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Abstract: Depression is a mental disorder characterized by low mood, lack of motivation, negative
cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts
are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression,
as reported by the World Health Organization. At present, drug and psychological treatments are
the main treatments, but they produce insufficient responses in many patients and fail to work at
all in many others. Consequently, treating depression has long been an important topic in society.
Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms
and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a
promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet
rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate
mechanisms linking dietary interventions to brain function alterations remain largely unexplored.
This review delves into the intricate relationship between dietary patterns and depression, while
exploring the plausible mechanisms underlying the impact of dietary interventions on depression
management. As we endeavor to unveil the pathways through which nutrition influences mental
well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence,
potentially reshaping how we approach and address depression.

Keywords: depression; neurotransmitter; diet; antidepressant; brain-derived neurotrophic factor

1. Introduction

Depression is a mental disorder primarily distinguished by low mood and reduced
interest in normally reinforcing activities as the primary clinical characteristics. These
symptoms are also characterized by changes in cognition that are typified by a negative
global outlook that disengages the patient from daily life, as well as being associated with
negative expectations for the future. Depression can harm patients to varying degrees,
from loss of interest and anhedonia in mild cases of depression, to self-harm and suicide in
more severe cases. Therefore, depression has been of wide concern for society and is treated
with medication and psychotherapy [1,2]. While the majority of current antidepressants
are based on the monoamine hypothesis, their effectiveness varies among individuals
and often comes with specific side effects [3]. While medication treatment is the main
intervention for depression in older people, their vulnerability to medication side effects is
heightened [4]. Table 1 provides an overview of the possible mechanisms underpinning
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the actions of antidepressant medications. Acknowledging the limitations of drug therapy,
attention has turned to alternative primary or secondary interventions, including dietary
interventions, to protect vulnerable populations better [5,6]. Nutritional psychiatry is one
of the most widely considered approaches. Studies have shown that foods can affect central
nervous system (CNS) function, reduce the risk of depression, and improve depression by
altering levels of neurotransmitters or their function, reducing inflammation, and regulating
the hypothalamic–pituitary–adrenal (HPA) axis through gut-brain peptides, and perhaps
through the regulation of gut microbiota [7–9].

Table 1. Mechanisms of action and common side effects of antidepressant medications.

NO. Antidepressant
Class

Representative
Medications

Putative
Antidepressant

Mechanisms

Common Side
Effects Limitations References

1 SSRIs
Paroxetine,

sertraline, and
fluoxetine

Enhancement of
synaptic 5-HT levels

via reuptake
inhibition

Gastrointestinal
disturbances,

insomnia, impaired
memory, and sexual

dysfunction

Potential risk of
suicidality in
individuals
aged 18–24

[10,11]

2 SNRIs Venlafaxine and
duloxetine

Inhibition of 5-HT
and NE reuptake,

increasing their levels
in the synaptic cleft

Gastrointestinal
symptoms, sleep
disturbances, and

sexual dysfunction

Potential dependence
issues during
extended use

[12–14]

3 SARIs Trazodone and
nefazodone

Inhibition of 5-HT
reuptake and
antagonism of

5-HT2A receptors,
resulting in elevated
synaptic 5-HT levels

Dizziness,
constipation, and

drowsiness

Dose-dependency
and substantial

individual variability
[15,16]

4 MAOIs Phenelzine and
isocarboxazid

Inhibition of
monoamine oxidase,
leading to increased

concentrations of
neurotransmitters

(5-HT, NE, and DA) in
the brain synapses

Gastrointestinal
reactions, dizziness,

insomnia,
orthostatic

hypotension

Due to tyramine
sensitivity, dietary

restrictions required;
potential drug

interactions
necessitate blood

pressure monitoring

[17,18]

5 TCAs Amitriptyline and
doxepin

Elevation of 5-HT and
NE levels in the

synaptic cleft

Weight gain,
constipation,

dizziness, and
cardiac side effects

Due to its elevated
anticholinergic side

effects and propensity
for arrhythmias, it

may not be
appropriate for

certain individuals
with heart conditions

[19,20]

6 AAPs Olanzapine and
quetiapine

DA and 5-HT receptor
antagonism, and

modulation of other
neurotransmitters

Weight gain and
metabolic

disturbances

Potential for obesity
and related

health issues
[21]

7 NaSSAs Mirtazapine

Enhancement of NE
release and 5-HT

synaptic
concentrations

Weight gain, dry
mouth, and
drowsiness

Potential for obesity
and related

health issues
[22]

8 NDRIs Bupropion

Inhibition of NE and
DA reuptake, leading
to increased synaptic

concentrations

Headache,
insomnia, nausea,

and loss of appetite

Occurrence of low
tolerance or allergic

reactions in
some patient

[23–25]

Note: SSRI: Selective Serotonin Reuptake Inhibitors; 5-HT: 5-Hydroxytryptamine; SNRI: Serotonin-
Norepinephrine Reuptake Inhibitors; NE: Norepinephrine; SARI: Serotonin Antagonists and Reuptake Inhibitors;
MAOI: Monoamine Oxidase Inhibitors; DA: Dopamine; TCA: Tricyclic Antidepressants; AAP: Antidepressants
and Antipsychotic Medications. NaSSA: Noradrenergic and Specific Serotonergic Antidepressants; NDRI: Nore-
pinephrine and Dopamine Reuptake Inhibitors.
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2. The Pathogenesis of Depression

Depression is a common mental disease, but the etiological mechanisms are complex,
multifaceted, and not completely understood. Several neurotransmitter systems, brain-
derived neurotrophic factor (BDNF), glial cells, inflammation, and neuroendocrine systems
have all been implicated in the development of depression. Reduced function of several
neurotransmitters was initially associated with depression, primarily based on indirect
evidence related to the mechanism of action of most antidepressant drugs. In 1965, Bunney
proposed the monoamine neurotransmitter hypothesis, initially focusing on serotonin
(5-hydroxytryptamine, 5-HT) and norepinephrine (NE), although some later versions of
the hypothesis included dopamine (DA), which suggested that reduced monoamine func-
tion in the brain was closely related to the occurrence of depression [26]. Most early and
current antidepressant drugs act to upregulate the function of one or more monoamine
neurotransmitters, especially 5-HT [27,28]. The most recent study found that monoamine
neurotransmitters regulate fundamental emotions and predominantly affect depressive
disorder (MDD), indicating that monoamine neurotransmitters still play important roles in
depression [29,30]. However, there has always been a delay in the antidepressant actions
of these drugs, despite immediate effects on monoamine neurotransmission, suggesting
that some indirect effect of increasing monoamine levels is the key mechanism of their
antidepressant responses [31]. Depression and antidepressant-like effects also involve other
neurotransmitters as part of the neurocircuitry underlying aspects of emotion, motiva-
tion, and cognition that are affected by depressive illness. Research has found that the
incidence of depression is also related to the dysfunction of glutamate (Glu) and gamma-
aminobutyrate (GABA) systems [32]. Many antidepressants may act initially by increasing
the concentration of neurotransmitters in the synapses, but downstream mediators may
have even greater importance [33–35]. Studies have shown that BDNF can promote neu-
ronal survival after antidepressant treatment and plays a crucial role in the mechanisms of
antidepressant actions [36,37]. In addition, several other mechanisms may interact with dif-
ferent stages of the depression process. Depression is considered a microglial disorder [38].
Abnormal activation of glial cells may contribute to depression-related manifestations [39].
In 1995, Maes proposed that depression is closely associated with inflammation [40]. In
addition, the HPA axis is an essential part of the neuroendocrine system, and dysregulation
of the HPA axis is a significant mediator of the development and expression of depres-
sion [41,42]. Recently, some research found that gut–brain peptides and the state of the gut
microbiota are also involved in depression [43,44].

