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Abstract: Imidazole was first synthesized by Heinrich Debus in 1858 and was obtained by the reaction
of glyoxal and formaldehyde in ammonia, initially called glyoxaline. The current literature provides
much information about the synthesis, functionalization, physicochemical characteristics and bio-
logical role of imidazole. Imidazole is a structure that, despite being small, has a unique chemical
complexity. It is a nucleus that is very practical and versatile in its construction/functionalization and
can be considered a rich source of chemical diversity. Imidazole acts in extremely important processes
for the maintenance of living organisms, such as catalysis in enzymatic processes. Imidazole-based
compounds with antibacterial, anti-inflammatory, antidiabetic, antiparasitic, antituberculosis, anti-
fungal, antioxidant, antitumor, antimalarial, anticancer, antidepressant and many others make up the
therapeutic arsenal and new bioactive compounds proposed in the most diverse works. The interest
and importance of imidazole-containing analogs in the field of medicinal chemistry is remarkable,
and the understanding from the development of the first blockbuster drug cimetidine explores all
the chemical and biological concepts of imidazole in the context of research and development of
new drugs.
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1. The Chemistry of Imidazole

Imidazole 1 (Figure 1) was first synthesized by Heinrich Debus in 1858, but since the
1840s, several imidazole derivatives have been discovered. Its synthesis started from the
use of glyoxal 2 and formaldehyde 3 in ammonia, producing imidazole 1 as a final product,
which was initially called glyoxaline (Figure 2) [1,2]. This synthesis, despite producing
relatively low yields, is still used to create C-substituted imidazoles.
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Figure 2. Scheme of the synthesis of imidazole 1 using glyoxal 2 and formaldehyde 3 in ammonia. 

Among the nitrogen-based heterocyclic compounds, imidazole 1 plays an important 

role in humans. It is included in chemical sciences, biological sciences and materials 

science, and used as a catalyst in compound synthesis and the process of developing new 

drugs (Figure 3) [3–6]. 

 

Figure 3. Applications of imidazole 1 in different areas of knowledge. 

With a 5-membered planar ring, imidazole 1 exhibits solubility in water and other 

polar solvents. Two equivalent tautomeric forms are observed because the hydrogen atom 

can be located on either of the two nitrogen atoms [2]. Imidazole 1 is a highly polar 

compound, as seen by a calculated dipole of 3.61D, and is completely soluble in water 

[2,7]. Imidazole 1 is classified as an amphoteric compound, acting as both an acid and a 

base. The compound is classified as aromatic due to the presence of a sextet of π electrons, 

consisting of a pair of nonbonding electrons from the nitrogen N-1 atom and one from 

each of the four remaining ring atoms [2,7]. 

Imidazole 1 can form stable crystalline salts with strong acids through the 

protonation of the sp2 nitrogen (N-3), known as imidazolium salts. Imidazole 1 has a pKaH 

of 7.1 (Figure 4), acting as a strong base [8]. The basicity of imidazole is above that of 

pyridine 4 (pKaH of 5.2) due to the amidine-like 5 resonance, which allows both nitrogens 

to participate equally in charge accommodation [7–9]. Comparatively, the basicity of 

imidazole 1 contrasts with the basicity of pyrrole 6 (pKaH of 0.4), which is an extremely 

weak base, because when pyrrole 6 is protonated, there is a loss of aromaticity which is 

built with the participation of the nonbonding electron pair of N-1 nitrogen [7]. 

 

Figure 4. Protonated structures of pyrrole 6, pyridine 4 and imidazole 1, with their respective pKaH 

values and the structure of protonated amidine 5 compared to imidazole. 

Figure 2. Scheme of the synthesis of imidazole 1 using glyoxal 2 and formaldehyde 3 in ammonia.

Among the nitrogen-based heterocyclic compounds, imidazole 1 plays an important
role in humans. It is included in chemical sciences, biological sciences and materials science,
and used as a catalyst in compound synthesis and the process of developing new drugs
(Figure 3) [3–6].
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Figure 3. Applications of imidazole 1 in different areas of knowledge.

With a 5-membered planar ring, imidazole 1 exhibits solubility in water and other
polar solvents. Two equivalent tautomeric forms are observed because the hydrogen atom
can be located on either of the two nitrogen atoms [2]. Imidazole 1 is a highly polar
compound, as seen by a calculated dipole of 3.61D, and is completely soluble in water [2,7].
Imidazole 1 is classified as an amphoteric compound, acting as both an acid and a base. The
compound is classified as aromatic due to the presence of a sextet of π electrons, consisting
of a pair of nonbonding electrons from the nitrogen N-1 atom and one from each of the four
remaining ring atoms [2,7].

Imidazole 1 can form stable crystalline salts with strong acids through the protonation
of the sp2 nitrogen (N-3), known as imidazolium salts. Imidazole 1 has a pKaH of 7.1
(Figure 4), acting as a strong base [8]. The basicity of imidazole is above that of pyridine
4 (pKaH of 5.2) due to the amidine-like 5 resonance, which allows both nitrogens to
participate equally in charge accommodation [7–9]. Comparatively, the basicity of imidazole
1 contrasts with the basicity of pyrrole 6 (pKaH of 0.4), which is an extremely weak base,
because when pyrrole 6 is protonated, there is a loss of aromaticity which is built with the
participation of the nonbonding electron pair of N-1 nitrogen [7].
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Imidazole 1 is a good donor and acceptor of hydrogen bond interactions; the sp2

nitrogen (N-3) accepts a hydrogen interaction, while N-1 nitrogen, being relatively acidic,
donates its hydrogen to an interaction (Figure 5A) [8]. This property is fundamental for
the mode of action of several enzymes that use the imidazole ring, such as the histidine 7
amino acid residue, one of the 20 amino acids found in proteins [8]. These important inter-
actions for living organisms are present not only in macromolecules but also in bioactive
small molecules.

