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Abstract: Indoles and hydantoins are important heterocycles scaffolds which present in numerous
bioactive compounds which possess various biological activities. Moreover, they are essential
building blocks in organic synthesis, particularly for the preparation of important hybrid molecules.
The series of hybrid compounds containing indoles and imidazolidin-2-one moiety with direct C–C
bond were synthesized using an amidoalkylation one-pot reaction. All compounds were investigated
as a growth regulator for germination, growth and development of wheat seeds (Triticum aestivum L).
Their effect on drought resistance at very low concentrations (4 × 10−5 M) was evaluated. The study
highlighted identified the leading compounds, 3a and 3e, with higher growth-regulating activity
than the indole-auxin analogues.

Keywords: indoles-imidazolidin-2-on hybrids; amidoalkylation; bis-heterocycles; growth-regulating
activity

1. Introduction

The hydantoin or glycolylurea (imidazolidin-2,4-one) is an important nitrogen-containing
heterocyclic moiety in which two nitrogen atoms are located in a five-membered ring.
Hydantoin and its derivatives are common bioactive molecules, so synthetic and phar-
macological interest in them is constantly growing [1–4]. In addition, neuroprotective [5],
anticonvulsant [6], antibacterial [7,8], anti-inflammatory [5,9], and anti-cancer [10,11] prop-
erties of imidazolidin-2,4-one derivatives are known.

On the other hand, the indole skeleton represents a main structural motif in various
bioactive natural products and pharmaceutically active compounds.

Its derivatives possess a broad spectrum of biological activities, including antimi-
crobial [12–15], antitubercular [16–18], anti-tumor [19–23], antiviral [17,24,25], antioxi-
dant [12,21], anti-inflammatory [17,25–27], antifungal [28–30], antimalarial [17,31], antidepres-
sants [17], antidiabetic [25,26,32], anti-Alzheimer’s [26,33], and antibacterial [26,34] properties.

It has previously been shown that hybrid molecules containing two or more hetero-
cyclic fragments in one structure exhibit synergistic or additive pharmacological activity
compared to compounds with each individual pharmacophore [35,36]. Thus, in bioactive
molecules, it is possible to change the pKa, to develop conformational hindrances and the
regulation of the hydrophilic-hydrophobic balance, and to increase lipophilicity, and all
these parameters can be varied both individually and in various combinations [37–39].

In the last decade, interest in biologically active hybrids based on indole and var-
ious azoles has increased. For example, indole-functionalized isoxazoles [40], indole-
imidazole [9], and indole-imidazolone [41] hybrids have anti-inflammatory properties,
indole-oxadiazole hybrids are potential antidiabetic agents [42], and indole-chalcone linked
1,2,3-triazole hybrids exhibit antimicrobial activity [43]. A whole series of indole hybrids
with azoles, such as pyrazole [44], thiazolidinone [45], isoxazoles [46], benzimidazole [47],
and 1,2,4-triazole [48] showed potential antitumor and cytotoxic activity.
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Indole derivatives are also known to be widely used in agriculture. It is known that
derivatives of indole auxins are phytohormones. They affect the growth and develop-
ment of plants and increase their resistance to the environment [49–53]. For example,
indolylacetic (IAA) and indolebutyric (IBA) acids act as growth regulators, stimulate root
formation [54–56], flower development, and fruit growth [57], and help plants overcome
stress [58]. Tryptophan improves plant resistance to Cd, reduces its accumulation in the
biomass [59], and increases yields in nutrient-deficient soils [53]. Indole derivatives with
fungicidal activity, such as streptochlorin, are well-known [28,30].

At the same time, some hydantoin derivatives also have applications in the agrochem-
ical area as bactericides, fungicides, and herbicides [60–64]. However, according to our
information, the usage of imidazolidinone-based compounds as plant growth regulation
agents has not yet been explored. In a preliminary report, we described the synthesis
and study of the cytotoxic and anti-inflammatory properties of the series binary 3-/2-
(2-oxoimidazolidinyl-5)-indoles [65].

The aim of the work was the synthesis of biologically oriented hybrids of hydantoin
and C2/C3–substituted indoles linked by a direct C-C bond and the study of the derivatives
of (2–oxoimidozolidinyl-5)-indoles for growth-regulating activity.