3. Role of Neurotransmitter Systems in Depression
3.1. Serotonin (5-hydroxytryptamine, 5-HT)

The synthesis of 5-HT is catalyzed by tryptophan hydroxylase (TPH), which has two
subtypes, TPH1 and TPH2. TPH is the rate-limiting enzyme that catalyzes the formation
of the essential amino acid tryptophan (Trp) into 5-hydroxytryptophan (5-HTP), and then
5-HT is formed by aromatic amino acid decarboxylase [45,46]. The 5-HT has a vital role in
regulating mood [47]. The 5-HT system is a target for regulating mood disturbance caused
by chronic social stress or other causes [48]. Low levels of 5-HT are associated with sleep
disorders and circadian rhythm disturbances in depression [49,50]. The effects of 5-HT-are
produced by activation of different 5-HT receptor subtypes, including 5-HT1A, 5-HT1B,
and 5-HT2A, which have some role in depression and antidepressant responses [51]. The
5-HT1A receptor is a G protein-coupled receptor with inhibitory properties. Both pre
and postsynaptic 5-HT1A receptors are involved in the pathogenesis of depression [52,53].
Animal and human studies have reported that loss of the hippocampal 5-HT1A binding
site is associated with depression or depression-like behavior [54–56]. Current studies
have found that both 5-HT1A agonists and 5-HT1A antagonists have similar effects to
antidepressants [57,58]. The 5-HT1A agonists (YL-0919, brexpiprazole, and NLX-101)
stimulate 5-HT1A postsynaptic heteroreceptors to increase 5-HT levels, whereas 5-HT1A
antagonists (MIN-117) increase 5-HT levels by inhibiting 5-HT1A presynaptic autorecep-
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tors [58]. Receptors for 5-HT1B are mainly distributed in the CNS. Female mice lacking
5-HT1B receptors had shorter immobility times in the forced swimming test (FST) and tail
suspension test (TST) [59]. Different 5-HT1B agonists were observed to reduce immobility
time in the FST in mouse depression models [60]. In a genetic animal model of depression,
Flinders Sensitive Line (FSL) rats have significant reductions in 5-HT synthesis in the frontal
cortex, hippocampus (HP), and thalamus [61]. When the 5-HT system is dysfunctional, and
the activity and release of 5-HT are inhibited, the antidepressant effect can be exerted by
regulating the synaptic concentration of 5-HT in the HP [62]. The 5-HT signaling at 5-HT2A
receptors (5-HT2AR) is associated with many psychiatric and neurodegenerative disorders,
with the prefrontal cortex acting as a central player and 5-HT2ARs highly expressed in the
medial prefrontal cortex (mPFC), regulating cortical activity [63]. Trp is a precursor of 5-HT,
and low doses of Trp supplements have been shown to improve depression rapidly [64]. A
low Trp diet induces a decrease in 5-HT content in the CNS, and consequently, the impaired
5-HT function may contribute to developing diseases associated with depression [65].

3.2. Norepinephrine (NE)

NE is involved in emotional and cognitive functions and is a critical neurotransmitter
in the CNS. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the NE synthesis
pathway, and dopamine β-hydroxylase (DBH) is essential for NE biosynthesis [66,67].
Treatment with antidepressants such as desipramine, escitalopram, or duloxetine reversed
NE levels and improved monoaminergic transmission in rats with chronic mild stress
(CMS) depression [68]. Tricyclic antidepressants such as desipramine inhibit the reuptake
of monoamine neurotransmitters by the presynaptic membrane of nerve endings and play
an antidepressant role, although it is important to remember that although the effects
on NE neurotransmission are immediate, clinical effects typically take several weeks to
occur [69]. Nonetheless, evidence suggests that NE is likely to play an essential role in
the development and progression of MDD and that delayed symptoms of depression are
associated with the norepinephrine transporter (NET) gene [70,71]. The antidepressant-like
effects of venlafaxine, a 5-HT and NE reuptake inhibitor (SNRI), may be associated with
abnormal synthesis and normalization of metabolism of monoamine neurotransmitters in
a mouse model of chronic unpredictable stress (CUS) [72]. The antidepressant SNRI also
selectively increased NE levels in the hypothalamus [73]. The Glu modulator ketamine
also produces antidepressant-like effects and also modulates peripheral and central brain
neurotransmitter systems such as NE, which may be involved in its antidepressant-like
effects [74]. Preclinical studies have shown that a single injection of ketamine immediately
increases the firing and burst activity of NE neurons [75]. There are also relevant experi-
mental studies showing that the firing activity of NE neurons is significantly enhanced after
one day of repeated ketamine administration, while the increased activity of NE neurons is
no longer present after three days of repeated ketamine injections [76].

3.3. Dopamine (DA)

DA is a catecholamine neurotransmitter synthesized from dietary amino acids [77].
The precursor of DA, L-DOPA (3, 4-dihydroxy-1-phenylalanine), is produced by TH cataly-
sis of L-tyrosine [78]. Aryl amino acid decarboxylase (AAAD) is a rate-limiting enzyme that
converts tyrosine to L-DOPA to DA through AAAD [79]. Clinical studies have found that
most people with depression have low levels of DA, and it is thought that effects similar to
antidepressants might be achieved by enhancing dopaminergic neurotransmission [80,81].
Dysfunction of the DA receptor and transporter is associated with neuropsychiatric diseases,
including depression [82]. Studies have found that dopamine D1–D2 receptor isomers
have positive effects on depressive and anxious behaviors [83]. This complex regulates
the BDNF/TrkB signaling pathway and the Akt/GSK3/β-catenin signaling pathway, both
important signaling pathways in antidepressant actions [84]. D1 receptor agonists can
relieve behavioral depression associated with pain, although they have certain clinical limi-
tations [85]. DA regulates depression-like behavior in mice through D2 receptors and plays
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a positive role in hippocampal learning and memory, providing evidence for DA involve-
ment in neuropathy-related diseases that lead to mild cognitive impairment [86]. Related
genetic evidence that D3R deficiency results in chronic depression and anxiety in rodents
suggests that D3 receptors may be important mediators of depression, implying that D3R
could be a target for designing more specific DA-based antidepressants [87]. Dysfunction of
DA receptors and the transporter can induce many symptoms of neuropsychiatric diseases
such as depression, although sometimes the opposite symptoms can occur; for instance,
DA transporter knockout mice show reduced depression-like behavior [88]. Studies have
shown that low doses of the partial DA agonist aripiprazole, a selective DRD2/DRD3
receptor agonist, can significantly improve depressive symptoms and may be a relatively
safe adjunct treatment for major depression [89,90].

