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Abstract: Industrial emissions of volatile organic compounds are urgently addressed for their tox-
icity and carcinogenicity to humans. Developing efficient and eco-friendly reforming technology
of volatile organic compounds is important but still a great challenge. A promising strategy is to
generate hydrogen-rich gas for solid oxide fuel cells by autothermal reforming of VOCs. In this
study, we found a more desirable commercial catalyst (NiO/K2O-γ-Al2O3) for the autothermal
reforming of VOCs. The performance of autothermal reforming of toluene as a model compound
over a NiO/K2O-γ-Al2O3 catalyst fitted well with the simulation results at the optimum operating
conditions calculated based on a simulation using Aspen PlusV11.0 software. Furthermore, the
axial temperature distribution of the catalyst bed was monitored during the reaction, which demon-
strated that the reaction system was self-sustaining. Eventually, actual volatile organic compounds
from the chemical factory (C9, C10, toluene, paraxylene, diesel, benzene, kerosene, raffinate oil)
were completely reformed over NiO/K2O-γ-Al2O3. Reducing emissions of VOCs and generating
hydrogen-rich gas as a fuel from the autothermal reforming of VOCs is a promising strategy.

Keywords: autothermal reforming; VOCs; hydrogen; nickel-based catalyst

1. Introduction

Recently, industrial emissions of volatile organic compounds (VOCs) have increased
dramatically, representing a serious threat to the entire ecosystem [1,2]. VOCs are important
precursors for the formation of secondary pollutants such as fine particulate matter (PM2.5)
and ozone (O3), which in turn cause atmospheric environmental problems such as haze
and photochemical smog [3]. The VOCs pollutants were mainly emitted by chemical
and petrochemical sectors, via processes such as petroleum refining, paint manufacture,
waste combustion, and vehicle manufacturing [4,5]. According to the prediction by some
researchers, industrial VOCs emissions will reach 33.4, 61.2 and 135.5× 109 kg Carbon/year
by 2020, 2030 and 2050, respectively [6,7].

The most common and toxic non-halogenated compounds in industry include formaldehyde,
benzene, carbon monoxide, toluene, propylene, phenol, acetone and styrene [8]. Toluene
is the most emitted type of VOC and is difficult to reform [9,10]. Therefore, toluene is
usually used as a model compound for VOCs to study. Many researchers have focused
their attention on the treatment of VOCs for the enormous emissions and harmfulness. The
negative environmental impact, toxicity of VOCs, and the increasingly stringent regulations
required the investigation of more effective VOCs reforming technologies [11,12].

Numerous techniques, including non-destructive and destructive, have been used
for eliminating VOCs. The non-destructive methods were mainly adsorption, absorption,
condensation and membrane separation, and the latter includes catalytic reforming, thermal
combustion, nonthermal plasma, photocatalytic degradation, and biological treatment.
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However, each technology and method has its limitations in removal efficiency, energy
consumption, by-products as well as safety [13]. A process or technology enabling complete
reforming of VOCs at lower cost and higher efficiency is urgently needed.

At present, the process used in industry to treat with VOCs is direct-combustion after
they go through a concentration process. Although this process is effective, it is expensive
to operate, requires frequent maintenance and addition extra process. Interestingly, the
emission of VOCs can be reformed hydrogen-rich gas as a fuel for SOFCs. Solid oxide cells
can directly convert chemical energy from hydrocarbon fuels (such as natural gas, biogas,
etc.) into electrical energy with a variety of feedstocks on account of its higher efficiency
and superior temperature resistance [14]. The process is not limited by the Carnot cycle,
and does not release harmful substances externally [15].

While current abatement strategies require additional fuel to heat the reactor, the
proposed approach not only eliminates the use of additional fuel, but also allows the use of
VOCs, which are considered waste, to generate electricity [16]. As a result, this technology
can result in significant cost savings. However, compared with the direct-combustion
process, catalytic reforming is a superior approach in terms of economic efficiency of VOC
elimination [17], lower operation temperatures, reduced by-products (CO2 and H2O) and
reduced energy consumption [18].