A recent study demonstrating this important effect was carried out by Movellan and
collaborators [10], where it was possible to analyze the hydrogen residues in histidine
residues 7 in the M2 tetramer of influenza A, important for the process of endocytosis
and maintenance of the virus life cycle be [1–4,11–15]. Using the M2 conduction domain
construct in lipid bilayers, that the imidazole ring is hydrogen bonded even at a pH of
7.8 in the neutral charge state (Figure 5B). An intermolecular 2hJNN hydrogen bond of
8.9 ± 0.3 Hz was observed between H37 Nε and Nδ. However, this 2hJNN interaction could
not be detected in the sample connected to the drug rimantadine (Rmt), with consequent
modification in the proton chemical shifts value of 3 ppm for histidine residues [10].

Histamine 8 is an example of a small molecule with different actions in living or-
ganisms. It is biosynthesized from histidine 7 itself by the action of the enzyme histidine
decarboxylase (Figure 5B) [16].
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Figure 5. (A) Intermolecular interactions through the hydrogen interactions that imidazole-containing
derivatives can perform. (B) Intermolecular interactions through the hydrogen interactions in
histidine residues. (C) Structure of histidine 7, precursor of histamine 8 biosynthesis.

The presence of the N-1 nitrogen in the imidazole 1 structure makes it tautomer, which
becomes evident in non-symmetrically substituted compounds, such as methyl imidazole
9 (Figure 6) [9]. This curious feature of imidazole chemistry means that simply writing
“4-methylimidazole” would be incorrect, considering the rapid tautomeric equilibrium
with the 5-methylimidazole structure [9,17].

Molecules 2023, 28, x FOR PEER REVIEW 3 of 28 
 

 

Imidazole 1 is a good donor and acceptor of hydrogen bond interactions; the sp2 

nitrogen (N-3) accepts a hydrogen interaction, while N-1 nitrogen, being relatively acidic, 

donates its hydrogen to an interaction (Figure 5A) [8]. This property is fundamental for 

the mode of action of several enzymes that use the imidazole ring, such as the histidine 7 

amino acid residue, one of the 20 amino acids found in proteins [8]. These important 

interactions for living organisms are present not only in macromolecules but also in 

bioactive small molecules. 

A recent study demonstrating this important effect was carried out by Movellan and 

collaborators [10], where it was possible to analyze the hydrogen residues in histidine 

residues 7 in the M2 tetramer of influenza A, important for the process of endocytosis and 

maintenance of the virus life cycle be [1–4, 11–15]. Using the M2 conduction domain 

construct in lipid bilayers, that the imidazole ring is hydrogen bonded even at a pH of 7.8 

in the neutral charge state (Figure 5B). An intermolecular 2hJNN hydrogen bond of 8.9 ± 0.3 

Hz was observed between H37 Nε and Nδ. However, this 2hJNN interaction could not be 

detected in the sample connected to the drug rimantadine (Rmt), with consequent 

modification in the proton chemical shifts value of 3 ppm for histidine residues [10]. 

Histamine 8 is an example of a small molecule with different actions in living 

organisms. It is biosynthesized from histidine 7 itself by the action of the enzyme histidine 

decarboxylase (Figure 5B) [16]. 

 

Figure 5. (A) Intermolecular interactions through the hydrogen interactions that imidazole-

containing derivatives can perform. (B) Intermolecular interactions through the hydrogen 

interactions in histidine residues. (C) Structure of histidine 7, precursor of histamine 8 biosynthesis. 

The presence of the N-1 nitrogen in the imidazole 1 structure makes it tautomer, 

which becomes evident in non-symmetrically substituted compounds, such as methyl 

imidazole 9 (Figure 6) [9]. This curious feature of imidazole chemistry means that simply 

writing “4-methylimidazole” would be incorrect, considering the rapid tautomeric 

equilibrium with the 5-methylimidazole structure [9,17]. 

 

Figure 6. Representation of the tautomeric forms of methyl imidazole 9. 

Despite the existence of the tautomeric effect in imidazole 1, the ratio in terms of 

proportion of these tautomers varies according to the substituent added to the ring. The 

tautomer ratio observed in the 4(5)-nitroimidazole 10 derivative is approximately 400:1 

for 4-nitroimidazole [9]. Reports in the literature suggest a relationship between 

Figure 6. Representation of the tautomeric forms of methyl imidazole 9.

Despite the existence of the tautomeric effect in imidazole 1, the ratio in terms of
proportion of these tautomers varies according to the substituent added to the ring. The
tautomer ratio observed in the 4(5)-nitroimidazole 10 derivative is approximately 400:1 for
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4-nitroimidazole [9]. Reports in the literature suggest a relationship between tautomers
1.4 and 1.5 in the following proportion: log ([1.4]/[1.5]) = 4 × σm [17,18]. However, for
any substituent, whether electron withdrawing (EWG) or electron donor (EDG), the 1,4
tautomer predominates since the meta substituent constant (σm) is governed by inductive
effects (σm = 0.71, 0.37 and 0.10 for -NO2, -Br and -OCH3, respectively) [17]. The 4(5)-
nitroimidazole 10 derivative has a pKa of 9.30 (different from the pKa of its imidazole
1 precursor, pKa = 14.5) with a predominance of tautomer 1.4 (Figure 7) [19,20]. It is possible
to notice these effects in a quick energy calculation for a geometric equilibrium in water
using the PM3 semiempirical method, using the Spartan 18 v1.2.0 program (Wavefunction,
Inc & Q-Chem, Irvine, California, U.S.A). There is a significant difference in the energy
obtained for tautomer 1.4 (15.21 kJ/mol) in comparison with that of corresponding tautomer
1.5 (25.36 kJ/mol).
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respective pKa values.