2. Results and Discussion
2.1. Synthesis

Imidazolylindole derivatives with a direct C-C bond are relatively hard toreach. Con-
ventional approaches to obtaining these hybrid compounds, as a rule, include multi-stage
synthesis with intramolecular condensation of the intermediate product at the last stage [66].
At the same time, the C-amidoalkylation reaction is a simple one-pot and effective method
of introducing new fragments into the heterocycle molecule [67]. Amidoalkylated reagent
1-phenylimidazolidin-2-one 1 was obtained from the corresponding hydantoin derivative
using the known procedure [68]. The synthetic pathway used in the preparation of novel
hydantoin derivatives containing indole moiety with a direct-linked C-C bond is shown
in Scheme 1. Amidoalkylation was carried out under Lewis acid catalysis. Performing
the reaction on indole 2a and N-methylindole 2d as well as the 2-substituted indoles
2b,c,e,f in THF in the presence of catalytic amounts of boron trifluoride ether provided
satisfactory results to afford the desired indole-imidazolidine-2-on hybrids 3a–f in 37–54%
yields. Similarly, 2-(2-oxoimidazolidinyl-5)-indole (3g) was synthesized, although with a
lower yield.

Scheme 1. The synthesis of indole-imidazolidine-2-one hybrids.

The usage of other catalysts (diethylaminoethylcellulose, SiO2, Al2O3), organic bases
(Et3N, DIPEA), and solvents (DCE, chloroform, and dioxane) leads to a significant decrease
in the product yield. Products of the 2,3-rearrangement of Wagner–Meerwein, charac-
teristic of indole derivatives in an acidic medium and present in reaction mixtures of
indolylpyrazolidines [69], were not detected under these conditions. It should be noted
that the sulfur-containing analogue of reagent 1 does not interact with indoles [70,71].

The structure of the synthesized indole-imidazolidine-2-on hybrids 3a–g was con-
firmed using 1H NMR spectroscopy, with signal assignments based on the gCOSY tech-
niques. In the aliphatic part of the 1H NMR spectra of the heterocyclic hybrids 3, proton
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signals of the starting 1-phenylimidazolidine-2-one is preserved. For all compounds 3,
there is no signal in the 1H NMR spectra at δH 6.42 corresponding to the OH group proton
of the starting reagent 1, which indicates the formation of a C–C bond in the C(5’) position
of imidazolidin-2-on derivatives. Comparative analysis of the amidoalkylation products of
isomeric 2- and 3-methylindoles (such as, for example, 3b and 3g) showed that they have
different physico-chemical properties, and their 1H NMR spectra do not contain similar
signals. In all 1H NMR spectra of compounds 3a–f, compared to the spectra of starting
indoles 2a–f, the signal for the C(3)H proton of the indole core is absent, which confirms the
direction of the amidoalkylation of the indoles at position C(3), if it is free. The 1H NMR
spectra of imidazolidinylindoles 3a–c, 3g obtained from the N-unsubstituted indoles exhibit
a characteristic broadened signal for the proton of the NH group at δ 8.46 for derivative
3g and at δH 10.87–11.32 for compounds 3a–c, which excludes the nucleophilic attack at
position C(1) of the indole. The assignment of carbon atom signals in the 13C NMR spectra
was carried out using two-dimensional heteronuclear correlation experiments, as well as
by comparing them with the spectra of a wide range of substituted indoles. [72,73]. The
structures of compounds 3a and 3f were established earlier in X-ray diffraction studies [65].

Tests on the cells of mouse microglia of the BV-2 line (CVCL_0182) and human neurob-
lastoma of the SH-SY5Y line (ATCCCRL-2266) showed that indole-imidazolidine hybrids
3a–f manifested cytotoxicity and an anti-inflammatory effect [65].

2.2. Investigation of the Influence of Hydantoin-Indole Hybrids on Wheat Seed Germination

As model compounds, we have chosen some synthesized derivatives of 3-(2-oxoimida-
zolidine-5-yl)indole 3 to study growth-regulating activity. Known auxins [49–53]—derivati-
ves of indole, namely indolylacetic (IAA) and indolebutyric (IBA) acids, as well as L-
tryptophan (Trp)—were selected as compounds for comparison.

It is known that the concentration of 10−7 M is typical for these indole-auxins in
agriculture [74]. However, modern research has shown that growth regulators with indi-
vidual concentrations are selected for each crop (Table S1). According to these statistics,
the concentration of PGR 4 ×10−5 M that we used is acceptable for wheat seeds. Seeds of
spring wheat (Triticum aestivum L.) of the “Darya®” variety, crop 2020 (No. 9705798), were
selected for research [75]. The results of the research are presented in Table 1.