Methods include catalytic partial oxidation, steam reforming, autothermal reforming
(ATR), and oxidative steam reforming (OSR) is also autothermal reforming. Steam reform-
ing (SR) is a strongly endothermic reaction, which requires high operating temperatures
(700–900 ◦C) to ensure a consistent conversion of reactants to H2 [19]. The process of SR is
defined by the following overall reaction:

CnHm + nH2O↔ COX + H2 + H2O, ∆H > 0 (1)

The formation of carbon compounds and its high energy requirement are the main
disadvantages of steam reforming [20,21]. It is worth noting that excess water added
inhibits the reaction and increases energy consumption.

A catalytic partial oxidation (CPO) reaction is an exothermic reaction in which a
moderate amount of oxygen promotes the decomposition of hydrocarbons to H2, CO2, and
H2O according to the reaction in Equation (2). The disadvantage of CPO is that it produces
a lower H2 yield due to hydrogen reacts with oxygen [22,23]. Partial oxidation proceeds
via the following overall reaction Equation (2):

CnHm + nO2 ↔ COX + H2 + H2O, ∆H < 0 (2)

Almost all reforming processes are usually accompanied by a water-gas shift (WGS)
reaction (3) [24]. For the WGS reaction, water generation has an impact on H2 production.

CO + H2O↔ CO2 + H2, ∆H < 0 (3)

The process of autothermal reforming (ATR) is a combination of water-gas shift reac-
tion (WGSR), catalytic partial oxidation and steam reforming [25]. Autothermal reforming
in Equation (4) can reduce energy consumption in external heating furnaces since the heat
generated by the exothermal partial oxidation can supply energy to the endothermal steam
reforming reaction [26,27]. The main advantages of the autothermal reforming include
increased energy efficiency and process stability, as demonstrated by thermodynamic stud-
ies [28]. For different autothermal reforming reactions, the selection of proper molars of
steam-to-carbon, oxygen-to-carbon and catalysts were particularly essential for different
autothermal reforming reactions [29].

CnHm + nO2 + mH2O↔ COX + H2 + H2O, ∆H ~ 0 (4)

CO + 3H2 ↔ CH4 + H2O, ∆H < 0 (5)
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Catalysts are crucial factors for autothermal reforming of VOCs. Precious metal
catalysts are primarily used in industrial applications at present, while the low content of
precious metals in the earth’s crust and high prices limit the prospects for their use [30].
Hence, non-precious metal catalysts are of interest to researchers. Ideal catalysts for
autothermal reforming of VOCs must have high activity, selectivity, and stability when
complicated volatile organic compounds are being reformed [31,32]. Nickel-based catalysts
have an excellent ability to break C-C, C-H, and C-O bonds compared to other non-precious
metals [33,34]. They are also preferred because of their inherent catalytic activity, as well
as their abundance [35,36]. However, nickel quickly loses its activity due to sintering and
carbon deposition [37]. Interestingly, the combination of basic activity metal oxides and
nickel could inhibit coke deposition, such as K2O and CaO. To improve the durability of Ni
catalysts, suitable supports carriers were selected to form bimetallic or multi-metallic doped
catalysts based on well-dispersed Ni catalysts such as ZrO2, TiO2, La2O3, Al2O3 [38]. Metal
oxide supports had a great influence on the performance of catalysts and could improve
the stability of catalysts and increase the mobility of oxygen (optimizing the selectivity
toward total oxidation) through the interaction with the active species [39]. The γ-Al2O3
support is used extensively in the petrochemical industry due to its large availability in
nature and its excellent thermal stability [40,41].

Inspired by the above reports, in this work, we propose a new approach to supply
hydrogen-rich fuel gas using autothermal reforming process of VOCs. The operation
conditions of autothermal reforming of toluene were optimized by thermodynamic analysis
using Aspen PlusV11.0 software (AspenTech, Bedford, MA, USA). NiO/K2O-γ-Al2O3
materials were utilized as the autothermal reforming catalyst compared with three different
Ni-based catalyst (NiO/γ-Al2O3, NiO/Al2CaO4, and NiO/K2O-γ-Al2O3). The results
showed the excellent ability to produce hydrogen-rich gas from VOCs by ATR over the
NiO/K2O-γ-Al2O3 catalyst. Subsequently, under the optimal operating conditions, actual
volatile organic compounds (C9, C10, toluene, paraxylene, diesel, benzene, kerosene, and
raffinate oil) were completely reformed to hydrogen-rich gas. The temperature distribution
of catalyst bed showed that catalytic partial oxidation occurred at the top section of catalyst
bed, and steam reforming occurred at the lower section of catalyst bed. The thermodynamic
calculations and the temperature distribution of catalyst bed proved that the system was
self-sustaining. A comparison of the experimental result with lower heating value (LHV)
calculation, as well as the efficiency of autothermal reforming processes was evaluated.