Imidazole 1 is an electron-rich heterocycle, as mentioned above. Electrophilic substi-
tution normally occurs at the C-4 or C-5 position; however, as previously mentioned, the
predominance of a given tautomer is relative and follows the factors already discussed,
while nucleophilic substitution usually occurs at C-2 [7]. Calculations in Spartan 18 v1.2.0
help us obtain a better view of these data. Figure 8 shows the electrostatic map with the
values of natural charge for imidazole 1 (−0.290, −0.013, −0.217, −0.194 and −0.092, for
N-1, C-2, N-3, C-4 and C-5 respectively), demonstrating the electronic density for each atom
of the imidazole ring, suggesting the electronegativity (χ) of the structure, as well as the
dipole moment of imidazole 1, which starts from N-1nitrogen toward sp2 nitrogen. With
these results, we can consider the information taken from the literature, where C-4 and C-5
have higher electron densities, making them susceptible to electrophilic reactions, and C-2
has a lower density, making it susceptible to nucleophilic reactions.
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Although imidazole 1 and pyrrole 6 are π-excessive heterocycles (π donors), imidazoles
do not establish η5(π)-complexes (η being the chemical hardness) with transition metals.
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Imidazole 1 behaves as a π-deficient ligand (π-acceptor) similar to pyridine 4, and its sp2

nitrogen atoms mainly form η1(σ,Npy) complexes (Figure 9), as does pyridine 4 [7].
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carried out by imidazole 1 and pyridine 4.

Imidazole 1 has a very exciting physicochemical complexity. This makes it a target
nucleus for the most diverse applications, which employ synthetic methodologies for its
obtention and functionalization.

2. Synthesis and Functionalization of Imidazole

The synthesis of substituted imidazole 1 using heterogeneous catalysis has been widely
exploited. These functionalized structures are useful building blocks for the synthesis of
molecules of biological and pharmaceutical interest.

2.1. Mono-Substituted Derivatives

One-pot reactions using iodobenzene 11 and imidazole 1 in the presence of K3PO4
as the base, CuI as the catalyst and DMF as the solvent at 35–40 ◦C for 40 h, give the
corresponding N-arylimidazoles 12 in quantitative yields (Figure 10) [21].
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Figure 10. Catalytic N-arylation of imidazole 1 with aryl iodides and CuI.

Exploring the bifunctionalization of 1,2-disubstituted acetylenes 13 by ruthenium
carbonyl to form cis-enediol diacetates 14, followed by reaction with ammonium carbonate
as a source of nitrogen and methanol for the C-2 carbon, permitted us to obtain monosub-
stituted imidazoles 15, as shown below (Figure 11). In reactions where (R) were aromatic
rings, both substituents, withdrawers (EWG) and donors (EDG) were tolerated under the
applied conditions [22].
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2.2. Disubstituted Derivatives

The work below shows the development of an efficient methodology for the synthesis
of novel 2-aryl-4-benzoyl-imidazoles 16 by structural modification of 2-aryl-imidazole-4-
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carboxylic amide (AICA) 17 and 4-substituted methoxylbenzoyl-aryl-thiazoles (SMART)
18, presenting antiproliferative activity (Figure 12) [23].
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Figure 12. Obtaining 2-aryl-4-benzoyl-imidazoles 16 based on AICA 17 and SMART 18.

Disubstituted imidazoles 24 could also be synthesized by cyclization ofα-keto-aldehydes
25 obtained from the oxidation of aryl methyl-ketones 26 with selenium dioxide (SeO2) after
treatment with ammonium acetate and ethanol. The synthesized derivatives were used as
fluorogenic sensors for detection, selectivity and sensitivity to Fe3+ ions (Figure 13) [24].
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Figure 13. Obtaining disubstituted imidazoles 24 from aryl-methylketones 26.

Another synthetic strategy used to construct disubstituted imidazole derivatives 27
from methyl ketones 28 consisted of exploiting its metal-free acid-catalyzed oxidation and
coupling with aldehydes 29 and 30 in the presence of ammonium acetate (Figure 14) [25].
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Moreover, disubstituted imidazoles presenting a carbomethoxy group 31 at C-4 could
be obtained from the coupling of functionalized amidoximes 32 and methyl propiolate
33 in the presence of a catalytic amount of 1,4-diazabicyclo[2.2]octane (DABCO) under
microwave irradiation (Figure 15) [26].
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Figure 15. Disubstituted imidazoles 31 were obtained from the base-catalyzed condensation of
amidoximes 32 and methyl propiolate 33.

Amido-nitrile 34 cyclization mediated by functionalized boronic acids is also able to
produce 2,4-disubstituted imidazoles 35. It was possible to explore a considerable diversity
of substituents, considering the reaction conditions reported below (Figure 16) [27].
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Figure 16. Nickel-catalyzed cyclization of amido-nitriles 34 to obtain disubstituted imidazoles 35.

2.3. Trisubstituted Derivatives

On the other hand, 2,4,5-trisubstituted imidazoles 36 could be obtained by using
2,3-dioxo-3-substituted propanoates 37 as precursors after condensation using ammonium
acetate and various aromatic aldehydes 38 in EtOH and AcOH as catalysts at room temper-
ature (Figure 17) [28,29].
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Figure 17. Obtaining 2,4,5-trisubstituted imidazoles 36 from 2,3-dioxo-3-substituted propanoates 37.