Seed germination is a key stage in the plant’s life cycle. The first 24 h of the exper-
iment were conducted in the dark to simulate the development of seeds in the natural
environment, in the soil. The seed germination potential (Gp) was calculated after 24 h,
according to Formula S1. The root (1–3 mm) is the evaluation criterion Gp, as it penetrates
through the seed membranes [76]. The results for germination potential and germination
are presented on the Figure 1.

All the tested compounds 3a–g have shown a good growth-regulating ability. Hybrid
compound 3e-treated seeds have the highest Gp (83%) compared to the control (77%).
Germination (G) of the seeds was calculated on the seventh day using Formula S2, according
to the recommendations of the International Seed Testing Association [77]. Seeds treated
with compounds 3a,c,e showed higher germination results than the control sample (89%).
The maximum value was for the seeds treated with compound 3a (95%).

Root system architecture plays an important role in plant development [78]. It is
generally accepted that a deeper and more branched root system can give advantages when
growing crops in difficult conditions [79]. It is known that the root system consists of two
types of roots: the primary root (PR) and lateral roots (LRs) (Figure S1).

The study of the root length and the shoot height was carried out on the seventh day
after the start of the experiment (Figure S2). The root system of the control sample does
not have a primary root; there are only four roots, and their average length is presented
in Table 1. All other samples have a root system with primary and lateral roots. Only
sample 3e began to develop root hairs on the lateral roots by the seventh day. Compound
3a showed the best results: the main root was larger than 10 cm, and the average size of
the lateral roots was larger than 7 cm. The results of shoot height studies were statistically
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insignificant. The seeds treated with the tested compounds showed results comparable
to the control (about 13 cm). Thus, the use of hybrid compounds leads to the accelerated
growth and branching of the root system by the seventh day.

Table 1. Influence of hybrid compounds and indole-auxins on germination and roots architecture.

Formula Compound
№

Germination
Potential Gp, %

Germination
G, %

Primary Root
Length, cm

Roots
Number

Lateral Roots
Length, cm

- Control 77 89 - 4 5.4

3a 71 95 10.7 * 6 7.1 *

3b 70 94 10.0 6 6.8

3c 71 94 9.6 6 6.7

3d 79 89 8.1 6 6.3

3e 83 * 92 9.9 6 6.5

3f 75 89 * 10.1 6 6.5 *

3g 76 87 9.5 * 6 6.8

IAA 81 90 9.8 6 6.7

IBA 78 88 8.8 6 6.4

Trp 78 93 8.0 5 5.2

“Control”—Seeds put in a Petri dish and treated only with distilled water were taken as control. * Statistically
significant difference from the control (water) at p < 0.05.

So, hybrids of the 3-substituted indoles (3a–c) demonstrated greater activity compared
to the 2-substituted analog 3g. An increase in the volume of the substituent in the second
position of the indole ring (for example, 3a–3c) does not significantly affect the growth-
regulating properties. At the same time, 1-methyl derivatives (3d,f) had less of an effect on
the growth and development of wheat seeds.

Drought is an environmental stress factor for plants. A lack of water can provoke
the restriction of photosynthesis, drying of biomass, and reduction of shoot height. The
relative water content (RWC) of leaf is a reliable and simple way to assess the water status
of a plant. It is used to describe the state of water in a plant at a particular point in time.
Higher RWC readings are an indication of drought tolerance [80]. The RWC was calculated
using Formula (S3). The results of the research are presented in Table 2.

The relative water content in the RWC was determined at 72, 96, and 120 h (Figure 2).
after the last watering, as we wanted to understand how the RWC of the leaves changes
when watering stops.
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Figure 1. Germination potential and germination of tested compounds. *—traditional designations
for statistically significant results.

Table 2. The relative water content of wheat shoots treated with compounds 3 under water stress.

Hours
After the
Watering

Control 3a 3b 3c 3d 3e 3f 3g IAA IBA Trp

72 79.39 69.34 80.10 93.75 * 82.48 79.39 82.29 77.39 68.42 77.87 79.56
96 58.93 52.57 58.15 63.19 64.78 * 50.88 55.71 57.79 50.34 59.31 50.88

120 24.38 30.31 27.41 24.09 22.07 27.94 23.51 25.96 27.63 25.89 * 23.99

* Statistically significant difference from the control (water) at p < 0.05.