3.4. Glutamate (Glu)

Glu is synthesized from glutamine (Gln) and is a precursor for the synthesis of GABA.
Glu can also be produced by transamination of α-ketoglutaric acid. Decreased levels
of neurotransmitter Glu in mPFC and some other brain regions may be associated with
depression [91]. Glu receptors are divided into metabolic glutamate (mGlu) and ionotropic
glutamate (iGlu) receptors. The mGluR2/3 antagonist LY341495 activates the PI3K/Akt
signaling pathway to stimulate the 5-HT1A receptor in the mPFC, leading to a sustained
antidepressant-like effect [92]. Studies have suggested that the mGlu5 receptor antagonist
3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) has antidepressant effects and that
the 5HT2A/2C antagonist ritanserin reverses the antidepressant-like effects of MTEP in
TST [93]. Scopolamine is a muscarinic cholinergic receptor antagonist. It has been found that
low-dose scopolamine combined with the mGlu7 receptor allosteric agonist AMN082, has
potential antidepressant activity in C57BL/6 mice, which may be related to the activation
of the mTOR pathway [94]. Models of chronic stress-induced depression provide evidence
of glutamate–glutamine imbalances in the systemic circulation and the brain [95]. In
mammals, by regulating glutamate + glutamine (Glx) metabolism, energy metabolism
can be promoted, and depressive symptoms can be significantly improved [96]. The
Glu ionotropic receptor subtype N-methyl-D-aspartic acid antagonist (NMDA) influences
Glu excitatory neurotransmission by influencing amino-3-hydroxy-5-methyl-4-isothiazole
propionic acid receptor (AMPAR) signaling [97]. Over the last 20 years, ketamine, an NMDA
receptor antagonist, has shown antidepressant properties. The role of NMDA receptor
regulation in the treatment of depression is that it drives synaptic and behavioral responses
by blocking NMDAR on GABAergic interneurons and inhibiting glutamate bursts [98].
In one study, the hypothesized role of the glutaminergic system and the GABAergic
system in antidepressant-like effects before, during, and after ketamine administration was
evaluated by measuring Glx and GABA levels in the mPFC by proton magnetic resonance
spectroscopy [99]. The study found that within minutes of ketamine administration, the
levels of Glu in the mPFC of MDD patients increased rapidly [100].

3.5. Gamma-Aminobutyl Acid (GABA)

GABA has very broad effects on neural function, largely opposing the excitatory
effects of Glu, and is directly or indirectly involved in the pathogenesis of many psychiatric
diseases. GABA is synthesized by glutamate decarboxylase (GAD) via decarboxylation of
Glu [101]. In animal experiments, the Chronic Unpredictable Mild Stress (CUMS)-induced
depression-like model resulted in reduced GABA synthesis and release in the nucleus
accumbens (NAc) tissue of mice, and clinical experiments also suggested that low GABA
levels might be one of the pathogenic factors of depression [102,103]. Downregulation of
GABA receptors triggered by astrocyte activation is a potential mechanism for early inflam-
mation and an increased risk of depression in adulthood [104]. Activation of the GABAA
and GABAB receptors produces antidepressant-like effects [105]. Brexanolone, one of the
new generation of antidepressants, was developed to treat postpartum depression by tar-
geting GABA receptors [106]. Oral administration of GABA can also regulate the decrease
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of monoamine neurotransmitters such as 5-HT in the HP in FST rats, thereby improving
the symptoms of depression, which ties these mechanisms to longstanding theories of
depression that involve monoamines [107]. The monoamine oxidase inhibitor phenylethy-
lamine has antidepressant-like effects that increase the levels of GABA in the brain and
have been shown to improve memory [108]. When endogenous synthesis is deficient,
GABA can also be obtained through exogenous supplementation. Thus, a variety of types
of findings suggest that the neurotransmitter GABA is closely associated with depression
and increasing GABA levels can potentially prevent and improve depressive symptoms.

4. Other Hypotheses
4.1. Brain-Derived Neurotrophic Factor (BDNF)

BDNF is a neurotrophic protein in the brain that regulates various cellular processes
by binding and activating its receptor, TrkB [109]. Studies have shown that reduced BDNF
in the HP can induce depressive-like behavior and impair neuronal differentiation in
the HP, supporting the neurotrophic hypothesis of depression [110]. Duman et al. first
proposed that tricyclic and selective 5-HT reuptake inhibitor antidepressants increase BDNF
expression in the rodent brain, which has been demonstrated in many studies [111,112]. In
addition, ketamine, newly described as a so-called “fast-acting” antidepressant, can also
increase hippocampal BDNF levels and enhance the remodeling of synapses associated
with mnemonic improvement [113]. This mechanism has also been shown to be important
in patients with depression in clinical trials. BDNF expression is increased in the HP
of depressed patients treated with antidepressants [114]. The 5-HT gene knockout rat
(SERT) model is one of the animal models of depression. Overexpression of BDNF in the
ventral HP of SERT KO rats can reverse anhedonia and other depressive symptoms [115].
However, the study showed that BDNF-TrkB signaling plays a necessary role in mediating
CSDS-induced social avoidance behavior in the ventral tegmental area (VTA)-NAc, and
established BDNF-TrkB signaling as a pathological mechanism during chronic stress [116].
Moreover, electroconvulsive therapy (ECT) reduced VTA BDNF levels, and VTA BDNF
knockdown alone induced an antidepressant-like effect, while VTA BDNF overexpression
blocked the antidepressant-like effects of ECT [117]. These findings have indicated that the
antidepressant effects of BDNF depend on the different brain regions.