2-Aryl-4,5-dicarbonitrile imidazole derivatives 39 could be obtained from the coupling
of substituted aromatic aldehydes 40 and 2,3-diaminomaleonitriles 41 in the presence of a
mixture of cerium (IV) ammonium nitrate/nitric acid (CAN: NA|0.05: 0.4 eq.) at 120 ◦C
for less than 1 h without using solvents (Figure 18) [30].
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Figure 18. Obtaining 2-aryl-4,5-dicarbonitrile imidazole derivatives 39 using a mixture of CAN:NA
as catalysts.

The efficient combination of α-aminoketones 42 with formamide 43 in THF at 180 ◦C
for 8 h is also able to provide 1,4,5-trisubstituted imidazoles 44 [31] (Figure 19).
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Figure 19. Obtaining 1,4,5-trisubstituted imidazoles 44 from the coupling of α-aminoketones 42 with
formamide 43.

Using the Van Leusen method, it was possible to synthesize 1,4,5-trisubstituted imidazoles
containing a trifluoromethyl group 45, exploiting the coupling of N-aryltrifluoroacetimidoyl
chloride 46 and tosyl-methylisocyanate (TosMIC) 47 using sodium hydride as a base in dry
THF at room temperature (Figure 20) [32].
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Figure 20. Obtaining 1,4,5-trisubstituted imidazoles 45 using the Van Leusen method.

Methodologies reported in the literature show the use of substituted 1,2-diphenylethane-
1,2-dione (benzyl) 48, substituted aldehydes 49 and ammonium acetate under various
conditions, with the aim of optimizing the construction of 2,4,5-trisubstituted imidazole
50 with great structural diversity [33–40]. The reactions are simple and fast, as illustrated
in the example below, which uses the system with EtOH and fluorinated graphene oxide
(A-MFGO) as a catalyst at room temperature (Figure 21).
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Figure 21. Obtaining 2,4,5-trisubstituted imidazoles 50 from the coupling of substituted 1,2-
diphenylethane-1,2-dione (benzyl) 48, substituted aldehydes 49 and NH4OAc using A-MFGO as
a catalyst.

More complex heterocycles presenting the imidazole ring in their structure are de-
scribed in the literature, such as benzo[d]imidazo[2,1-b]thiazoles 51, which could be synthe-
sized by the condensation of aromatic ketones 52 and 5-(biphenyl-4-yl)-1,3,4-thiadiazol-
2-amine 53 in the presence of N-bromosuccinimide 54, PEG-400 and water as solvent
under microwave irradiation at 85 ◦C in quantitative yields after a few minutes of reaction
(Figure 22) [41].
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2.4. Tetrasubstituted Derivatives

Using various aldehydes 55, benzyl 56, ammonium acetate and prop-2-ynylamine 57
in the presence of CuFe2O4NPs as a catalyst in H2O:EtOH under reflux for approximately
50 min, it was possible to obtain several tetrasubstituted imidazole derivatives 58 in a
multicomponent synthesis. It was possible to reuse the catalyst for six reactions without
losing its efficiency (Figure 23) [42].
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Figure 23. Tetrasubstituted imidazoles 58 were obtained by the coupling of benzyl 56, functionalized
aldehyde 55, prop-2-ynylamine 57 and ammonium acetate using CuFe2O4NPs as the catalyst.

In the presence of SO4
2−/Y2O3 as a catalyst, the multicomponent condensation of

benzyl 56, aminoethylpiperazine 59, various aldehydes 60 and ammonium acetate in
ethanol at 80 ◦C for 10 h was carried out to form tetrasubstituted 1,2,4,5-imidazole derivative
61. The catalyst was reused up to five times with no significant loss in catalytic efficiency
(Figure 24) [43].
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Figure 24. Tetrasubstituted imidazoles 61 were obtained from the multicomponent condensation of
benzyl 56, aminoethylpiperazine 59, various aldehydes 60 and ammonium acetate using SO4

2−/Y2O3

as a catalyst.

Alternatively, the synthesis of 1,2,4,5-tetrasubstituted imidazole derivatives 62 could
be achieved through the condensation of benzyl 56, aldehydes 63 and anilines 64 in the pres-
ence of ammonium acetate under the solvent-free catalysis of Fe3O4@SiO2/bipyridinium
nanocomposite (Fe3O4@SiO2/BNC) (Figure 25). The catalyst was reused until the fifth
reaction without much change in catalytic efficiency. Methodologies using other catalysts
and even solvents have also been reported [44–47].
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Figure 25. Tetrasubstituted imidazoles 62 were obtained through the condensation of benzyl 56,
aldehydes 63 and anilines 64 in the presence of ammonium acetate using Fe3O4@SiO2/BNC as
a catalyst.

Another methodology used for obtaining hybrid imidazole derivatives was start-
ing with hippuric acid 65 and 2-chloroquinoline-3-carbaldehyde 66 in acetic anhydride,
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and 4-((2-chloroquinolin-3-yl)methylene)-2-phenyloxazol-5(4H)-ones 67 could be obtained
through Perkin condensation in the presence of anhydrous sodium acetate under mi-
crowave irradiation. Subsequently, the previously obtained derivatives were condensed
with N-aminoarylcarboxamides 68 in pyridine under reflux to furnish the final desired aza-
heterocyclic acylhydrazides 69. For some derivatives of this series, antimicrobial properties
were observed (Figure 26) [48].
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Figure 26. Synthesis of N-(4-((2-chloroquinolin-3-yl)methylene)-5-oxo-2-phenyl-4,5-dihydro-1H-
imidazol-1-yl)(aryl)amides 69.