Figure 2. The relative water content wheat shoots treated with hybrid compounds 3 under water
stress. *—traditional designations for statistically significant results.

Throughout the 72 h after the last watering, all the plants retained their turgor, and
after 96 h, the beginning of the wilting process was observed. The shoots had a minimum
degree of wilting and a maximum value of 30.31% RWC when treated with compound 3a
compared to the control (24.38%). The shoots treated with compound 3e (27.94%) and IAA
(27.63%) had the same value. Thus, new hybrid compounds can be used to improve the
drought tolerance of wheat plants.
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3. Materials and Methods
3.1. Chemicals and Instruments

The 1 H NMR and 13C NMR spectra were recorded on Agilent 400-MR (400 MHz) and
Bruker Avance-600 spectrometers (600 MHz) in CDCl3 or DMSO-d6 using tetramethylsilane
(TMS) as internal standard. The chemical shifts were reported in δ scale, and constant
J values are presented in Hz. IR spectra were recorded on a UR-20 instrument in Nujol
and on an IR-200 Fourier-transform IR spectrometer (TermoNicolet, Waltham, MA, USA)
with a resolution of 4 cm−1 (KBr pellets). Electrospray ionization (ESI) high-resolution
mass spectra were recorded on a Bruker maXis instrument. Melting points were measured
on an Electrothermal IA 9000 series device in glass capillaries. Elemental analysis was
performed on a Carlo Erba device EA 1108CHNS-O. The TLC on Silufol UV-254 was used
to follow the course of reactions. Compound purification was performed using short dry
column or flash-chromatography on silica gel (60, Fluka, Honeywell Research Chemicals,
Morris Plains, NJ, USA) [81]. Started indole derivatives were used as purchased from
Sigma-Aldrich. The 5-Hydroxy-1-phenylimidazolidin-2-one, 1 was obtained according to
the procedure [61]. Solvents were purified by standard methods.

3.2. Reaction of Indoles 2 with Phenylimidazolidin-2-One, 1 (General Procedure)

The catalyst BF3•Et2O (16 mg, 0.1 mmol) was added to a mixture of 5-hydroxy-1-
phenylimidazolidin-2-one 1 (1 mmol) and the corresponding indole 2 (1 mmol) in anhy-
drous THF (10 mL) with stirring. The reaction mixture was stirred at room temperature
(1–6 h, TLC control) and filtered through a short layer of SiO2, the residue was washed with
CHCl3 on the filter, and the solvent was evaporated in vacuo. Diethyl ether (~5 mL) was
added to the oily residue and triturated to form a fine crystalline precipitate. An additional
recrystallization of this precipitate from EtOH gave the corresponding indolylimidazolidi-
none 3.

3.2.1. 5-(1H-Indol-3-yl)-1-Phenylimidazolidin-2-One (3a)

The yield was 50%, white crystals. M.p. 244 ◦C. IR (KBr, n/cm−1): 1680 (C = O),
3350 (NH). 1H NMR (DMSO-d6): 3.36 (m, 1H, C(4’)Ha), 3.86 (td, 1H, J = 9.2 Hz, J = 3.2 Hz,
C(4’)Hb), 5.73 (dd, 1H, J = 9.2 Hz, J = 6.2 Hz, C(5’)H), 6.87 (t, 1H, J = 7.3 Hz, p-CHPh),
6.95 (s, 1H, N(3’)H); 6.99 (t, 1H, J = 7.5 Hz, C(5)H), 7.07 (t, 1H, J = 7.5 Hz, C(6)H), 7.14
(t, 2H, J = 7.9 Hz, m-CHPh), 7.31 (s, 1H, C(2)H), 7.33 (d, 1H, J = 7.4 Hz, C(7)H), 7.47 (d,
2H, J = 7.9 Hz, o-CHPh), 7.62 (d, 1H, J = 7.6 Hz, C(4)H), 10.87 (s, 1H, N(1)H). 13C NMR
(DMSO-d6): 45.8 C(4’), 53.86 C(5’), 112.25 C(7), 114.58 C(3), 119.15 C(5), 119.34 C(4), 120.88
(2 C, o-CPh), 121.7 C(6), 122.7 p-CPh, 124.6 C(2), 125.5 C(3a), 128.4 (2 C, m-CPh), 137.3 C(7a),
140.2 C(1)Ph, 159.6 (C = O). Found (%): C, 71.41; H 5.46; N 14.23. C17H15N3O•0.5H2O.
Calculated (%): C, 71.31; H, 5.63; N,14.68.

