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Abstract: Polymer electrolytes for lithium metal batteries have aroused widespread interest because
of their flexibility and excellent processability. However, the low ambient ionic conductivity and
conventional fabrication process hinder their large-scale application. Herein, a novel polyethylene-
oxide-based composite polymer electrolyte is designed and fabricated by introducing nano-SiO2

aerogel as an inorganic filler. The Lewis acid–base interaction between SiO2 and anions from Li
salts facilitates the dissociation of Li+. Moreover, the SiO2 interacts with ether oxygen (EO) groups,
which weakens the interaction between Li+ and EO groups. This synergistic effect produces more
free Li+ in the electrolyte. Additionally, the facile rheology-tuning UV polymerization method
achieves continuous coating and has potential for scalable fabrication. The composite polymer
electrolyte exhibits high ambient ionic conductivity (0.68 mS cm−1) and mechanical properties (e.g.,
the elastic modulus of 150 MPa). Stable lithium plating/stripping for 1400 h in Li//Li symmetrical
cells at 0.1 mA cm−2 is achieved. Furthermore, LiFePO4//Li full cells deliver superior discharge
capacity (153 mAh g−1 at 0.5 C) and cycling stability (with a retention rate of 92.3% at 0.5 C after
250 cycles) at ambient temperature. This work provides a promising strategy for polymer-based
lithium metal batteries.

Keywords: composite polymer electrolytes; nano-SiO2 aerogel; rheology tuning; lithium metal
batteries; UV polymerization

1. Introduction

With the ever-increasing demand for efficient energy storage devices, lithium ion
batteries (LIBs) have been widely used in modern society [1–3]. However, LIBs based
on graphite anodes encounter a bottleneck because of their energy density limit. Due to
the high theoretical capacity and low electrochemical potential of lithium metal, lithium
metal batteries (LMBs) have been considered as promising alternatives [4]. Nevertheless,
the organic liquid electrolytes used in LMBs are flammable and volatile, which presents
serious safety issues [5]. Compared with organic liquid electrolytes, solid state electrolytes
(SSEs) hold great promise in reducing safety risks due to their low flammability and lack of
leakage. Moreover, SSEs with satisfactory mechanical properties are capable of suppressing
the growth of Li dendrites [6].

As one of the important branches in SSEs, solid polymer electrolytes (SPEs) exhibit
excellent structure flexibility and processability [7]. Poly (ethylene oxide) (PEO) is the most
studied polymer type among numerous SPEs due to the high solvation capacity of the ether
groups and chain mobility. However, the low ionic conductivity at room temperature and
poor mechanical properties are persistent obstacles to the further applications of PEO-based
electrolytes [8–10]. To tackle these limitations, various approaches have been conducted
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with PEO-based electrolytes. Plasticizers are introduced into polymer electrolytes to en-
hance the ionic conductivity, and the electrolytes obtained are called quasi-solid polymer
electrolytes (QPEs) [11–14]. For example, the introduction of 60% succinonitrile (SN) en-
dows poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/ LiTFSI with a high
ionic conductivity of 1 mS cm−1 at 0 ◦C [15]. The PEG/LiSTFSI/EC system shows excellent
ionic conductivity of 0.19 mS cm−1 at room temperature [16]. The plasticizers promote the
dissociation of Li salts due to their plasticity and high polarity. Meanwhile, they increase the
amorphous content contributing to chain motion. Hence, QPEs with plasticizers typically
exhibit high conductivity. However, this solution is realized at the expense of diminished
mechanical strength, which leads to an increased risk of lithium dendrite penetration.
Dispersing inorganic filler nanoparticles into PEO-based electrolytes to obtain composite
polymer electrolytes is an effective way to enhance ionic conductivity as well as mechanical
properties [17–20]. For example, Cui et al. have developed a composite electrolyte with
an interconnected SiO2 aerogel backbone [9]. The electrolyte shows an enhanced ionic
conductivity of 0.6 mS cm−1 at 30 ◦C and an elastic modulus of up to 430 MPa.