Since its synthesis in 1858, the imidazole 1 ring has been exploited in different contexts,
whether chemical or biological. The examples presented herein illustrate the more recent
ways of obtaining this azaheterocyclic system through the use of a range of methodologies
and chemical reagents, providing great chemical diversity.

3. Imidazole as a Privileged Structure in Medicinal Chemistry

As already mentioned, imidazole 1, in biological systems, is found in the form of the
amino acid histidine 7, presenting an important role in the catalysis promoted by enzy-
matic systems [8]. Furthermore, the neurotransmitter histamine 8 induces immunological
processes [8,16,49–51] and composes the structures of the guanine 70 and adenosine 71
bases of nucleic acids (Figure 27) [52].
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3.1. The Catalytic Potential of Imidazole in Biological Systems

The breakage of the P-O and C-O bonds are biological events of extreme importance
and are estimated to be on the order of 5 to 13 million years [53] in the absence of enzymes
and can reach the order of billions of years for DNA [54]. Imidazole 1 stands out for
constituting numerous enzymatic active sites in the form of the histidine 7 amino acid
residue and acting in catalytic processes, accelerating such unfavorable reactions [55].

The imidazole 1 group in biological systems generally acts in acid–base and nucle-
ophilic catalysis (Figure 28). As an acid catalyst, protonated imidazole 1 acts as an acid
facilitating the exit of the RO- group through hydrogen transfer [56]. In the neutral form,
imidazole 1 can act as a nucleophilic catalyst by attacking the electrophilic center, leading
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to a phosphorylated or acylated intermediate, which is consecutively hydrolyzed, regen-
erating the imidazole 1 group [57]. Therefore, imidazole 1 catalyzes the cleavage of the
X-O bond (for X = C or P). Finally, imidazole 1 can also act as a basic catalyst, assisting
the attack of a nucleophile (Nü-H) on the electrophilic center of a substrate, abstracting a
proton and thus increasing its nucleophilicity [58–61].
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The amino acid histidine 7 plays a fundamental role in several enzymatic active sites,
including ribonucleases, phosphotriesterases, kinases, chymotrypsins and histone deacety-
lases [62–65]. As illustrated in Figure 29, histidine 7 residues (H573/H574) participate
in the catalytic process of deacetylation of the lysine residue by histone deacetylase 6
(HDAC6). We can also see the residue (H614) acting on the triad of amino acids responsible
for sustaining the zinc atom (through the interaction η1(σ,Npy)) present in the catalytic site
of the enzyme [7,65].
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promoted by enzyme histone deacetylase 6 (HDAC6) and the kinetic profiles of imidazole catalysis.

It is interesting to analyze in more detail the kinetic profiles considering the pH for an
acid, basic, bifunctional acid–base and nucleophilic catalysis for the cases of deacylation
reactions [66,67], but which similarly follow the same profiles in dephosphorylation [68,69].
In some pH ranges (considered pH 5-9), imidazole 1 has pronounced activity, with preva-
lence at pH values (considering pH 8-10) above the pKaH, for the neutral imidazole
1 species. This action makes it a basic and nucleophilic catalyst with similar kinetic profiles
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for both cases, where the rate constant is directly proportional to the increase in pH, capable
of presenting a level where the amount of neutral and reactive species remains constant
(pH ~9) (Figure 29) [49]. At the plateau, it is common to observe that the rate constant in
nucleophilic catalysis is higher than that in basic catalysis, considering that nucleophilic
processes are faster [55]. For pH values below the pKaH, where protonated imidazole
1 predominates, the catalysis is preferably acidic. As with basic and nucleophilic catalysis,
acid catalysis has the same effect at the plateau (pH ~5) (Figure 29) [55].

Considering the above remarks, we can conclude that histidine 7 residues present in
the active site of HDAC6 participate in catalysis by a combined acid/base mechanism, as
this hydrolyses assists with the aid of the tyrosine residue (Y745) and the metal itself (Zn2+),
which, when complexed with the carbonyl oxygen, further favors the reaction shown,
considering the low reactivity of amide carbonyls (Figure 29).

3.2. Imidazole as a Building Block in the Structure of Bioactive Molecules and Drugs

Imidazole 1 is present in several chemical structures of pharmaceutical interest because
its particular chemical properties could favor molecular recognition by different targets.
Examples of the presence of imidazole 1 in the structure of bioactive substances include
antibacterial [70–73], anti-inflammatory [74–76], antidiabetic [77], antiparasitic [78], antitu-
berculosis [79], antifungal [80–82], antioxidant [83], antitumor [84–86], antimalarial [87,88],
anticancer [89–91], antidepressant [92] and many other compounds (Figure 30).
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Moreover, imidazole 1 is also present in several natural compounds with biological
activity. As an example, pilocarpine 72 is used for the treatment of xerostomia and glau-
coma [93], topsentin 73 shows anticancer activity [94] and isonaamine A 74 also shows
anticancer activity through its action as an inhibitor of the epidermal growth factor receptor
(EGFR) [95] (Figure 31).
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To date, a great diversity of imidazole-containing compounds with biological activity
is known, whether of natural or synthetic origin. Among the compounds with imidazole-
containing activity, azomycin 75 can be considered the one with the simplest structural
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complexity of all. The antibiotic azomycin was first isolated by Maeda in 1953 from a strain
similar to Mesenteric nocardia [96]. In addition to azomycin 75, we can illustrate the structure
of several more complex compounds that are even well known in current pharmacotherapy
containing the imidazole nucleus, such as dacarbazine 76 [97], nafimidone 77 [98], flumizole
78 [99], cimetidine 79 [100], losartan 80 [101] and ketoconazole 81 [102] (Figure 32).
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pharmacotherapy.