4.2. Glial Cells

Stress contributes to the development of depression in part by changing the structure
and function of astrocytes [118]. In mice experiencing acute emotional stress, GluA1 expres-
sion is regulated by the adrenergic receptor/adenylate cyclase/CPEB3 pathway, revealing
a role of glial plasticity [119]. Electroacupuncture treatment produces antidepressant-like
effects in rat models of depression induced by chronic stress by regulating hippocampal
astrocyte atrophy [120]. Among the calorie restriction-induced antidepressant effects, astro-
cyte ATP in the mPFC may play an antidepressant role by affecting excitatory synaptic trans-
mission [121]. Running could relieve the depressive symptoms after CUS in rats through
its effects on astrocytes [122]. In addition, it was found that running exercise alleviated the
depressive-like behavior of CUS in rats and positively affected the volume of the mPFC
and protected mPFC and hippocampal oligodendrocytes [123,124]. The antidepressant-like
effects of escitalopram involves BDNF and regulates the number of oligodendrocytes in the
HP and frontal lobe [125]. Microglia are essential to the neuroimmune system. It has been
suggested that microglia influence the development of depression, and that this relation-
ship has a significant genetic basis [126]. Microglia signal transduction and transcription
factor 3 (STAT3) regulate the synaptic function of macrophage colony-stimulating factor
(M-CSF) in neurons that in turn that upregulate BDNF expression, which is central to its
antidepressant role [127]. In addition, the downregulation of BDNF and TrkB in microglia
can also lead to depressed behavior [128]. Chronic stress-induced depression-like and
anxiety-like behavior were not only associated with microglia activation but also related to
hippocampal neuroinflammation [129].
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4.3. Inflammation Hypothesis

Inflammatory activation and the release of inflammatory cytokines plays an essential
role in developing depression. Studies have shown increased mean levels of inflammatory
markers in blood and cerebrospinal fluid (CSF) in MDD [130,131]. The Lipopolysaccharide
(LPS) model is a mouse model of depression induced by inflammation [132]. The sever-
ity of the depression-like state in LPS-induced or LPS-plus stressed mice were positively
correlated with the inflammatory response, and the change in depression-like behavior de-
pended on the induction of proinflammatory cytokines [133]. Phenylalanine ammonia-lyase
(PAL) can reverse depression-like behavior in the LPS model by balancing inflammatory
and oxidative effects [134]. Inflammation is an important disease modifier that promotes
susceptibility to depression, so controlling inflammation may provide an overall thera-
peutic benefit, whether secondary to early life trauma, a more acute stress response, or
microbiome alterations [135]. In in vivo experiments, sodium hydrogen sulfide (NaHS)
has been found to alleviate depressive-like and anxious-like behavior induced by type
1 diabetes mellitus (T1DM) by regulating the inflammatory response [136]. In addition,
the antidepressant agomelatine has a neuroprotective effect and prevents apoptosis [137].
Research shows that a high-fat diet can cause oxidative stress in the CNS, leading to mood
disorders and neuroinflammation [138]. All of these studies suggest that inflammation is
involved in the pathophysiological processes of depression.

4.4. Neuroendocrine Systems

Depression is linked to HPA axis dysfunction. Corticosterone (CORT)-induced depression-
like behavior is caused by oxidative stress due to abnormal activity of the HPA axis [139,140].
Certain antidepressants such as imipramine, mirtazapine have been reported to improve
depressive behavior by regulating the HPA axis, [141–143]. Changes in intestinal flora
that lead to depressive behavior and major neurochemical changes in mice may produce
their effects via mechanisms involving the HPA axis, demonstrating connections between
these systems [144,145]. Gut microbiota is an important part of the brain-gut axis, and
changes in the microbiota affect brain development and the interaction between the gut and
brain [146]. Trp is the only precursor of 5-HT and comes mainly from the diet [147]. Gut
flora directly or indirectly regulates Trp metabolism and plays a key role in the pathophysi-
ology of depression through the brain–gut axis [148]. Diet improves nervous and immune
function through gut flora and regulates endocrine and metabolic systems through the
brain–gut axis [149,150]. It was found that chronic stress in mice may participate in Trp
metabolism and alter the intestinal microbiome through the gut–brain axis [151]. It was
found that unpredictable chronic mild stress (UCMS)-induced depression-like behavior
in rats is related to metabolomic changes in the brain–gut axis, the secondary effect of
hippocampal neuroplasticity [152]. The intestinal microflora provides a new target for
preventing and treating neuropsychiatric disorders [153]. Recent findings indicate that
individuals diagnosed with Crohn’s disease or celiac disease, which can alter gut flora
significantly, might be more prone to disturbances in the brain–gut axis [154,155]. These
disruptions could potentially contribute to developing or exacerbating depressive symp-
toms in these patient populations [156,157]. Studies have indicated that approximately
25% of individuals diagnosed with Inflammatory Bowel Disease (IBD), including Crohn’s
disease, may experience symptoms of depression [158]. In summary, the neuroendocrine
system plays a pivotal role in the pathogenesis of depression, offering crucial insights into
the multifactorial nature of this disorder.

5. Antidepressant-like Effects of Dietary Manipulations

Food provides the human body with nutrients for growth, development, and healthy
survival [159]. In Figure 1, we summarize the relationship between the various mechanisms
of depression pathogenesis mentioned in the previous chapter and dietary modulation.
Dietary intake of nutrients involves a complex system that includes complex interactions
between diet, gut microbiome, and energy metabolism [160]. After ingestion, food is
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gradually reduced to smaller molecules and absorbed, primarily in the intestine [161].
During absorption, molecular species increase significantly as larger polymeric molecules
are reduced to simpler ones, including proteins, carbohydrates, and others [162]. In the
intestinal tract, proteases with different substrate specificities degrade proteins to produce
peptides with different amino acid chain lengths and sequences [163]. Enzymolysis is used
in the gastrointestinal tract and microorganisms to search for bioactive peptides produced
from food proteins [164]. This process involves an interaction between the microbiome
and the host, and numerous signals move back and forth between each, substantially
impacting host function [165,166]. These interactions affect psychological and physiological
function, and it appears that proper nutrition can strengthen the immune system with
substantial effects on mental health, including depression [167]. Dietary therapy uses food
to affect the function of various aspects of the organism so that it can achieve a treatment
or prevent diseases [168–173]. Table 2 summarizes the antidepressant effects of various
foods. Dietary interventions are considered cost-effective potential treatment options
for depression [174]. While there are no antidepressant foods per se, food can improve
depressive symptoms through several intervention mechanisms associated with healthy
eating habits [175]. Table 3 summarizes the active ingredients of some representative foods
and their mechanisms of antidepressant action. This includes regulating the function of
neurotransmitters to improve mood. While such interventions are unlikely to replace
drugs in many cases, they can limit certain toxicity and side effects, offering a new way
to treat mild depression or as adjuvant therapy [176]. This treatment may involve various
intervening factors that contribute to the development of depression. For instance, obesity
is highly co-morbid with depression, which can lead to a vicious cycle of emotional eating
that further exacerbates metabolic impairments [177]. The brain–gut axis is an intervention
point for obesity and treating mood disorders involving the CNS [178]. Studies have shown
that gut flora alters central nervous system function and is involved in the pathogenesis of
depression [179]. There is evidence of an interaction between the microbiome in the brain
and inflammasome activation and that the immune system may be involved in regulating
the balance between the brain and the gut [179,180]. Stressful situations can result in
gut microbiota dysbiosis and an elevation in pro-inflammatory cytokines (IL-6, IFN-γ,
TNF-α and IL-1β) [180]. Intestinal microbial imbalance can affect the function of the HPA
axis, leading to systemic inflammation and immune dysfunction. Improving intestinal
dysregulation may be a potential treatment for depression [181–183]. (Figure 1).
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Figure 1. Summary of the relationship between gut microbial–brain axis and depression and the
role of dietary regulation. The stress state leads to dysbiosis of the gut microbiota, increasing pro-
inflammatory cytokines, mainly IL-6, IFN-γ, TNF-α, and IL-1β, and this situation can be reversed
through dietary modulation. Dietary modulation may improve depressive symptoms by upregu-
lating monoamine neurotransmitters, modulating the levels of glutamate and GABA in the brain,
upregulating BDNF expression, modulating glial cells, synaptic plasticity, and neurogenesis, as well
as reducing the inflammatory response and the diversity of microbiota. IL-6: interleukin-6; IFN-γ:
interferon gamma; TNF-α: tumor necrosis factor; IL-1β: interleukin-1β. Upward arrows: increase.
Downward arrows: decrease.
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Table 2. A variety of foods produce antidepressant-like effects in depression models.