Poly (ethylene glycol) acrylates (PEGAs) belonging to PEO-based electrolytes are
widely investigated due to their high solvation ability of Li salts, enhanced electrochemical
stability, and low crystallization. The solventless UV polymerization is an efficient and
environmentally friendly method to fabricate PEGA electrolytes. Molded casting and the in
situ method are dominant in the current reported solventless UV polymerization [16,21,22].
Nevertheless, due to the low viscosity of the electrolyte slurry, it is challenging to obtain
the PEGA electrolytes with the desired membrane thickness and shape after casting using
the above methods. Moreover, the mentioned methods are noncontinuous and not suitable
for mass production. Hence, it is necessary to develop a fabrication method promising
continuous casting production at a large scale.

In our previous study, we designed and fabricated a QPE with PEGAs as the polymer
matrix, tetramethyl urea (TMU) as the plasticizer, poly(ethylene glycol) diacrylate (PEGDA)
as the cross-linker, and polyethylene glycol terephthalate (PET) nonwoven as the supported
framework [23]. However, the ionic conductivity (0.18 mS cm−1) and mechanical prop-
erties (e.g., the elastic modulus of 60 MPa) still need further improvement. Herein, we
report a nano-SiO2-aerogel-reinforced composite QPE prepared via a facile rheology-tuning
UV-initiated polymerization. The rheology-tuning slurry (RTS) possesses a suitable vis-
cosity for continuous coating processes, promising scalable production. Furthermore, the
modified QPE shows a high ionic conductivity of 0.68 mS cm−1 and an elastic modulus
(150 MPa) at room temperature. The Li//Li symmetric cells and LiFePO4//Li fullcells
exhibit superior electrochemical stability with the SiO2-modified QPEs. This work provides
new perspectives on how to design and fabricate QPEs for practical lithium metal batteries.

2. Results and Discussion
2.1. Rheology-Tuning UV Polymerization

In this work, rheology tuning is achieved by adjusting the viscosity and thixotropy via
UV polymerization. Figure 1 illustrates the mechanism of rheology-tuning polymerization.
First, poly(ethyleneglycol) methyl ether acrylate (PEGMEA) monomers are mixed with
initiators, and the mixture is exposed to a UV lamp for several minutes until it turns into a
viscous slurry. In this step, part of the monomers undergoes C=C bond polymerization. The
RTS with polymers as solute and unreacted PEGMEA monomers as solvent belongs to a
typical non-Newtonian fluid, possessing the shear-thinning characteristic. The viscosity of
the RTS decreases along with the increasing shear rate, proving its shear-thinning behavior
(Figure S1). In contrast, the PEGMEA monomers lacking rheology tuning show no shear-
thinning behavior and quite low viscosities. Therefore, the RTS is suitable for a continuous
coating process. After rheology tuning, the RTS is mixed with PEGDA, Li salts, plasticizer,
nano-SiO2 aerogel, and photoinitiator, coated on both sides of PET nonwoven, and cured
under the UV lamp. The thickness of the electrolyte can be changed by adjusting the gap of
the scraper.
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Figure 1. Schematic diagram of the rheology-tuning UV polymerization and the role of SiO2.

To optimize the SiO2 content, electrolyte membranes containing 0 wt%, 3 wt%, and
5 wt% SiO2 are prepared and tested for their cycling stabilities in Li//Li symmetric cells at
0.1 mA cm−2 and 0.1 mAh cm−2. When the content of SiO2 increases to more than 5 wt%,
the electrolyte slurry becomes too viscous to be mixed up evenly. Hence, 5 wt% is selected
as the highest content of SiO2 in experimental electrolytes. Figure S2 illustrates that the
Li//Li cells employing electrolytes with 0 wt%, 3 wt%, and 5 wt% SiO2 exhibit a similar
polarization voltage of approximately 70 mV. Nevertheless, QPEs with 0 wt% and 3 wt%
SiO2 exhibit short circuits within only 600 h and 750 h, respectively. By contrast, RTS-5%
SiO2 QPE holds stable cycling for 750 h, which indicates that RTS-5% SiO2 QPE provides the
highest mechanical strength to resist Li dendritic penetration in our exploration. Therefore,
5 wt% is selected as the optimized content of SiO2 in the following research.