3.2.2. 5-(2-Methyl-1H-Indol-3-yl)-1-Phenylimidazolidin-2-One (3b)

The yield was 48%, a white powder. M.p. 275 ◦C. IR (KBr, n/cm–1): 1681 (C = O),
3240 (NH). 1H NMR (DMSO-d6): 2.41 (s, 3H, C(2)CH3), 3.33 (m, 1H, C(4’)Ha), 3.79 (t, 1H,
J = 9.2 Hz, C(4’)Hb), 5.72 (dd, 1H, J = 9.2 Hz, J = 7 Hz, C(5’)H), 6.83 (t, 1H, J = 7.3 Hz,
p-CHPh), 6.91 and 6.95 (both m, 1H each, C(5)H, C(6)H), 7.09 (s, 1H, N(3’)H), 7.12 (t, 2H,
J = 7.8 Hz, m-CHPh), 7.17 (d, 1H, J = 7.8 Hz, C(7)H), 7.32 (d, 2H, J = 8 Hz, o-CHPh), 7.47
(d, 1H, J = 7.9 Hz, C(4)H), 10.88 (s, 1H, N(1)H). 13C NMR (DMSO-d6): 11.7 C(2)CH3, 44.9
C(4’), 52.5 C(5’), 109.2 C(3), 111.1 C(7), 118.3 C(4), 119.1 C(5), 120.8 (2 C, o-CPh), 120.9 C(6),
122.8 p-C(Ph), 126.4 C(3a), 128.4 (2 C, m-CPh), 133.8 C(2), 135,6 C(7a), 139.7 C(1)Ph, 159.5
(C = O). Found (%): C, 74.51; H, 6.27; N, 14.32. C18H17N3O. Calculated (%): C, 74.20; H,
5.88; N 14.32.

3.2.3. 5-(2-p-Tolyl-1H-Indol-3-yl)-1-Phenylimidazolidin-2-One (3c)

The yield was 54%, white crystals. M.p. 317 ◦C. IR (KBr, n/cm−1):1684 (C = O),
3200–3300 (NH). 1H NMR(DMSO-d6): 2.42 (s, 3H, Tol-CH3), 3.56, 4.03 (both t, 1H, J = 8 Hz,
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C(4’)Ha, C(4’)Hb), 5.62 (t, 1H, J= 8 Hz, C(5’)H), 6.78 (t, 1H, J = 8 Hz, p-CHPh), 6.91–7.08 (m,
6H, C(5)H, C(6)H, o-CHPh, m-CHPh), 7.19 (s, 1H, N(3’)H), 7.31 (d, 1H, J = 7.4 Hz, C(7)H),
7.40 and 7.44 (both d, 2H each, J = 7.4 Hz, o-CHTol and m-CHTol), 7.59 (d, 1H, J = 7.6 Hz,
C(4)H), 11.32 (s, 1H, N(1)H). 13C NMR (DMSO-d6): 21.3 (Tol-CH3), 44.9 C(4’), 52.9 C(5’),
109.8 C(3), 112.0 C(7), 119.5 C(4), 119.7 C(5), 120.3 (2 C, o-CPh), 122.0 C(6), 122.6 p-CPh,
126.2 C(3a), 128.3 (2 C, m-CPh), 129.0 and 129.9 each (2 C, o- and m-CTol), 136.6 C(2), 137.6
C(7a), 138.1 C(1)Tol, 139.7 C(1)Ph, 159.4 (C = O). Found (%): C, 74.27; H, 5.69; N, 10.70.
Calculated for C24H21N3O•H2O: C, 74.78; H, 6.01; N, 10.90.