2. Results and Discussion
2.1. Thermodynamic Analysis

The thermodynamic equilibrium compositions in the reactor were calculated using
the Aspen PlusV11.0 software (the AspenTech in USA.) based on the Gibbs free energy
minimization method (Rgibbs reactor and SRK equation) in order to improve the ability
to predict gas densities. The SRK equation is one of the most popular cubic equations
currently used in research, simulations and optimizations that vapor-liquid equilibrium
(VLE) properties [42,43]. Using the Lagrange multiplier method, the Gibbs free energy
minimization for the system can be represented by the equations (Equations (6)–(8)),
considering each species in the gas phase and the total reaction system [44]. In this analysis,
the formation of the following compounds was considered: H2, CO, CO2, CH4, H2O,
toluene, and the solid carbon is pure solid carbon.

∆G
◦g
f i + TRln

yi ϕiP
P◦

+ ∑
k

αikλk = 0 (6)

N

∑
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ni

(
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where ∆G
◦g
f i is the standard Gibbs free energy of formation of gaseous species i, yi is the

mole fraction of species i, ϕi is the fugacity coefficient of species i, P and P◦ are the system
pressure and standard state pressure (1 atm), respectively, αik is the number of the atoms of
the kth element present in each molecule of gaseous species i, λk is the Lagrange multiplier,
and Ak is the total atomic mass of the kth element in the feed. ni and nc are the mole number
of species i and the solid carbon in the system, respectively, while ∆G

◦g
f i is the standard

Gibbs free energy of formation of the solid carbon which is assumed to be zero.
Compared to previous studies, this study focused on toluene autothermal reforming to

investigate the effect of different operating temperatures, O2/C molar ratios, and S/C molar
ratios on chemical and energy performance metrics. Then, the reforming processes were
compared at fixed operating conditions to investigate energy-related aspects in-depth and
to explore the potential of operating the VOCs reforming under autothermal conditions.

It was essential to notice that chemical reactions did not always reach equilibrium since
they were not kinetically feasible under certain conditions. As a result, this research should
be regarded as an indicative approach upon which the direction of catalyst optimization was
found. In actuality, the equilibrium overlooked reaction kinetics, catalytic characteristics,
and transport processes. The results of this thermodynamic analysis can be compared to
more thorough experimental data in the next step.

The operating temperature had a greater influence on the reaction system among the
oxygen-to-carbon and steam-to-carbon. As shown in Figure 1a, thermodynamic analysis
of autothermal reforming was carried out in a wide temperature range of 500–900 ◦C to
thoroughly investigate the effect of temperatures on equilibrium product distribution. With
the increasing of the temperature, the fraction of hydrogen increased and then decreased
slightly. Meanwhile, it was observed that the energy consumption for external heating
increased significantly, and the most molar fraction of hydrogen was observed at 700 ◦C
without carbon deposition.

In the autothermal reforming process, the reaction of toluene with oxygen was a rapid
combustion reaction in the high temperature. The effect of O2/C on the ATR of hydrogen
production was also significant. It was varied between 0 and 1 under atmospheric pressure
by the simulation. As shown in Figure 1b, the O2/C was required to be maintained at
a relatively low value to ensure high hydrogen production since oxygen reacts with the
hydrogen product. The optimal operating condition for maximizing hydrogen production
was O2/C = 0.225.

In addition to the effect of temperature and O2/C, the effect of S/C was also stud-
ied in this work. As shown in Figure 1c, it could be observed that the composition of
hydrogen increases with the increase of S/C. However, a higher S/C would result in the
energy consumption and expensive production costs, which are not conducive to industrial
applications. Considering the foregoing, the optimal operating condition was that tempera-
ture be equal to 700 ◦C, the value of oxygen-to-carbon be equal to 0.225 and the value of
steam-to-carbon be equal to 1.31.