NO. Food Type Food Name Subjects Depression
Model Ingredients Period Putative Antidepressant

Mechanisms References

1 Fruit Bananas Locally bred albino
Wistar mice FST Banana fruit

pulp and peel 14 days
Increase in antioxidant enzymes

(e.g., CAT, SOD) levels and
reduction in GSH levels

[184]

2 Fruit Pomegranates Female Wistar mice OVX Pomegranate
extract 14 days

Enhancement of central
adrenergic function; activation of

estrogen receptors and
serotonergic systems

[185]

3 Fruit Apple peels and
citrus fruits Male wildtype mice CSDS Rich in quercetin 30 days Inhibition of astrocyte activation

and neuroprotection [186]

4 Vegetable Soybean Male ICR mice FST, TST Genistein 3 weeks Regulation of brain 5-HT levels [187]

5 Fish Fish oil Male
Sprague–Dawley rats LPS ω-3PUFA 21 days

Inhibition of activation of
inflammatory NLRP3 and ionic

purine receptor P2 × 7R
[188]

6 Fish Fish oil Mixed S129/Sv x
C57BL/6 genetic mice

BDNF +/− mice
and their
wild-type

ω-3PUFA 3 months
Reduction in hippocampal

extracellular 5-HT levels and
increase in Erk activation

[189]

7 Fish Fish fillets Male ICR mice TST AECSF 4 consecutive days Regulation of serotonergic and
norepinephrine systems [190]

8 Drinks Coke or coffee Male Wistar rats CUS Caffeine 4 weeks Increase in DA and
serotonin levels [191]

9 Drinks Yogurt or beer Male adult FSL and
FRL rats FSL Probiotics 9-week period Normalization of

microbiome function [192]

10 Vitamins Vitamin B C57BL/6 mice of
either sex CMS VB12 10 weeks Reversion of NTRK-2

gene expression [193]

11 Vitamins Vitamin B Male SD rats CUMS Folic acid 6 weeks
Increase in monoamine

neurotransmitter levels, BDNF,
β-endorphins, and interleukin 6

[194]
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Table 2. Cont.

NO. Food Type Food Name Subjects Depression
Model Ingredients Period Putative Antidepressant

Mechanisms References

12 Vitamins Vitamin C Adult Swiss mice of
either sex FST, TST Ascorbic acid 1 day Interaction of ascorbic acid with

monoaminergic system [195]

13 Vitamins Vitamin D Male C57BL/6 mice PSD VD3 4 weeks Upregulation of the expression of
BDNF in the HP [196]

14 Vitamins Vitamin D Adult female
Wistar rats CUMS and OVX VD3 28 days and

3 months

Reduction in serum
corticosterone/ACTH levels; the

increase in BDNF and
NT-3/NT-4 levels

[197]

15
Homology of

medicine
and food

Ginseng Male ICR mice and
Wistar rats CUMS Ginsenoside Rb1 21 days Activation of 5-HT, NE, and

DA systems [198]

16
Homology of

medicine
and food

Curcumin Male SD rats Chronically
Stressed Rats

Diarylheptanoid
component 18 days

Upregulation of BDNF and
decreased brain

inflammatory factors
[199]

17
Homology of

medicine
and food

Piperine Male ICR mice CUMS
Major alkaloids
of black pepper
and long pepper

3 weeks Enhancement of 5-HT content
and BDNF protein expression [200,201]

18
Homology of

medicine
and food

Saffron Male ICR mice Chronic constraint
pressure, TST Saffron extract 28 days Increase in DA and CREB

serum levels [202]

19
Homology of

medicine
and food

Schisandra
Chinensis Male Kunming mice FST SCE 4 consecutive days Effects on NE, DA, GABA, and

Glu systems [203]

Note: FST: Forced Swimming Test; CAT: Catalase; SOD: Super Oxide Dismutase; GSH: Glutathione; OVX: Ovariectomized; CSDS: Chronic Social Defeat Stress; TST: Tail Suspension
Test; LPS: Lipopolysaccharide;ω-3PUFA:ω-3-Polyunsaturated Fatty Acids; ERK: Extracellular Signal-Regulated Kinase; DA: Dopamine; CUS: Chronic Unpredictable Stress; AECSF:
Aqueous Extract of Channa striatus Fillet; FSL: Flinders Sensitive Line; CMS: Chronic Mild Stress; CUMS: Chronic Unpredictable Mild Stress; PSD: Post-Stroke Depression; OFT: Open
Field Test; CREB: Cyclic AMP Response Element Binding Protein; SCE: Schisandra Chinensis Extracts; GABA: Gamma-Aminobutyric Acid.
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Table 3. Possible antidepressant mechanism of active ingredients of food.