3.2.4. 5-(1-Methy-1H-Indol-3-yl)-1-Phenylimidazolidin-2-One (3d)

The yield was 49%, white crystals. M.p. 233 ◦C. IR (KBr, n/cm−1): 1695 (C = O),
3000–200 (NH). 1H NMR (DMSO-d6): 3.3 (dd, 1H, J = 8.8 Hz, C(4’)Ha), 3.68 (s, 3H, N(1)CH3),
3.84 (t, 1H, J = 9.1 Hz, C(4’)Hb), 5.72 (dd, 1H, J = 6.1 Hz, J = 9.1 Hz, C(5’)H), 6.87 (t, 1H,
J = 7.4 Hz, p-CHPh), 7.02 (dd, 1H, J = 8 Hz, J =7 Hz, C(5)H), 7.09–7.11 (m, 2H, C(6)H,
N(3’)H), 7.15 (m, 2H, m-CHPh), 7.33 (s, 1H, C(2)H), 7.36 (d, 1H, J = 8 Hz, C(7)H), 7.46 (d,
2H, J = 8 Hz, o-CHPh), 7.62 (d, 1H, J = 8 Hz, C(4)H). 13C NMR (DMSO-d6): 32.8 N(1)CH3,
45.7 C(4’), 53.2 C(5’), 110.5 C(7), 113.5 C(3), 119.3 C(4), 119.5 C(5), 120.6 (2 C, o-CPh), 121.9
C(6), 122.7 p-C(Ph), 125.6 C(3a), 128.5 (2 C, m-CPh), 128.8 C(2), 137.5 C(7a), 139.9 C(1)Ph,
159.5 (C = O). Found (%): C, 71.77; H, 5.72; N, 13.63. C18H17N3O•0.5H2O. Calculated (%):
C, 71.98; H,6.04; N, 13.99.

3.2.5. 5-(1,2-Dimethyl-1H-Indol-3-yl)-1-Phenylimidazolidin-2-One (3e)

The yield was 37%, white crystals. M.p. 278 ◦C.IR (KBr, n/cm−1):1699 (C = O),
3100–3200 (NH). 1HNMR (DMSO-d6): 2.45 (s, 3H, C(2)CH3), 3.32 (t, 1H, J = 8.3 Hz, C(4’)Ha),
3.48 (br.s, 1H, N(3’)H), 3.58 (s, 3H, N(1)CH3), 3.8 (t, 1H, J = 9.2 Hz, C(4’)Hb), 5.78 (t, 1H,
J = 8.3 Hz, C(5’)H), 6.85 (t, 1H, J = 7.3 Hz, p-CHPh), 6.95 (t, 1H, J = 7.3 Hz, C(5)H), 7.03 (t,
1H, J = 7.3 Hz, C(6)H), 7.12 (t, 2H, J = 7.3 Hz, m-CHPh), 7.31 (d, 1H, J = 8 Hz, C(7)H), 7.33
(d, 2H, J = 8 Hz, o-CHPh), 7.52 (br.m, 1H, C(4)H). 13C NMR (DMSO-d6): 10.3 C(2)CH3, 29.7
N(1)-CH3, 45.0 C(4’), 52.8 C(5’), 109.3 C(3), 109.8 C(7), 118.4 C(4), 119.4 C(5), 120.9 (3 C,
o-CPh and C(6)), 122.9 p-C(Ph), 128.8 (2 C, m-CPh), 135.5 C(2), 137.0 C(7a), 139.7 C(1)Ph,
159.9 (C = O). Found (%): C, 73.18; H, 6.07; N, 13.32. C19H19N3O•0.5H2O. Calculated (%):
C, 72.59; H, 6.41; N, 13.37.

3.2.6. 5-(1-Methyl-2-p-Tolyl-1H-Indol-3-yl)-1-Phenylimidazolidin-2-One (3f)

The yield was 52%, white crystals. M.p. 183 ◦C. IR (KBr, n/cm−1): 1701 (C = O)
3000–3200 (NH). 1H NMR (CDCl3): 2.45 (s, 3H, Tol-CH3), 3.49 (s, 3H, N(1)-CH3), 3.87 (m,
2H, C(4’)H2), 5.32 (br.s, 1H, N(3’)H), 5.4 (t, 1H, J = 8.8 Hz, C(5’)H), 6.94 (t, 1H, J = 6.6 Hz,
p-CHPh), 7.08–7.17 (m, 7H (2 + 2+2 + 1), m-CHPh, o-CHTol, m-CHTol, C(5)H), 7.24 (t, 1H, J
= 7.6 Hz, C(6)H), 7.3 (d, 1H, J = 7.6 Hz, C(7)H), 7.36 (d, 2H, J = 7.6 Hz, o-CHPh), 7.82 (d, 1H,
J =8 Hz, C(4)H). 13C NMR (CDCl3): 30.6 N(1)CH3, 45.3 C(4’), 54.5 C(5’), 109.6 C(3), 110.2
C(7), 119.8 C(4), 120.0 C(5), 122.0 C(6), 122.4 p-CPh, 125.1 C(3a), 128.2 (2 C, m-CPh), 129.3
and 130.4 (2 C, each o- and m-CTol), 137.4 C(7a), 138.4 (C2), 138.9 C(1)Tol, 140.1 C(1)Ph,
160.2 (C = O). Found (%): C, 78.44; H, 6.02; N, 10.65. C25H23N3O. Calculated (%): C, 78.71;
H, 6.08; N,11.02.