2.2. Performance of ATR over Ni-Based Catalyst

To analyze the role of different components in the NiO/K2O-γ-Al2O3, three Ni-based
catalysts were tested for autothermal reforming under the same conditions. According
to Figure 2, the NiO/γ-Al2O3 catalyst exhibited a similar distribution of gas products to
the NiO/Al2CaO4 catalyst, showing that the addition of calcium oxide had little effect on
the activity and selectivity of catalyst. The catalyst containing calcium oxide produced
slightly lower amount of hydrogen and CO than NiO/γ-Al2O3, indicating that the addition
of calcium oxide can absorb CO2 and promote the reverse water-gas shift reaction. This
phenomenon is consistent with that reported in the literature [45,46]. However, comparing
NiO/γ-Al2O3 catalyst and NiO/Al2CaO4 catalyst, NiO/K2O-γ-Al2O3 catalyst produced
higher CO2 yield and lower CO yield. As the same time, NiO/K2O-γ-Al2O3 produced
higher hydrogen yield and lower CH4 yield. Experimental results suggested that the
addition of potassium oxide was able to increase the alkalinity of the catalyst and inhibit
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the methanation reaction [47,48]. In addition, the results of the toluene reforming fitted
well with the simulation results over NiO/K2O-γ-Al2O3 catalyst.
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Figure 2. Comparison of autothermal reforming performance over different Ni-based catalysts
(reaction condition: temperature = 700 ◦C, the flow rate of toluene = 0.2 mL/min, the flow rate of
water = 0.31 mL/min, the flow rate of dry air = 317.4 mL/min).

According to Table 1, based on the comparison of catalytic performances with reported
catalysts for toluene steam reforming, autothermal reforming exhibited a relatively higher
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hydrogen yield and conversion of toluene. Autothermal reforming of toluene has rela-
tively lower operating temperatures compared with that reported in Table 1. The toluene
conversion of 100% was obtained at 700 ◦C and hydrogen yield was up to 78.99% in the
NiO/K2O-γ-Al2O3.

Table 1. A comparison with the reported catalysts for toluene steam reforming.

Catalyst Temperature
(◦C)

Conversion
(%)

H2-Yield
(%) Reference

Ni/MgO-Al2O3 750 93.0% 32% [49]
Ni/La0.7Sr0.3AlO3 650 95.0% 67% [50]

Ni/LaAlO3 600 81.0% 60% [51]
Fe/olivine 825 68.0% 41% [52]

La0.6Ce0.4NiO3 800 87% 79.6% [53]
NiO/K2O-γ-Al2O3 700 >99.9% 78.9% This work

2.3. Effect of Operating Conditions on ATR Performance

The thermodynamic equilibrium model proposed was validated by comparison of the
simulation and experimental data under the different operational conditions. Adjusting
the operating conditions allowed the experimental results to be closer to the equilibrium
values. In the following paragraphs, the effect of different operating conditions on ATR
was analyzed.

2.3.1. Effect of Temperature

As shown in Figure 3a, the experimental and simulated results were varied with
temperatures ranging from 550 ◦C to 700 ◦C, which showed a very good fit of the equi-
librium with simulated data, and the reaction was close to equilibrium within the whole
temperature range. Within these operating temperatures, the catalytic partial oxidation
showed the increase in H2 and CO production. However, the decrease in CO2 may be due
to the reverse water-gas shift reaction. The higher operating temperature would improve
the exothermic reverse water-gas shift reaction and increase the yield of CO, which is
exothermic. Meanwhile, the content of CH4 was decreased according to reaction Equation
(5), this process was inhibited at high temperatures.
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Figure 3. Comparison of experimental results and simulation results at different temperatures (a),
the different temperature distribution in the catalyst bed (b) (reaction condition: the flow rate of
toluene = 0.2 mL/min, the flow rate of water = 0.31 mL/min, the flow rate of dry air = 317.4 mL/min).