2.2. Physicochemical Characterization

The digital photo of the RTS-5% SiO2 QPE membrane is presented in Figure 2a. The
RTS-5% SiO2 QPE membrane exhibits a flat and smooth surface. As illustrated in Figure 2b,
a compact surface without any cracks is obtained on the QPE film. The SiO2 is distributed
uniformly, and no obvious agglomeration can be observed. Figure 2c shows the cross
section of QPE with a thickness of 39 µm. The RTS-5% SiO2 QPE slurry is supported by the
PET nonwoven and cures successfully. Furthermore, the EDS mapping images are shown
in Figure 2d–i. The S, Si, C, O, F, and N elements of RTS-5% SiO2 QPE are distributed
evenly, which further suggests that the QPE slurry has been coated on PET nonwoven
uniformly and compactly.
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Figure 2. Physical characterization of RTS-5% SiO2 QPE. (a) Digital photograph of the QPE. (b) SEM
image of the QPE surface. (c) Cross-section SEM image of the QPE. (d–i) EDS mapping images of S,
Si, C, O, F, and N elements in the QPE.

The X-ray diffraction (XRD) patterns of RTS QPE and RTS-5% SiO2 QPE membranes
are exhibited in Figure 3a. No crystal state peaks can be observed in the XRD results. The
amorphous state leads to improved ionic conductivity of the electrolyte. The electrolytes
are also characterized by Differential Scanning Calorimetry (DSC). The Tg values of RTS-5%
SiO2 QPE and RTS QPE are −72.26 ◦C and −71.18 ◦C, respectively. It indicates that the
electrolytes are amorphous at room temperature, which contributes to the mobility of
polymer chains. Fourier transform infrared (FTIR) spectroscopy demonstrates that the
characteristic peaks of SiO2 exist in RTS-5% SiO2 QPE, indicating that the original structure
of SiO2 remains after being mixed with the polymer slurry. There are no chemical changes
that can be observed (Figure 3c).
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Figure 3. Physical characterization of RTS QPE and RTS-5% SiO2 QPE. (a) XRD spectra; (b) DSC
curves; (c) FTIR spectra; (d) Stress–strain curves.

For polymer electrolytes, satisfactory mechanical properties are essential indices for
practical application in batteries. The stress–strain curve results in Figure 3d demonstrate
that the RTS-5% SiO2 QPE exhibits higher tensile strength (17.38 MPa) than the RTS
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QPE (7.29 MPa). Moreover, the detailed mechanical properties (Table 1) indicate that the
addition of SiO2 enhances the tensile strength, maximum load, and elastic modulus, which
contributes to suppressing the growth of Li dendrites and increasing the lifetime of cells.

Table 1. Mechanical properties of polymer electrolyte membranes.

RTS QPE RTS-5% SiO2 QPE

Tensile strength (MPa) 7.29 17.38
Breaking elongation (%) 40.93 37.03
Maximum load (MPa) 9.01 23.47
Elastic modulus (MPa) 60 150

2.3. Electrochemical Behaviors of RTS-5% SiO2 QPE

To evaluate the Li+ transference ability in QPE, the electrochemical impedance spectra
are conducted at room temperature (Figure 4a). The RTS-5% SiO2 QPE exhibits a higher
conductivity (0.68 mS cm−1) than the RTS QPE (0.18 mS cm−1) does. The increased ionic
conductivity can be attributed to the role of the nano-SiO2 aerogel. Firstly, the Lewis-
acidic sites on SiO2 interact with EO groups, which decreases the polymer crystallinity
and weakens the interaction between Li+ and EO groups [24–26]. Second, the Lewis acid–
base interaction between the SiO2 and TFSI- from Li salts promotes the dissociation of
Li salts [27,28]. This synergistic effect produces more free Li+ in QPEs. As illustrated in
Figure 4b, RTS-5% SiO2 QPE is electrochemically stable up to 4.55 V, which is higher than
RTS QPE (4.22 V) at room temperature. It demonstrates that SiO2 is beneficial for improving
the electrochemical stability of QPE. The Li+ transference number of RTS-5% SiO2 is around
0.51, higher than that of RTS QPE (t (Li+) = 0.27) (Figure S3). This is due to an increase in
free Li+ and a decrease in free TFSI- anions in RTS-5% SiO2 QPE.
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Figure 4. Electrochemical performance of RTS QPE and RTS-5% SiO2 QPE. (a) Nyquist curves
of RTS QPE and RTS-5% SiO2 QPE at room temperature. The embedded histogram shows ionic
conductivities; (b) Linear sweep voltammetry (LSV) curves of RTS QPE and RTS-5% SiO2 QPE. The
voltage ranges from 2.0 V to 6.0 V at 10 mV s−1. (c) Current and EIS curves of a Li/RTS-5% SiO2