3.2.7. 5-(3-Methyl-1H-Indol-2-yl)-1-Phenylimidazolidin-2-One (3g)

The yield was 34%, white crystals. M.p. 201 ◦C. 1H NMR (DMSO-d6): 2.28 (s, 3H,
C(3)CH3), 3.83 (t, 1H, J = 8.2 Hz, C(4’)Ha), 4.23 (t, 1H, J = 9.2 Hz, C(4’)Hb), 5.21 (dd, 1H,
J = 7.8 Hz, J = 9.5 Hz, C(5’)H), 7.00 (m, 2H, C(6)H, p-CHPh), 7.08 (m, 1H, J = 7.5 Hz, C(5)H),
7.32 (m, 3H, m-CHPh, C(4)H), 7.46 (d, 1H, J = 8 Hz, C(7)H), 7.64 (d, 2H, J = 8.5 Hz, o-CHPh),
7.52 (s, 1H, N(1)H), 11.05 (s, 1H, N(1′)H). 13C NMR (DMSO-d6): 8.7 C(2)CH3, 44.9 C(4’),
51.1 C(5’), 107.9 C(3), 111.7 C(7), 117.6 C(5), 118.6 C(4), 117.6 (2 C, o-CPh), 121. 8 C(6), 122.1
C(6), 128.8 C(3a), 129.0 (2 C, m-CPh), 134.1 C(2), 136.3 C(7a), 141.1 C(1)Ph, 158.6 (C = O).
MS: m/z + [M + H] 292.3531. Calculated for C18H18N3O 292.3551.
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3.3. Investigation of The Growth-Regulating Activity of Compounds 3

Wheat seeds (Triticum aestivum L.) of the “Darya®” variety, crop 2020, provided by
LLC “Zhito,” Oktyabrsky district, Ryazan, Ryazan region, Russia 54.609836◦ S.w., 39.80188◦

V.D. were used. Four independent series of experiments using identical cameras with
phyto-LED UFO lighting-79–01-00 with a wavelength of Red 615/Blu 457 nm with an
intensity of at least 250 lux were carried out. The illumination of the samples is 12/12 h.
The relative humidity of the air was 50± 2%. The temperature was 20± 2 ◦C. The duration
of the experiment was 7 days. Fifty (50) pieces of dry sterilized seeds were placed on filter
paper in rectangular Petri dishes 75 × 85 (mm) and treated by spraying with the studied
compounds. Wheat grains were treated with 0.335 ± 0.003 mL of compound solutions.
Statistical analysis was carried out using Microsoft Excel and STATISTICA 13.3 TRIAL
programs (StatSoft Russia). ANOVA analysis of variance was performed to compare the
data. Differences from the control (water) at p ≤ 0.05 were considered significant.

4. Conclusions

In summary, we have extended the efficient chemical strategy for the synthesis of
asymmetrically hybrid compounds into products containing indoles and imidazolidin-2-
one moiety with a direct C–C bond. Amidoalkylation has been shown to be an efficient
one-pot approach to the preparation of these hard-to-reach compounds. For all the tested
substances, the indicators of seed germination potential (Gp), germination (G), and rel-
ative water content (RWC) were obtained and analyzed. The compounds showed high
growth-regulating activity on the wheat seeds in comparison with known indole-auxin
analogues, such as indolylacetic and indolebutyric acids, and L-tryptophan. Their posi-
tive effect on drought resistance was also established even at very low concentrations of
the substances. New hybrid compounds can be used to increase the resistance of wheat
(Triticum aestivum L.) plants to negative environmental factors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020602/s1, The preparation of substances, and seeds
for the testing and methodology of the experiment (Formulas S1–S3); Figure S1: the development
of the root system of wheat seeds on the second day; Figure S2: the development of the root
system and shoots of wheat on the seventh day; Figures S3–S25: copies of the NMR spectra of all
synthesized compounds.
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