To confirm whether the reaction system was self-sustained, the actual reaction tem-
perature of the catalyst bed was measured. As shown in Figure 3b, it was noticed that the
inner-layer and outer-layer temperatures of the catalyst bed were inconsistent under the
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fixed external control of temperature. The reaction temperature inside the catalyst bed and
the fraction of hydrogen were increased with the increase of the control temperature, indi-
cating that the higher catalyst bed temperature was a benefit for catalytic partial oxidation
of toluene. In addition, the top section of the catalyst temperature was higher than the
lower section, which indicated that a strong catalytic partial oxidation reaction occurred at
the top section of the catalyst bed. The heat released from the catalytic partial oxidation
reaction could be transferred to the lower section with the direction of material transfer
to promote the steam reforming reaction, and the steam reforming reaction reacted at the
lower section in the catalyst bed. When the external control temperature was equal to
700 ◦C, the temperature of the catalyst bed was higher than 700 ◦C, this result proved that
the system was self-sustaining.

2.3.2. Effect of O2/C

As shown in Figure 4a, with the increase in O2/C in the feedstocks, the fraction of
hydrogen was slightly decreased resulting in excess oxygen reacting with hydrogen. The
experimental and simulated results for CO and CO2 followed the same trend but were
slightly different. The fraction of CO in the experiment was lower than the simulated
results. The fraction of CO2 in the experiment was higher than the simulated results. Since
CO was converted to CO2 with the increase in O2/C due to the combustion reaction and
the water-gas shift reaction. According to Figure 4b, it was observed that the reaction
temperature in the catalyst bed was rapidly increasing with the increase in O2/C, which
resulted in increased catalytic partial oxidation. The heat released from the CPO contributed
to the steam reforming and reduced the energy consumption of the external heating system
thereby improving energy utilization. Figure 4b showed that when O2/C > 0.25, the
reaction temperature in the catalyst bed was higher than the external control temperature,
indicating that the reactor achieved a self-sustaining reaction.
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lar ratios (a), the different temperature distribution in the catalyst bed (b) (reaction condition:
temperature = 700 ◦C, the flow rate of toluene = 0.2 mL/min, the flow rate of water = 0.31 mL/min).

It was noted that the fraction of gas production was more sensitive to O2/C molar
ratios compared to operating temperature and S/C molar ratios, because the reaction
rate of CPO was higher the steam reforming. The coupling of a strong exothermic CPO
reaction and weaker steam reforming reaction was the main reason for the increase in
catalyst bed temperature. The reaction of autothermal reforming is also accompanied by
axial temperature diffusion, and most of the heat generated by the oxidation reaction is
consumed at higher O2/C conditions and is not fully supplied to the steam reforming.

The exothermic oxidation reaction caused by toluene and oxygen can cause an uncon-
trollable temperature increase result in sintering of the catalyst and losing reaction activity
because the rate of toluene in partial oxidation reforming is faster than steam reforming.
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A higher O2/C ratio will enhance the non-uniform temperature distribution and the tem-
perature of the catalyst bed will increase significantly. A reasonable value of O2/C can
be coupled well CPO reaction with the steam reforming reaction. The non-uniform axial
temperature distribution in the catalyst bed can produce unstable hydrogen yield and
decrease the durability of catalyst.

2.3.3. Effect of S/C

The experimental results agreed with the simulated results and followed the same
trend for values of S/C from 1.0 to 3.0. Figure 5a showed that with the increase in S/C,
the fraction of H2 and CO increases slightly, while the fraction of CO2 decreases. The
variations were due to the enhancement of the steam reforming reaction as a result of
the increase of hydrogen production. Meanwhile, the addition of water promotes the
water-gas shift reaction. However, the increase in H2 production promoted the production
of methane and part of hydrogen is consumed according to the Le Chatelier principle, as
shown in Equation (5).
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lar ratios (a), the different temperature distribution in the catalyst bed (b) (reaction condition:
temperature = 700 ◦C, the flow rate of toluene = 0.2 mL/min, the flow rate of dry air = 317.4 mL/min).

As shown in Figure 5b, the upper catalyst temperature was higher than the lower layer
under low S/C operating conditions. After the reactants entered the reactor and vaporized
on the upper catalyst in the surface, catalytic partial oxidation reaction and steam reforming
were occurring, accompanied by a water-gas shift reaction in the reaction system. Catalytic
partial oxidation reaction dominated since it was a quick reaction compared with steam
reforming. As the heat released by catalytic partial oxidation from the upper part of the
catalyst bed was transferred downward to the lower part of the catalyst bed, it led to the
increase in temperature at the lower catalyst layer and promoted steam reforming. With
the increase in S/C, the catalytic partial oxidation reaction was suppressed and the steam
reforming reaction was enhanced by absorbing the heat. When the steam-to-carbon value
was equal to 2.4, the out-layer temperature in the catalyst bed was close to the external
control temperature, indicating the reactor achieved a self-sustaining reaction.

