0/24:1 (15Z)), L-urobilinogen and isopropyl apiosylglucoside.
Of these changed metabolites the first four metabolites were remarkably increased and
the other four metabolites were significantly reduced between P. deltoides and P. nigra. The
composition and abundance of these different metabolites between two species of poplar
indicated their species-specific significance and may be considered as chemotaxonomic
markers for the discrimination of the poplar species.

All of the metabolites were chosen for ANOVA to further interrogate the chemo-
type distinction of genotypically differentiated clones of the hybrid poplar. A total of
352 metabolites with ANOVA p-value below 0.05 facilitated the separation of the three
clones, and were dominated by a disproportionate number of lipids, carbohydrates and
amino acids. Guerra et al. [21] used GS-TOF-MS to analyse the genetic variation in the
wood metabolomic composition of different Populus trichocarpa clones, finding 11 statisti-
cally significant (p < 0.01) different metabolites. A total of 197 metabolites with significant
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differences were identified between the two multi-gene transgenic and one nontransgenic
lines of hybrid poplar, in which the three primary metabolites, amino acids, lipids and
carbohydrates, constituted up to 70% of all identified metabolites [22].

Among these samples, 352 metabolites that were significantly correlated with variation
between the three investigated clones were mainly assigned to four metabolic pathways as-
sociated with the biosynthesis of phenylpropanoid, phenylalanine metabolism, TCA cycle
and nicotinate and nicotinamide metabolism. Previous research has found that pathways
phenylpropanoid biosynthesis, the citrate cycle and phenylalanine metabolism were asso-
ciated with plant defence [5,9,47]. The biosynthesis of phenylpropanoid, which enriched
some differential metabolites containing caffeic acid, trans-cinnamic acid, sinapyl alcohol,
L-phenylalanine, ferulic acid, cinnamaldehyde, cis-β-D-glucosyl-2-hydroxycinnamate and
4-hydroxycinnamyl aldehyde, was the most significant enriched pathways (p < 0.05) in
four metabolic pathways.

The biosynthesis of phenylpropanoid is the main synthetic pathway of secondary
metabolite in plants, plays an important role in resistance to biotic stress [48]. For instance,
phenylalanine, as the entry point to the pathway of phenylpropanoid biosynthesis, was
transformed into trans-cinnamic acid through the catalysis of phenylalanine ammonia-
lyase. Then, according to differences of the plant species, benzoic acid 2-hydroxylase
converts trans-cinnamic acid to salicylic acid via the intermediates ortho-coumaric acid
or benzoic acid [49,50]. Salicylic acid, a critical plant hormone, can be direct or indirect
to regulate many aspects of plant growth and development, and influence resistances to
(a)biotic stresses in plants [51]. Sinapyl alcohol, which was involved in the biosynthesis
of phenylpropanoid, was the precursor of lignin biosynthesis. The deposition of lignin
generates a highly thickened secondary cell wall of xylem vessels and fibres to result in the
formation of wood [52]. The thickened secondary cell wall of xylem is difficult to feed and
digest for insects. In addition, four differential metabolites were substantially enriched in
the biosynthesis of phenylpropanoid (caffeic acid, trans-cinnamic acid, sinapyl alcohol, and
ferulic acid) were associated with chemical defence in poplar. The accumulation of ferulic
acid was induced in xylem of poplar clone P2 by Apriona germari (Hope) indicated ferulic
acid might be involved in plant defence against stem-boring insects [9]. It was found that
four hydroxycinnamates, benzenoids and their derivatives (caffeic acid, trans-cinnamic
acid, sinapyl alcohol and coumarin) contribute constitutive resistance to fall webworm
(Hyphantria cunea) in P. deltoides [35]. It was indicated that the pathway to phenylpropanoid
in poplar play an important role in the responses to biotic stresses in Populus.

4. Materials and Methods
4.1. Wood Material Collection

The wood samples from eight-year-old poplar clones (6.5–8.0 m above the ground;
i.d., approximately 20 cm) of P. deltoides CL. ‘55/65’ (P1), P. deltoides CL. ‘Danhong’ (P2) and
P. nigra CL. ‘N179’ (P3) were collected in December 2017 from Kaihua County in Zhejiang
province of China. The three clones belong to different species of Sect. Aigeiros Duby,
where P1 and P2 both are P. deltoides W. Bartram ex Marshall and P3 is Populus nigria L.
Six biological replicates were performed for each clone. The naturally dried samples were
ground into powder and placed aside.

4.2. Metabolite Extraction

Approximately 800 µL of methanol/water (4:1, v/v) extractant and 20 µL of internal
standards (0.3 mg/mL 2-chloro-L-phenylalanine in acetonitrile) was added into 50 mg
powder of each sample. The sample tissue was broken using high-throughput tissue
crusher (Wonbio-96c, Shanghai Wanbo Biotechnology Co., Ltd., Shanghai, China) at−20 ◦C
and 50 Hz for 6 min, and then treated for 30 min by ultrasound (SBL-10DT, Ningbo Xinzhi
Biotechnology Co., Ltd., Ningbo, China) at 5 ◦C at 40 kHz to extract metabolites. After
precipitation at −20 ◦C for 30 min, centrifugation (Centrifuge 5430R, Eppendorf, Hamburg,
Germany) was performed on the samples at 13,000× g for 15 min at 4 ◦C. The obtained



Molecules 2023, 28, 7024 13 of 16

supernatant was absorbed, dried, and dissolved in 150 µL of acetonitrile: water (4:1, v/v)
solution for further analysis.