NO. Food Effective Constituent Molecular Formula Structural Formula Source Putative Antidepressant
Mechanisms References

1 Quercetin C15H10O7
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Table 3. Cont.

NO. Food Effective Constituent Molecular Formula Structural Formula Source Putative Antidepressant
Mechanisms References

6 Vitamin C C6H8O6
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5.1. Fruits and Vegetables

A diet abundant in fruits and vegetables enhances various dimensions of health and
well-being, encompassing mental health. Głąbska et al. conducted a comprehensive review
summarizing the repercussions of decreased consumption of fruits and vegetables. Re-
duced intake might lead to depression-like symptoms, whereas increased consumption of
these foods has been associated with enhanced mood, improved sleep, cognitive function,
and overall quality of life [227]. Research indicates that consuming a diet abundant in
fruits and vegetables can notably enhance general well-being, encompassing cardiovas-
cular health [228]. Achieving this impact on overall mental well-being necessitates daily
consumption of a minimum of five servings of fruits or vegetables [229,230]. Broad physio-
logical and metabolic effects may mediate these effects. Various physiological effects arise
from differences in fruit consumption, including anti-inflammatory and antidepressant-like
effects [231]. Although the effects above may involve quite general mechanisms, specific
substances in certain types of foods may contribute to their effects. Bananas are aromatic,
nutritious, widely available, and can be harvested throughout the year. Banana stem extract
has significant antidepressant activity in forced swimming, including animal models of
depression and regulates neurotransmitters, so it is a potential natural compound used
to treat depression [232]. Furthermore, analyzing the content of banana pulp at various
developmental stages, unveiled its abundance in tryptophan, potentially attributing to
these effects [233]. Pomegranate is known for its high nutritional value. Pomegranate is
rich in estrogen and shows estrogenic activity in mice [234]. It was found that pomegranate
extract alleviated depressive behavior in ovariectomy-stimulated depression model mice
by enhancing the central adrenergic system and inhibiting ovariectomy-stimulated bone
turnover [235]. The liquid extract of pomegranate regulates the activation of the estrogen
receptor and serotonergic system, has an antidepressant effect, is advantageous in the
treatment of menopause, and has an additive effect when combined with a selective 5-HT
reuptake inhibitor [185]. Citrus fruits and vegetables are rich in quercetin, which has
anti-inflammatory and antioxidant properties [236]. Quercetin inhibits the activation of
the NLR family, Pyrin Domain containing three (NLRP3) inflammasome by promoting
mitotic phagocytosis and thereby reducing neurotoxicity [237]. A long-term high-quercetin
diet can inhibit the activation of astrocytes that have pro-depressive effects and protect
neurons [186]. It has been reported that quercetin and its derivatives have the antidepres-
sant potential of protecting hippocampal neurons, improving HPA axis dysfunction, and
improving neuroplasticity [204]. However, because of the multi-target and multi-pathway
characteristics of quercetin and its derivatives, it is significant to explore its anti-depression
effect and related mechanisms and promote its clinical application. Vegetable soybean
nutrition is comprehensive, rich in protein, and highly nutritious. It may help build the
human body’s immunity and prevent lifestyle-related diseases [238]. Genistein, a natural
isoflavone found in soybean extract, has been shown to have antidepressant-like effects
through FST and TST, and its antidepressant-like effects may be due to increased levels
of 5-HT in the mouse brain [187]. One study reported that high-pressure processing tech-
nology could increase the content of GABA in vegetable soybeans and that GABA-rich
vegetable soybeans not only prevent depression but also significantly reduce depressive
symptoms in UCMS mice [239]. Perilla frutescens is a side dish in East Asian countries
and a plant-based medicine. Perilla frutescens can reverse the depression-like behavior
in CUMS mice, and its antidepressant activity may be related to the changes in serotoner-
gic and anti-inflammatory effects [240]. In addition, research has indicated that frequent
consumption of fried foods, such as fried potatoes, is associated with an increased risk
of anxiety and depression, closely related to lipid metabolism dysfunction and neuroin-
flammation mediated by acrylamide, a representative pollutant in fried foods [241]. These
findings suggest that dietary patterns characterized by healthy fruits and vegetables may
lower the risk of depression.
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5.2. Fish

The high levels of omega-3 polyunsaturated fatty acids (PUFA) in fish may lead to
their physiological effects, and it is clear that the increased consumption of fish relative to
other protein sources has a large impact on human health [242]. Regular fish consumption
in the elderly is also linked to a reduced risk of depression later in life, which may be
linked to a higher intake of omega-3 PUFA [243]. Most recently, researchers have found
that taking omega-3 supplements during COVID-19 infection can improve symptoms such
as depression associated with long COVID [244]. In animal studies, omega-3 PUFA supple-
ments can reduce brain injury and play a neural protective role in rats with trauma [245]. In
addition, omega-3 PUFA has demonstrated a positive effect on sleep, cognition, depression,
and anxiety in sleep-deprived rats [246]. An increase in the omega-6/omega-3 fatty acid
ratio has been reported to increase the risk of obesity, which affects inflammatory status
and is co-morbid with mental health issues [247]. Dietary omega-3 PUFA reduces clinical
colitis by reducing pro-inflammatory cytokine synthesis and improving epithelial barrier
function in animal models [248]. Fish oil mainly consists of omega-3 PUFA, including
docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Fish oil supplements can
improve the mental health of patients with depression [249]. In animal studies, fish oil
intake significantly increases concentrations of DHA and EPA in rat HP and cerebral cortex,
which may be associated with antidepressant-like effects [250]. Dietary DHA supplements
may also improve depression by regulating gut microbes [251]. DHA helps restore im-
mune function in the microbiome, reduces stress-induced inflammatory responses, and
prevents overactivation of the HPA axis [252]. Epidemiological reports suggest that these
effects of omega-3 PUFA may normalize feedback control of the neuroendocrine HPA axis
and increase corticosterone transport [253]. Omega-3 PUFA activates the HPA axis by
increasing cortisol secretion [254]. Omega-3 PUFA preconditioning corrects LPS-induced
depressive responses, which involve the secretion of pro-inflammatory cytokines, changes
in intestinal structure, and alterations in the intestinal flora [255]. According to the re-
port, a diet rich in omega-3PUFA plays an antidepressant role by increasing the level of
3, 4-dihydroxyphenylacetic acid (DOPAC) in mouse NAc and the number of TH-positive
neurons in VTA, suggesting that the mechanism may be related to the regulation of the
NAc-VTA dopaminergic signaling [256]. Some studies have observed changes in neural
behavior after treatment with dietary fish oil and found that fish oil has anti-anxiety and
anti-depressive potential effects [257]. During pregnancy and lactation, fish oil intake
has been shown to reduce the likelihood of the development of depression-like behavior
in offspring [258]. In a depression-like model of ovariectomized (OVX) rats, omega-3
PUFA supplements have antidepressant-like effects, partly by protecting nerves by regu-
lating inflammatory cytokines and interfering with microglial polarization [259]. Caloric
restriction and the fish oil diet promoted anti-anxiety and improved memory, and these
effects were correlated with BDNF concentrations [260]. A comparison of heterozygous
BDNF mice with wild-type BDNF showed that long-term fish oil supplementation restored
extracellular 5-HT levels by increasing 5-HT transporter expression [189]. In particular,
fish oil supplements may have antidepressant-like effects in the HP through activation
of the 5-HT1A receptor and enhanced 5-HT neurotransmission [261]. Further research is
needed to determine whether fish oil supplements can be alternative and complementary
medicine to improve the symptoms of depression. Studies have found that liquid extracts
from fish fillets may mediate antidepressant effects through 5-HT and NE systems [190].
In addition, omega-3 PUFA has been shown to have a positive effect in regulating mi-
crobial composition, helping to improve cognitive function in maternal depression and
other animal models of depression [262]. Omega-3 PUFA has a modest beneficial effect on
depressive symptoms, and future studies are needed to prove the potential advantages and
disadvantages of omega-3 PUFA on depression [263].
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5.3. Drinks