The fixed bed reactor has a number of unusual characteristics including the flowing
continuity and immovable the catalyst particles to the intensity of the heat transfer and
nearly isothermal conditions throughout the reactor. However, a fixed bed reactor involves
some complex flows and reaction such as CPO reaction and steam reforming reaction.
Here, the experimental compositions measured at the top and the bottom of this catalyst
bed reactor for a wide range of exit temperatures (Texit = 680–820 ◦C) are not uniform
distribution of temperature. More uniform distribution along the length of the reactor
compared to the top catalyst bed. Since the outlet in the flow direction was located at the
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lower end of the reactor, heat transfer was also present along the radial length of the reactor.
The heat transfer coefficient in turn decreases gradually along the axial direction of the
reactor. In the lower and middle portions of the catalyst bed, the reactor will combine
exothermic and heated chemical reactions for thermal management purposes without
the aid of external energy sinks or sources. By directly coupling both steam reforming
and oxidation reactions within the same reactor catalyst bed, thereby eliminating the heat
transfer bottleneck that is a feature of many chemical manufacturing, the direct coupled
self-heating operation can lead to significant process improvements, improvements and
cost savings that can be realized.

2.3.4. ATR of Real VOCs

In this portion of the work, different VOCs from the Sinopec Shanghai Petrochemical
Company Limited were reformed at optimal operating conditions, and the results were
shown in Figure 6. According to Table 2, the raffinate oil had the highest component of
hydrogen, and no other alkanes were produced at ATR [54]. The high carbon composition
of the large hydrocarbons of C9, C10, and diesel produced some alkanes, mainly ethylene,
indicating that long-chain alkanes had difficulty in autothermal reforming [55]. Experi-
ments performed with seven reaction materials of VOCs showed that this process could
convert VOCs into hydrogen-rich syngas used in solid oxidation fuel cells.
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temperature = 700 ◦C, the flow rate of material = 0.2 mL/min, the flow rate of water = 0.31 mL/min,
the flow rate of dry air = 317.4 mL/min).

Table 2. Components of the mixture in elemental analysis.

Number Reactants C wt% H wt%

1 C9 90.75 9.25
2 C10 94.905 5.095
3 Diesel 86.26 13.24
4 Kerosene 85.52 14.18
5 Raffinate oil 83.365 16.635

2.4. The Efficiency of ATR

Energy consumption (external heating value) and efficiency were the main indicators
to evaluate autothermal reforming. Figure 7 shows the effect of different reactions on
the total value via low heating values and indicates the comparison results of the actual
power versus the theoretical power. According to Figure 7a, the efficiency value of the
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reforming process increased with the increase in reforming temperature showing that
higher temperatures are beneficial for hydrogen production. However, the actual external
heating values was different from the ideal external heating values because of large heat
loss in the furnace. Figure 7b demonstrated that when O2/C > 0.2, the increase in oxygen-
to-carbon led to a decrease in hydrogen production and the external heating value. The
excess oxygen promoted the catalyst partial oxidation reaction to produce a large amount of
heat, and then the required external heat was reduced. Figure 7c illustrates that the increase
of steam-to-carbon may suppress catalytic partial oxidation reaction and promote steam
reforming reaction increase hydrogen. However, the total external heating value increased
rapidly. Considering the energy efficiency of the autothermal reforming holistically, the
operating conditions in this study were chosen reasonably and could be effectively used as
a reference for scaling up experiments with utilization in industrial applications.
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3. Experiment and Analysis
3.1. Experiment Setup and Analysis

The experimental setup for autothermal reforming of toluene is shown in Scheme 1.
The experimental setup included the feeding, reaction, condensing, and gas analysis section.
The nitrogen, hydrogen, and dry air gas were fed by MFC (sevenatar-D07) into the reactor.
The deionized water and toluene were fed into the top of the quartz reaction tube by
two horizontal pumps (szweico-2PB).
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A commercial catalyst, with a loading of 16 wt% of NiO and K2O deposited on γ-Al2O3
was used for the following experiment. A quartz tube reactor was located in a furnace,
the catalyst was placed in the center of the reactor inside two layers of silica wool. The
external wall of the tube was connected with a temperature control device, and a movable
thermocouple was inserted into the catalyst bed to detect the temperature of the catalyst
bed during the reaction process.