Imidazole 1 proves to be a very versatile structure for medicinal chemistry, not only
for its ability to act directly as a pharmacophoric group but also for being able to act as a
“guide” to other groups, directing them and favoring correct auxophoric/pharmacophoric
interactions, allowing the exploration of a large number of possible substitutions. Imidazole
1 is considered a bioisostere of a carboxamide unit. Thus, it can be interpreted as a
peptide backbone unit isostere [103]. Depending on the substituents and their substitution
pattern, small mimetic oligopeptides with trans and cis conformations can be evidenced
(Figure 33) [103,104]. The isosteric exchange of amides for imidazole can be considered
a good strategy to overcome problems resulting from metabolic instability promoted by
amidases [105].
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In a more recent work by Heppner and collaborators [106], the importance of the
imidazole nucleus in compounds containing biological activity was highlighted. The aim
of the study was the modulation of the mutated epidermal growth factor receptor (EGFR)
target, in the context of non-small-cell lung cancer, which presents acquired drug resistance.
Compounds with nanomolar potency against EGFR (L858R/T790M/C797S) were obtained
in a reversible binding mechanism [106].

Analysis of the X-ray crystallographic results shows how the imidazole nucleus acts
as a hydrogen bond acceptor for the catalytic residue of lysine (K745) in the “αC-helix out”
inactive state of EGFR. Furthermore, selective N-methylation on the imidazole nucleus
at the hydrogen bond acceptor position drastically reduces the potency, confirming the
importance of the interaction of (K745) with the imidazole nucleus for modulating the
EGFR variant (C797S) [106]. Additionally, it was observed that there is an intramolecular
hydrogen interaction between the N-1 and the phenylacrylamide group 82 (Figure 34) [107].
The covalent bond with (C797) does not significantly change the mode of inhibitory interac-
tion compared to the reversible compounds, indicating that the interaction of imidazole
with (K757) is conserved in both covalent and non-covalent modes.
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Analyzing the activity values for 82, 83 and 84 (Figure 34), it was concluded that
N-1 methylation 83 impacts activity against EGFR (L858R/T790M), indicating that the
intramolecular interaction between imidazole and the phenylacrylamide group is required
for the inhibitory mode of interaction. For N-3 methylation 84, the nitrogen involved in the
interaction with (K745) in the inactive form “αC-helix out” of EGFR, does not significantly
alter the inhibition activity towards EGFR (L858R/T790M), showing that the potency of 82
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does not depend on the interaction with the residue (K745) but more on the covalent bond
with (C797).

Finally, it was observed that, for EGFR (L858R/T790M/C797S), the presence of both
unsubstituted nitrogens in the imidazole nucleus are extremely important for activity
against this mutated form. Confirmed through the data already presented by 83 and 84, as
well as the data for 85 and 86, showing excellent IC50 values with this interaction pattern,
and acting as reversible inhibitors.

This study shows us as an interesting practical example how imidazole may be able
to act as an important auxophoric group and act directing other auxophoric and pharma-
cophoric groups.

Another example of imidazole application was described by Lee et al. [108], where the
activity-based sensing (ABS) strategy for detecting copper in living cells was presented,
which preserves spatial information through a copper-dependent bio-conjugation reaction.
Copper-targeted acyl imidazole dyes were designed that operate through copper-mediated
activation of acyl imidazole electrophiles for subsequent labeling of proximal proteins at
sites of high labile copper to provide a permanent color that resists washing and fixation
(Figure 35).

Labile pools have been characterized using this strategy in three main types of brain
cells: neurons, astrocytes and microglia. Exposure of each of these cell types to physio-
logically relevant stimuli distinct changes in these labile copper pools. Neurons exhibit
translocation of labile copper from somatic cell bodies to peripheral processes after activa-
tion, while astrocytes and microglia exhibit global decreases and increases in intracellular
labile copper pools, respectively, after exposure to inflammatory stimuli [108].

This work provides fundamental information on cell-type-dependent copper home-
ostasis, an essential metal in the brain, as well as a starting point for the design of new
activity-transmitted probes for metals and other signal analytes and dynamic stress in
biology, in the context of poor regulation of copper in inflammation and neurodegenerative
process [109–113]. In Figure 35 the imidazole 1 present in 87 as a metal chelator, in this case
copper, is demonstrated through the η1(σ,Npy) interaction, as previously commented.
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In a recent background of compounds containing imidazole for anti-proliferative activ-
ity, a large number of di/triaryl imidazole-based derivatives (Figure 36) have been reported
with p38α MAP and/or BRAF kinase inhibitory activities [114–117]. Considering these
representatives, compound 88 (SB203580) was reported as a p38α MAP kinase inhibitor
with IC50 value of 48 nM [114,115]. Furthermore, compounds 89 and 90 exhibited their
inhibitory activities against p38α at IC50 values of 19 and 41 nM, respectively [116]. Com-
pound 91 diaryl imidazole showed inhibitory activity against BRAF (IC50 = 900 nM) [117].
However, triaryl imidazole exhibited greater inhibitory activity against BRAF. In a series
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of triaryl-substituted imidazole-based derivatives, compound 92 was the most potent in
inhibiting mutant BRAF in vitro [118].
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Figure 36. Di/triaryl imidazole-based derivatives with p38α and/or BRAF inhibitory activity.