4.3. Quality Control Sample

To assess the stability of the analysis, the quality control sample (QC) was prepared by
mixing equal volumes of all sample extracts. During the analytic sequence, the QC samples
were measured at regular intervals in the same manner as the wood extracts.

4.4. Profiling of Metabolites by UPLC-Triple-TOF-MS

Metabolite profiling of poplar wood was conducted by using a UPLC-Triple-TOF-MS ana-
lytical platform based on UPLC with an ExionLCTMAD system (Applied Biosystems, Waltham,
MA, USA) equipped with an ACQUITY UPLC BEH C18 column (100 mm × 2.1 mm × 1.7 µm,
Waters, Milford, MA, USA), and a quadrupole-time-of-flight mass spectrometer (Triple
TOFTM 5600+, Applied Biosystems) fitted with an electrospray ionization (ESI). Water with
0.1% formic acid was used as mobile phase A, while the mobile phase B comprised acetoni-
trile: isopropanol (1:1, v/v) solution with 0.1% formic acid. The following was gradient
elution program: 95% (A):5% (B) at 0 min, 80% (A):20% (B) at 3 min, 5% (A):95% (B) at
9 min, 5% (A):95% (B) at 13 min, 5% (A):95% (B) at 13.1 min, and 95% (A):5% (B) at 16 min,
95% (A):5% (B) for equilibrating the systems. The temperature of chromatographic column,
flow rate and injection volume of each sample extract were set at 40 ◦C, 0.4 mL/min and
20 µL, respectively. During the period of analysis, all these samples were stored at 4 ◦C.

The extract sample of poplar wood was analysed in positive mode (POS) and negative
mode (NEG) over a mass range of 50–1000 m/z. The MS conditions were set as follows:
temperature of ESI source, 500 ◦C; ion-spray voltage floating in positive mode and negative
mode was 5.00 and −4.00 kV, respectively; both ion source gas 1 and gas 2 was 50 psi;
curtain gas at 30 psi; declustering potential at 80 V; and collision energy was 20–60 V rolling
for MS/MS.

4.5. Metabolite Identification

The obtained raw data were pre-processed in Progenesis QI 2.3 (Waters), and the
procedure included baseline correction, peak detection and retention time alignment. The
processed data matrix that was composed of peak intensity, retention time, characteristic
fragment and mass-to-charge ratio (m/z) values was generated.

Structural annotation of metabolites was performed through the accurate m/z val-
ues, associated adducts and MS/MS characteristic fragmentation data with automatically
matching in credible biochemical databases, including HMDB and Metlin database.

4.6. Statistical Analysis

After the raw metabolic data were normalized and imputed as previously described
in Yang et al. [53], multivariate statistical analysis was carried out on log-transformed data
by using SIMCA-P 14.1 software package (Umetrics, Umeå, Sweden). Two unsupervised
pattern recognition methods, PCA and HCA, and OPLS-DA were performed. Consequently,
statistically significant metabolites that helped in distinguishing the clones of poplar were
screened according to a fold-change score of ≥1.1 or ≤0.9, p-value < 0.05, and VIP value
of ≥1 in the OPLS-DA model. ANOVA was conducted to select the highly discriminant
metabolites among three investigated clones. Metabolic pathway annotation analysis was
performed to obtain the significant pathways of the differential metabolites base on the
KEGG database [54].

5. Conclusions

In summary, the metabolites in the wood of one P. nigra and two P. deltoides clones in
poplar were investigated using UPLC-Triple-TOF-MS. HCA and PCA suggested that the
metabolic differences that were obtained in the wood composition have allowed distin-
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guishing poplar species, which is consistent with the initial classification of the specimens
conducted from the morphological features and crossability encounters.

Through conducting OPLS-DA and Venn analysis, the compounds including liq-
coumarin, 4-methyldaphnetin, N-(3-methylbutyl) acetamide, musabalbisiane A, cinnamo-
side, lysoPE (0:0/24:1 (15Z)), L-urobilinogen and isopropyl apiosylglucoside were identified
as signature differential metabolites of P. nigra and P. deltoids, which may be considered as
valuable markers for chemotaxonomy.

In addition, remarkable difference in the expression level of 352 metabolites was
observed between the three clones, and those may be closely related to the distinction in
unique properties (e.g., growth, rigidity and tolerance) of the poplar wood cultivars. At
the same time, the use of composition and abundance of the metabolites of these three
poplar clones can achieve chemotaxonomic purposes. The findings of this study may
provide the foundation for further research on wood metabolism in poplar, meanwhile the
chemotaxonomic markers were obtained in this study will stimulate the early screening
of potentially superior tree in molecular breeding of poplar clones based on inhere wood
quality traits.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28207024/s1, Figure S1: The stacking plot of total ions
current maps, Table S1: Metabolites of poplar wood from three clones.
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