The condensing section was consisted of a custom gas-liquid separator. The exhaust
gas was fed in and gas-liquid separation was achieved. The gas products were generated by
the gas-liquid separator and analyzed online by GC (Agilent column, Agilent Technologies
Inc., Santa Clara, CA, USA: 3000 A, detector: FID) and TCD (Thermal Conductivity Detector,
RISUN Technology, Shenzhen, China). Liquid samples were periodically taken via a
sampling loop for HPLC analysis.

The reaction temperature was adjusted in the range of 550–700 ◦C. To ensure the
accuracy of the experimental measurements, the horizontal flow pump and MFC used
were calibrated using the standard curve method. The results presented in this study were
obtained 30 min after the reaction system reached initial stability according to the stable
components of the generated gas. The catalytic performance was evaluated by H2 yield and
conversion. The following expressions were used to calculate the conversion of the feed (X),
the hydrogen yield based on the gas phase product (YH2), and carbon equilibrium (C%).

YH2 =
nH2,out

n( f eedstock)in,H2
+ n(H2O)in,H2

× 100% (9)

Xtoluene =
n( f eedstock), in − n( f eedstock), out

n( f eedstock), in
× 100% (10)

C− balance(%) =
Cout

Cin
× 100% (11)

where n( f eedstock)in,H2
was the molar of H2 in the feedstock, n(H2O)in,H2 was the molar of

H2 in the H2O, and nH2,out was the total amount of hydrogen produced in the reaction,
n(feedstock), in and n(feedstock), out were molar ratios of feedstock at inlet and outlet. Cin and
Cout were the molar of feedstock at inlet and outlet.
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3.2. Thermal Efficiency of Autothermal Reforming Process

In order to determine the advantages of autothermal reforming method and provide
a scientific basis for a high-quality, high-yield, and high-efficiency reforming process, it
was necessary to calculate the thermal efficiency. The thermal efficiency of the system was
evaluated by the following Equation (12):

E f f iency% =
LHVH2 + LHVCH4

LHVC7 H8 + Heatabsorbtion
× 100% (12)

In Equation (12), the LHVH2 was the total heating value of hydrogen, the LHVCH4
was the total heating value of CH4 and the where LHVC7 H8 was the total heat value of
consumed fuel and Heatabsorbtion was the total heat absorption [56].

According to Table 3, the ideal thermal efficiency of fuels reforming under differ-
ent operation temperatures, oxygen-to-carbon ratios, and steam-to-carbon ratios can
be calculated.

Table 3. The parameters of C7H8, and required inorganic substances.

Molecular Formula Molecular Weight Low Heating Value kJ/mol Standard Enthalpy kJ/mol

C7H8 92 3905
H2 2 2418.260

H2O(L) 18 285.830
O2 32

CH4 16 890.8
CO2 44 393.522

4. Conclusions

In this work, volatile organic compounds were reformed to hydrogen-rich by autother-
mal reforming at the optimal operating conditions (temperature = 700 ◦C, O2/C = 0.225,
S/C = 1.31). The experimental results followed similar trends with simulation data in the
autothermal reforming process, which indicates that this methodology could effectively
guide the reaction process. Toluene was reformed to produce higher hydrogen yield and
lower methane on NiO/K2O-γ-Al2O3 catalyst, which showed that the doping of potas-
sium oxide can inhibit the methanation. We found that the temperature of the upper part
of the catalyst bed is higher than the lower part, which demonstrated catalytic partial
oxidation reacted at the top section of the catalyst bed and steam reformed at the lower
section. The result proved that this system was self-sustaining and could effectively reduce
energy consumption. Furthermore, actual VOCs (C9, C10, toluene, paraxylene, diesel,
benzene, kerosene, and raffinate oil) feedstocks were also reformed to H2-rich syngas in
ATR. Autothermal reforming of VOCs is a perspective and feasible process to offer fuel gas
for SOFC.
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