More studies about compound 92 show a weak inhibitory activity against mutant
BRAF at the cellular level. Nevertheless, compound 93 showed potent BRAF inhibition
(IC50 = 9 nM) and inhibited the growth of BRAF-dependent WM266.4 cells with GI50 of
0.22 µM [119]. Takle and coworkers [117] reported on SB-590885 94 among a series of
derivatives based on triaryl imidazole with potent and selective inhibitory activity against
BRAF kinase. The compound 94 was prepared to improve water solubility. Furthermore, it
showed increased potency with more than 1000 times greater selectivity for p38α, GSK3-β
and lck kinases compared to BRAF [117]. Recently, compound 95 (Figure 36) was reported
as a derivative based on imidazol-5-yl-pyrimidine with BRAFV600E/p38α dual activity [120].
Compound 95 inhibited BRAFV600E and p38α MAP with IC50 values of 2.49 and 85 nM,
respectively.

The designed compounds 96 and 97 were made by Youssif and collaborators [121]
considering the proposed binding interactions of compound 95 with p38α and BRAFV600E

(Figure 37). Investigation of compound 88’s binding interactions in p38α MAP revealed
the presence of different types of binding interactions, including hydrogen bonding and
hydrophobic interactions [121]. However, an unfavorable donor–donor interaction of the
nitrogen N-1 on the imidazole ring of compound 88 with Lys53 at p38αwas reported. To
avoid this unfavorable interaction, the imidazole N-1 was alquilated with the hexyl group.
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Hexyl groups can also provide hydrophobic interactions with hydrophobic residues on
p38α. The structure of the compounds 96 and 97 was also extended by a four-atom linker
connecting the 1,3-benzodioxolo 96 and 4-methoxybenzyl 97 ring substituents with the
triaryl imidazole scaffold [121]. The ligand includes three hydrogen bond acceptor atoms
(CO-O-N=) and a hydrogen bond donor group (NH2) that can form hydrogen bonds with
amino acids on the phosphate biding region at p38α [121].
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Figure 37. Rational design of compounds 96 and 97.

Among the docking studies, compounds 96 and 97 were able to properly interact with
Lys53 in the imidazole scaffold N-3. In conclusion, we can see that 96 and 97 are promis-
ing lead compounds with high potential for development as new dual p38α/BRAFV600E

inhibitors based on the good activity values.
With these recent examples from the literature, we can see that imidazole presents

itself as a privileged structure, being widely explored as a nucleus capable of efficiently
participating and assisting in the modulation of several molecular targets and acting in
other areas, such as probes for biological assessment.

3.3. The Origin of Cimetidine as an Imidazole-Containing Drug

To the best of our knowledge, there are four types of histamine receptors that belong
to the G-protein-coupled receptor family: histamine H1 receptor, histamine H2 receptor,
histamine H3 receptor and histamine H4 receptor, which could be stimulated by the endoge-
nous messenger histamine 8 without distinction [122,123]. However, properly designed
antagonists must be able to distinguish between them [124]. In the 1960s–1970s, selective
antagonists capable of inhibiting the histamine receptors involved in the allergic process



Molecules 2023, 28, 838 18 of 27

(H1 receptors) and antagonists capable of inhibiting histamine receptors responsible for
gastric acid secretion (H2 receptors) were already known [124].

Variations were made in the structure of histamine 8 so that it was recognized by the
receptor. Simultaneously, it was able to act as an antagonist. SAR studies on histamine
analogs revealed that the requirements for histamine 8 to bind to the proposed H1 and
H2 receptors were slightly different (Figure 38) [125]. On the H1 receptors, the essential
requirements are as follows:

The side chain must have a positively charged nitrogen atom with at least one hydro-
gen. Quaternary ammonium salts are not active.

There must be a flexible chain between the cation and the heteroaromatic ring.
The heteroaromatic ring does not have to be imidazole 1 but must have a nitrogen

atom with a pair of electrons adjacent to the side chain.
On the other hand, the requirements for H2 and H1 receptors are the same, except that:
The heteroaromatic ring must have an amidine 5 unit (-HN-CH=N-) acting as a proton

transfer agent.
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Figure 38. SAR for histamine H1 and H2 receptor agonists.

Based on this information, it appears that the terminal amino group being protonated
is involved in an ionic interaction with both types of receptors, while the nitrogen atoms of
the heteroaromatic ring are linked through hydrogen bonds, and for H2 receptors, the ring
participates in an extra interaction through proton transfer (Figure 39) [125].
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Figure 39. Scheme of the spatial arrangement for the interaction of histamine 8 on the H1 and
H2 receptors.

Checking the changes in the structure of histamine 8, it was noted that 4(5)-methylhistamine
98 is a highly selective H2 receptor agonist, showing greater selectivity for H2 than for
H1 [125,126]. 4(5)-Methylhistamine 98, similar to histamine 8, is a highly flexible molecule
due to its side chain, but structural studies show that some of their conformations are less
stable than others (Figure 40) [125,126]. In particular, conformation (A) is disadvantaged
due to the steric interaction between the methyl group and the side ethylamine chain. The
selectivity observed suggests that, for both receptors, 4(5)-methylhistamine 98 has to adopt
two different conformations to bind to these receptors [125,126]. As 4(5)-methylhistamine 98
is more active as an agonist of the H2 receptor, this suggests that the favorable conformation
(B) is required for the interaction with the H2 receptor, while the conformation required for
the H1 receptor would be the sterically unfavorable conformation (A) [125,126].
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Figure 40. Conformations of 4(5)-methylhistamine 98. Energetically unfavorable conformation A and
the more stable conformation B.