QPE/Li battery before and after polarization. (d) The galvanostatic charge–discharge cycling curves
of Li//Li symmetric cells sandwiched with RTS QPE and RTS-5% SiO2 QPE at 0.1 mA cm−2 and
0.1 mAh cm−2. (e) Zoom-in curves at 400−406 h in (d).

To confirm the compatibility of the electrolyte with lithium metal, Li//Li symmetric
cells sandwiched with RTS QPE and RTS-5% SiO2 QPE are tested at 0.1 mA cm−2, with
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a fixed capacity of 0.1 mAh cm−2 (Figure 4d). The overpotential of Li/RTS QPE/Li cells
suddenly increases after 600 h of cycling, indicating that the conduction of lithium ions in
the electrolyte is blocked. The Li/RTS-5% SiO2 QPE/Li, on the other hand, can cycle stably
for 1400 h without short circuiting, indicating that the interface between the Li metal and
electrolyte is stable during Li deposition and stripping. There are no lithium-ion-conductive
obstructions or lithium-dendrite-piercing phenomena. The enlarged curves at 400−406 h
demonstrate that the overpotential of Li/RTS-5% SiO2 QPE/Li cells is lower than that of
RTS-SiO2 QPE (Figure 4e), which can be attributed to the increased ionic conductivity of
the electrolyte.

2.4. Electrochemical Performance of RTS-5%-SiO2-QPE-Based FullCells

To verify the practical application of the QPEs, LiFePO4/QPE/Li fullcells are assem-
bled and tested at ambient temperature. As illustrated in Figure 5a, the RTS-5% SiO2 QPE
exhibits a lower electrochemical impedance (≈163 Ω) than the RTS QPE (≈270 Ω), implying
that the fast ion transference is conducted in the RTS-5% SiO2 QPE. Meanwhile, it proves the
higher ionic conductivity of RTS-5% SiO2 QPE than that of RTS QPE. Cyclic voltammetry
measurements are conducted to evaluate the electrochemical redox kinetics. The redox peak
intensities of RTS-5% SiO2 QPE are higher than those of RTS QPE, indicating the former
QPE delivers a higher charge/discharge capacity (Figure 5b). It corresponds to the higher
initial discharge capacity of LiFePO4/RTS-5% SiO2 QPE /Li cells at 1 C (147.5 mAh g−1,
Figure S4). The rate capability of fullcells is evaluated at various C-rates from 0.2 C to
1.5 C (Figure 5c). The LiFePO4/RTS-5% SiO2/Li cells deliver specific discharge capacities
of 168.3, 157.3, 147.5, and 136.6 mAh g−1 at 0.2, 0.5, 1, and 1.5 C. Moreover, the discharge
capacity returns to the original values along with the return of current densities. Compared
with the RTS-QPE-based batteries, the RTS-5% SiO2 QPE shows an excellent rate perfor-
mance and reversibility. The charge/discharge curves at various C-rates are presented in
Figure 5d. In contrast to RTS-QPE-based cells, the RTS-5%-SiO2-QPE-based cells exhibit
higher specific capacities and lower polarization voltages.
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Figure 5. Electrochemical performance of LiFePO4/RTS QPE/Li and LiFePO4/RTS-5% SiO2 QPE/Li
at room temperature. (a) Nyquist curves of the fullcells employing LiFePO4 and Li. (b) CV curves of
the fullcells. (c) Rate performance of fullcells. Galvanostatic charge/discharge curves of the fullcells
cycling at (d) different rates from 0.2 C to 1.5 C and (f) various cycles at 0.5 C. (e) Cycling performance
and coulombic efficiency of the fullcells in the voltage range of 2.5 to 4.0 V at 0.5 C.