Caffeine, a widely consumed psychoactive substance in beverages such as Coca-
ColaTM (Coke), tea, and coffee, exerts mild activating and mood-enhancing effects. Func-
tional beverages crafted from various components possessing potential antidepressant
properties exhibit notable antidepressant effects by enhancing the monoamine neurotrans-
mitter system and exerting antioxidant effects [264]. In rats receiving CUS, long-term
caffeine use has been shown to affect depression-like behavior, including withdrawal
symptoms typical of other drug abuse, accompanied by increased levels of DA and 5-HT,
suggesting that the dopaminergic and serotonergic systems may be involved [191]. Caffeine
treatment can restore social avoidance and anhedonia induced by social failure stress in
mice through dopaminergic system regulation, confirming the potential therapeutic value
of caffeine [265]. There is evidence that combining caffeine and some antidepressants
may affect Glu, adenosine and monoamine systems associated with depression, perhaps
in an additive manner to reverse depressive pathophysiology [266]. When caffeine is
combined with duloxetine or bupropion, the antidepressant-like effects are significantly
enhanced, especially in the cerebral cortex, where NE, DA, and 5-HT levels are significantly
increased [267]. Caffeine increases extracellular 5-HT levels and inhibits 5-HT reuptake,
thereby elevating 5-HT function [268]. The direct pharmacological effects of caffeine occur
mainly through adenosine receptor antagonism, preventing adenosine from inhibiting the
release of NE, which would also be expected to play a positive role in the treatment of
depression [269]. Combined administration of caffeine and NMDA receptor antagonists
(e.g., fast-acting antidepressants) enhances antidepressant-like effects [270]. Therefore, syn-
ergistic antagonism of adenosine and NMDA receptors may offer a novel way to improve
depression therapy. Of course, excessive caffeine consumption is not advisable and may
cause cognitive decline, depression, insomnia, and other symptoms [271]. People who
regularly consume soda or processed juices also have a higher risk of depression [272].
In conclusion, as a psychostimulant, more prospective studies are needed to determine
whether caffeine consumption decreases depressive symptoms. Other active ingredients
in tea (L-theanine, L-arginine, polyphenols) and their metabolites act together in multiple
biological systems to reduce the risk of depression [273]. The various active compounds in
tea can play an antidepressant role and reduce potential biological toxicity by improving
HPA axis dysfunction, anti-inflammatory effect, restoring the monoaminergic system, im-
proving intestinal flora, and promoting gut–brain axis activity [274]. Tea in moderation is
also beneficial for a range of cardiovascular diseases [275]. Tea with a GABA content of 1.5
mg/g total weight or more is called GABA green tea. An animal study showed that GABA
green tea might promote the expression of the α1 subunit of the GABA receptor in the
cerebral cortex of mice and improve depressive symptoms by upregulating the expression
of GABA [276]. Green tea polyphenols significantly reduced the immobile time of FST
and TST in mice, and the antidepressant-like mechanism of action may involve the HPA
axis [277]. Therefore, green tea may have the effect of preventing and alleviating depression.
Alcohol as a drinking relationship with depression is complex. Anxiety is often accom-
panied by alcoholism and can aggravate depression [278]. However, in an animal study,
0.7 g/kg ethanol was found to have an antidepressant-like effect in genetically selected
alcohol-eligible rats [279]. Clinical studies have found that 5 to 15 g of alcohol intake per
day, especially wine intake, may reduce the incidence of depression [280]. Alcohol is similar
to the antidepressant ketamine in regulating dopaminergic and glutaminergic pathways in
the limbic cortex and may mediate antidepressant therapy [281]. One study found that mice
transplanted with feces from people with alcohol use disorders (AUD) showed increased
depression-like behavior, suggesting that intestinal microbiome disturbances, neurotrans-
mission, and neuroinflammation may be associated with alcohol addiction [282]. Excessive
drinking is not advisable and may pose a threat to health. Probiotics refer to bacteria usually
found in fermented foods such as yogurt or beer, which confer health benefits. Clinical
microbial therapies, such as probiotics, may be cautiously recommended to patients with
depression to promote good bacteria in the gut and improve mood through the gut–brain
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axis [283]. Indeed, one study has shown that probiotic-containing functional wheat beer
(PWB) promoted antidepressant-like effects in Swiss Webster mice [284]. Kefir peptide
(KP) is a novel antidepressant dairy product that improves depressive-like behavior by
activating the BDNF/TrkB pathway [285]. Clinical studies have shown that probiotics can
improve mental illness-related behavior by improving changes in the gut microbiome [286].
Related studies have demonstrated the protective effect of probiotics on depression-like
behavior in high-fat diet (HFD)-induced FSL rats [287]. Plasma metabolites may reveal a
relationship between abnormal microbiome function and depression and the consequent
antidepressant effects of probiotics [288]. FSL rats exhibit elevated plasma concentrations of
NE and DA. Notably, probiotic intervention can mitigate the impact of plasma NE and DA
on depressive states [289]. Although the pharmacological effects of probiotics need further
study, they appear to interact with many well-known antidepressant mechanisms [290].
Furthermore, this prompts the inquiry of whether the converse holds true, and whether cer-
tain antidepressant actions entail direct influences on the intestinal microbiota. Therefore,
additional investigation is warranted into the pharmacological impacts of probiotics.