In histamine 8, the exocyclic amino group is protonated at physiological pH, exerting
a strong electron-withdrawing effect on the imidazole ring. This effect is more pronounced
for the nitrogen closest to this side chain, so the hydrogen atom in the nitrogen Nπ will
be more acidic than the one bound to the Nτ [125–127]. For this reason, the last tautomer
(Nτ) is more stable than π (Nπ) in histamine 8, given that the favored ionization in the
structure would lead to stabilization of the charge formed (Figure 41). On the other hand,
the thiourea group of burimamide 99 exerts a less pronounced electron-donating effect,
and therefore, the Nπ tautomer is favored [125–127]. Thus, the idea would be to remove
electrons from the burimamide 99 side chain instead of donating electrons through the
introduction of an electron withdrawing atom in this chain. The use of an isosteric group
of the methylene group was proposed [125–127]. The sulfur atom is considered a good
classical isostere of the methylene group, as their van der Waals radii and bond angles
are similar [125–128]. The substitution site was also chosen based on synthetic reasons
(Figure 41).
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The sulfur atom present in the side chain of thiaburimamide 100 carried out the
removal of electrons, favoring the tau tautomer (τ). Furthermore, a hypothesis has been
raised about the possibility of increasing the favoring of this tautomer through the insertion
of a group in position 5 of the imidazole 1 ring [125–127]. In this position, the inductive
effect would have a more pronounced impact on the neighboring nitrogen atom (Nτ). The
methyl group was chosen because it was known that (4)-methylhistamine 98 was highly
selective against the H2 receptor, in addition to influencing the pKa of hydrogen Nτ, with an
electron donating effect [125–127,129]. Metiamide 101 was obtained, showing the highest
antagonistic activity on H2 receptors (Figure 41).

Metiamide 101 was shown to be 10 times more potent than burimamide 99 [130] and
showed great promise as an antiulcer agent. Unfortunately, several patients suffered from
kidney problems and granulocytopenia, a disease that leads to a reduction in leukocytes
and makes patients more susceptible to infection due to the metabolism of thiourea, which
led to metiamide 101 not being approved in stage I clinical trials [131,132].

After the study of metiamide 101, several other studies were carried out with the
objective of modifying the thiourea subunit, a region that is also responsible for important
interactions with the target receptor, giving the compounds the profile of antagonists
(region of binding of the antagonist). Figure 42 summarizes all the work and rationale used
to design the first blockbuster drug cimetidine. Cimetidine, similar to other examples in
the literature, is a drug that has an imidazole nucleus in its structure and is a beautiful and
inspiring example of rational drug design carried out in the mid-1960s–1970s [133].
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Figueiredo and coworkers [134], who described the synthesis of methyl-imidazolyl
N-acylhydrazone (NAH) derivatives showing antinociceptive activity, demonstrated an-
other interesting study on imidazole 1 tautomerism, exploring the idea of cimetidine 79.
Using the AM1 Hamiltonian [135] with unsubstituted derivative 106, the conformational
behavior of the (NAH) motif around C-4 from the imidazole nucleus was investigated.
Figueiredo and coworkers observed that the S-cis-like conformation (A) of the N-4 tau-
tomer from compound 106 was ca. 6.0 kcal/mol more stable than the corresponding S-trans
(A′) conformation (Figure 43) [134]. A five-member-like intramolecular hydrogen bond
involving the hydrogen atom of the N-acylhydrazone moiety and the nitrogen atom N-3 of
the imidazole 1 ring could be the reason for this favored conformation. Hydrogen bonding
was also observed in the N-5 tautomer (B′) (Figure 43); however, in this case, a 3 kcal/mol
decrease in stability was observed [134].

We observed in this study [134] that for structure (A), there are several favorable factors
to maintain the (4)-tautomer, i.e., the withdrawing group (EWG) in the C-4 position and the
methyl group at the C-5 position, in addition to the possible intramolecular interaction due
to the presence of the NAH subunit. Additionally, the methyl group at the C-5 position
may contribute slightly through steric effects to the formation of (A) instead (A′), given the
steric hindrance caused by methyl and the NAH substituent. A similar effect was observed
for 4(5)-methylhistamine 98. Considering all the structures, (B′) demonstrates several
unfavorable requirements to maintain (5)-tautomerism, even presenting an intramolecular
interaction. Given that several of these structural factors play against the pKa value of N-1
present in the imidazole ring, its acidity is increased.
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4. Conclusions

To date, much work has been done on the synthesis, functionalization, description of
physicochemical characteristics and biological application of imidazole heterocycles. This
work highlighted the special interest and importance of imidazole-containing derivatives
in the field of medicinal chemistry and drug discovery.

As demonstrated, imidazole 1 is a structure that, despite being small, presents unique
chemical complexity. It is a nucleus that proves to be very practical and versatile in its con-
struction/functionalization and can be considered a rich source of chemical diversity. The
role and importance of imidazole 1 in processes for the maintenance of living organisms,
such as catalytic participation in enzymatic processes, were also reported. We observed ex-
amples of imidazole-based compounds with antibacterial, anti-inflammatory, antidiabetic,
antiparasitic, antituberculosis, antifungal, antioxidant, antitumor, antimalarial, anticancer,
antidepressant and many other activities in the literature. Finally, the role of imidazole 1
in drug research and development was briefly demonstrated through the discussion of
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the discovery of cimetidine 79. It was possible to explore several chemical and biological
phenomena of this important drug, which certainly served as a rich base for knowledge
and inspiration for several other bioactive imidazole-based drug candidates. This was also
demonstrated in the structure of methyl-imidazolyl N-acylhydrazone derivative 106, which
was produced after cimetidine and presented a nociceptive effect, and those that continue
to currently be developed.
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