To further test the electrochemical cyclic stability at high current density, galvanostatic
charge/discharge cycling measurements are conducted at 0.5 C. After 250 cycles, the full
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cells employing RTS-5% SiO2 QPE exhibit a higher specific capacity (140.7 mAh g−1) and
capacity retention (92.3%) than RTS QPE (Figure 5e), indicating excellent cycling stability
and good interfacial contact between the electrode and RTS-5% SiO2 QPE. The galvanostatic
charge/discharge curves of the RTS-5%-SiO2-QPE-based cells at the first, twentieth, fiftieth,
and one hundred fiftieth cycles are presented in Figure 5f. During the first cycle to the
one hundredth cycle, the charge/discharge curves almost overlap, and there is no obvious
capacity decay, which further proves the superior cycle stability of RTS-5% SiO2 QPE. In
general, LiFePO4/RTS-5% SiO2 QPE/Li cells exhibit excellent capacity and electrochemical
stability. The comparison for the electrochemical performance of polymer solid state
electrolytes is shown in Table S1.

3. Materials and Methods
3.1. Preparation of RTS Recipe Slurry

First, 50 g of PEGMEA (Mw = 518; Sartomer CD551) and 0.02 g of 2,2-dimethoxy-
2-phenylacetophenone photoinitiator were added into a flask filled with nitrogen. The
mixture was stirred for 10 min to obtain a uniform solution. The solution was then placed
under a 365 nm UV lamp for several minutes until a viscous slurry formed. In the meantime,
the UV lamp and nitrogen were removed to stop the reaction. Second, 2 g of rheology-
tuning slurry and 1 g of PEGDA (MW = 608; Sartomer SR610) were added into a brown
glass bottle for preliminary mixing, and then 3 g of TMU, 2 g of LiTFSI, and 0.01 g of
photoinitiator were added in turn and stirred to obtain the RTS recipe slurry.

3.2. Preparation of SiO2-Modified Quasi-Solid Polymer Electrolyte Membrane
3.2.1. RTS-5% SiO2 Recipe Slurry

A total of 0.1 g of nano-SiO2 aerogel was added into 2 g of RTS recipe slurry and stirred
continuously until the SiO2 was completely dispersed. After that, 0.01 g of photoinitiator
was added and stirred.

3.2.2. RTS-5% SiO2 QPE

RTS-5% SiO2 recipe slurry was cast coated on both sides of PET nonwoven and
then cured under a 365 nm UV lamp for several minutes to obtain the uniform RTS-5%
SiO2 QPEs.

The obtained electrolytes are named RTS-x% SiO2 QPEs (x for the mass percentage
of SiO2 in the electrolytes, detailed in Table S2), while those without SiO2 are labeled as
RTS QPEs.

3.3. Preparation of LiFePO4 Cathode

The LiFePO4 cathode was fabricated by coating the slurry consisting of LFP (active
material, 80 wt%), PVDF (binder, 6 wt%), KS-6 (conductive agent, 2 wt%), Super P (2 wt%),
and RTS QPE (10 wt%) on the carbon-coated Al foil (C-Al) and then drying at 60 ◦C
overnight. The C-Al was punched into pellets with a diameter of 8 mm. The mass loading
of the cathode obtained was 2.16 mg cm−2.

3.4. Physical Characterization

A Carl Zeiss SEM was conducted to observe the morphologies of the QPE. The
Rigaku MiniFlex (Rigaku) X-ray diffractometer (XRD) was used for the crystal phase
test. The test was performed under the following conditions: Cu Kα ray, voltage 35 kV,
current 30 mA, scanning step diameter 0.01 s−1, and scanning rate 5◦ min−1. The scanning
range of the sample was 3−80◦. Fourier transform infrared (FTIR) spectra using Nicolet-
IS50 (Thermo Fisher Scientific) were utilized to investigate the structure. Differential
Scanning Calorimetry (DSC) was conducted on the Polyma 214 instrument. The mechanical
properties were evaluated using the Instron 5967 tensile test machine.
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3.5. Electrochemical Characterization

Electrochemical impedance spectroscopy (EIS) was used to evaluate the ionic conduc-
tivity of the QPE. The test was performed on Autolab Electrochemical Instrumentation
(Metrohm) in the frequency range of 1 Hz to 100 kHz. The C-Al/QPE/C-Al batteries were
assembled for the test. The ionic conductivity (σ) was calculated by the following equation:

σ =
L

RA

where L represents the thickness of the QPE membrane, R is the bulk resistance obtained
from alternating current impedance analysis, and A is the contact area between C-Al and
the electrolyte.

Li+ transference number (tLi
+) was obtained in Li/electrolyte/Li cells at room temper-

ature by combining DC polarization and AC impedance via the following equation:

tLi+ =
Iap

(
∆V − IbpRbp

)
Ibp

(
∆V − IapRap

)
where ∆V is the voltage pulse at DC polarization applied to the symmetric cells, and its
value is 10 mV. Ibp and Iap represent the initial and steady currents, respectively. Rbp
and Rap represent the resistance before and after polarization, respectively. The linear
sweep voltammetry was implemented in Li/QPE/stainless steel (SS) cells at a sweep rate
of 10 mV s−1 and a voltage range of 2.0 V to 6.0 V. The cyclic voltammetry (CV) was
conducted at 0.1 mV s−1 in a voltage range of 2.3–4.2 V. To obtain Li symmetric cells, QPE
was sandwiched with two Li foils (diameter = 10 mm) in CR2016-type coin cells. To do the
full cell assembly, a CR2016-type coin cell was assembled by contacting, in sequence, the
LFP electrode (d = 8 mm), the QPE membrane (d = 19 mm), and a lithium foil (d = 10 mm).
All batteries were assembled in an argon-filled glove box (H2O < 0.1 ppm, O2 < 0.1 ppm).
On a LAND-CT3001A battery tester (Wuhan LAND Electronic Co., Ltd.), galvanostatic
charge/discharge measurements were conducted to test the cyclic performance of Li
symmetrical cells and fullcells LiFePO4/QPE/Li. The LiFePO4/QPE/Li fullcells were
tested at a voltage range of 2.5 V−4.0 V. The electrochemical measurement tests described
above were all conducted at 27 ◦C.

4. Conclusions

In summary, a nano-SiO2-aerogel-modified QPE is prepared via a rheology-tuning
UV-initiated polymerization. The RTS-5% SiO2 QPE possesses a high ionic conductivity of
0.68 mS cm−1 and mechanical strength at room temperature. The Lewis acid sites on SiO2
aerogel interact with EO groups and anions from Li salts, which decreases the polymer
crystallinity, boosts the number of free Li+, and thus promotes the ionic conductivity. The
SiO2-aerogel-reinforced electrolyte can not only suppress Li dendrites, but also contribute
to the stability of electrochemical cycling. The Li//Li symmetric cells cycle stably over
1400 h. LiFePO4/RTS-5% SiO2/Li cells deliver impressive cycling stability, with a discharge
capacity of 140.7 mAh g−1 and 92.3% retention after 250 cycles at 0.5 C. UV-initiated
solventless polymerization holds promise for large-scale continuous coating. This work
gives new insights into the design and fabrication of composite polymer electrolytes for
lithium metal batteries.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020756/s1, Figure S1: Viscosity curves of PEGMEA
monomer and RTS; Figure S2: (a) Galvanostatic charge-discharge curves of Li//Li symmetric cells
with RTS-x% SiO2 QPE (x = 0, 3, and 5) at 0.1 mA cm−2 and 0.1 mAh cm−2; (b) Zoom-in curves of
400−406 hours; Figure S3: Chronoamperometry polarization curve as well as the impedance spectra
before and after polarization of Li/RTS QPE/Li cell; Figure S4: Initial galvanostatic charge/discharge
curves of LiFePO4//Li cells at 1 C. Table S1: The comparison for the electrochemical performance of
polymer solid state electrolytes; Table S2: Detailed information of RTS-x% SiO2 QPE (x = 0, 3, and 5).
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