5.4. Vitamins

Vitamins are essential dietary components for life and are crucial to health. Vitamins
B1, B3, B6, B9 and B12 are vital for neuronal function, and a lack of B vitamins may con-
tribute to the development of depression [291]. Vitamin B deficiency can lead to central and
peripheral nervous system abnormalities and accompany some psychiatric disorders [292].
One study suggested that vitamin B supplementation can reduce environmental factor
induced depressive behavior in mouse offspring during pregnancy, which is related to
the inhibition of apoptosis, oxidative damage and inflammation [293]. Vitamin B6 may
also affect depression by altering glucocorticoids [294]. Folic acid is a vitamin B complex
with many metabolic effects. Green vegetables, animal livers, yeast and radishes are good
sources of folic acid [295]. The body cannot produce folic acid, so it needs to be taken from
food. Studies of depressed patients have found low levels of both folic acid and vitamin
B12, and studies of the general population have found an association between depression
and low levels of both vitamins [296]. Animal studies have found that the interaction
between the serotonergic and NE systems may be responsible for the antidepressant-like
effects of folic acid [194,297]. Folic acid increased brain and serum BDNF levels in CUMS
rats, which could be used as a potential antidepressant [194]. Folic acid also reverses
depressive behavioral changes induced by corticosterone [298]. When the antidepressant
venlafaxine was combined with folic acid, the therapeutic effect increased, which was
associated with synergistic effects on 5-HT levels [299]. Vitamin C can enhance the body’s
immunity [300]. Fruits such as citrus and pomegranates are rich in vitamin C. Animal
studies found that adding lemons and pomegranates to the diet reduced anxiety and de-
pression in rats [301]. The antidepressant-like effects of Vitamin C administration in the TST
are associated with effects on 5-HT, NE, and the dopaminergic systems [302]. In addition,
studies have suggested that the antidepressant-like effect of vitamin C in the TST is related
to the activation of the GABAA receptors and antagonism of the GABAB receptors in the
dopaminergic system [303]. The protective effect of vitamin C in neurological diseases
involves increased levels of NE and GABA, and the antidepressant-like effects are similar
to ketamine [304,305]. Vitamin D also appears to improve depression-like behavior in
animal models, including the CUMS and OVX models, through actions on BDNF and
neurotrophic protein (NT)-3/NT-4 signaling pathways and serum corticosterone/adrenal
corticotropin (ACTH) levels [197]. There is also evidence that vitamin D may be used
as a supplement for treating depression in older people [306]. Vitamin D deficiency in
older adults leads to bone mineralization disorders and increases the risk of cardiovascular
disease and depression [307]. However, excessive vitamin D intake can interfere with phos-
phate homeostasis regulation and affect health, so it is recommended to increase vitamin D
intake reasonably [308]. These findings imply that vitamin supplementation may enhance
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mood, although additional research is required to ascertain the underlying mechanisms in
greater detail.

5.5. Homology of Medicine and Food

Many foods or food flavorings may also have antidepressant-like effects in addition
to other potential medical benefits [309–313]. These include ginseng, turmeric, piperine
(PIP), saffron and many others. The molecular and cellular mechanisms of ginseng and
its active ingredients regulate monoamine neurotransmitters, upregulate the expression
of BDNF and have anti-inflammatory effects, which are of great importance in treating
depression [314]. Panax ginseng extract improves depression-like behavior in rats primarily
by promoting hippocampal neurogenesis and the BDNF-TrkB signaling pathway [315].
The antidepressant mechanism of ginsenoside Rb1 is primarily through activating the
neurotransmitter in 5-HT, NE, and DA systems [198]. Moreover, evidence supports the im-
portance of 5-HT2A receptors in ginsenoside Rb1-induced antidepressant mechanisms [316].
Curcumin (CUR) is one of the main active components in turmeric, which can be used as
medicine and food. Studies have shown that demonstrated CUR has antidepressant activity,
possibly due to elevated levels of 5-HT, NE, and DA [317]. CUR can improve depressive
symptoms in OVX mice, in part by regulating the balance of 5-HT1A and 5-HT2A recep-
tors [318]. CUR derivatives also have antidepressant activity, activating 5-HT1A receptors
and Camp/PKA/CREB/BDNF signaling pathways to produce therapeutic effects [319].
In addition, CUR may achieve antidepressant effects by upregulation of BDNF, reducing
inflammatory factors in the brain, and enhancing cell activity and synaptic plasticity, all
mechanisms shared with traditional antidepressants [199]. PIP, the main ingredient in
pepper, is also an anticonvulsant. Indeed, a wide range of PIP derivatives have different
biological effects and the potential to treat and prevent disease [320]. Intraperitoneal in-
jection of PIP has shown that it mediates antidepressant-like effects by increasing 5-HT
content in mice brains [200]. Further studies are needed to verify the interaction between
the 5-HT receptor and PIP. Chronic PIP therapy exerts antidepressant-like effects by in-
creasing BDNF levels in the mPFC of CUMS mice [201]. Saffron is a traditional Chinese
medicine that also is a common food flavoring. Oral administration of saffron increased
serum DA and CREB levels and improved depression-like behavior through intestinal
flora in mice exposed to chronic restraint stress [202]. Schisandra Chinensis and its active
constituents have protective effects on neurological diseases [321]. In FST-depressed mice,
Schisandra extract may mediate antidepressant effects through NE, DA, GABA and Glu
systems [203]. Schisandra extract may ameliorate the depression-like emotional state and
related cognitive deficits in CUMS mice by mediating the level of BDNF in the HP [322].
Raw and wine-processed Schisandra chinensis may improve depression-like behavior in
chronic unpredictable stress program (CUSP) rats by regulating intestinal flora [323]. These
findings suggest that various common flavorings also have some potential pharmacological
effects, including antidepressant-like effects, although the effectiveness of these drugs in
patients with depression remains to be demonstrated.

5.6. Other Foods

During FST experiments, oral administration of chicken breast extract or carnosine
to male Wistar rats influenced quiescent time and notably elevated hippocampal NE con-
centration [324]. A study has found that a healthy diet of non-processed meats such as
beef and lamb may reduce the risk of depression [325]. Moreover, the beef protein diet-
induced elevated 5-HT release in the brains of mice, indicating the activation of the 5-HT
system [326]. Clinical studies have found a positive correlation between the frequency
of processed meat and animal offal consumption and the risk of depression [327]. While
the link between the mechanisms underlying the antidepressant-like effects of meat con-
sumption and neurotransmitter action remains unestablished, the observed antidepressant
effects resulting from changes in meat intake—likely influenced by underlying nutrient
content—pave the way for future research. Sesamin, found in sesame seeds, is a kind of
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lignan. In animal studies, long-term use of sesamin has a neuroprotective effect and can
prevent brain dysfunction through antioxidant activity [328]. In CMS-induced depressed
mice, sesamin can prevent stress-induced mood disturbances and inhibit the inflammatory
response of CMS [329]. It prevents stress-induced reduction in 5-HT and NE in the striatum
and serum, thereby significantly improving depression-like behavior and anxiety in mice
with CUMS [330]. Sesamin as a food component may be a potential new treatment for de-
pression. A diet rich in seed oil had antidepressant effects and increased BDNF levels in the
rats’ brains during FST and TST [331]. The study suggests that the potential antidepressant-
like effects of sunflower consumption in CUMS-induced mouse models of depression may
arise from augmented concentrations of aromatic amino acids and monoamine neuro-
transmitters, including 5-HT, DA, and NE [332]. Dairy products have many benefits for
human health. Recent studies have found that GABA-rich functional fermented milk has
significant antidepressant-like effects, suggesting that GABA-containing dairy products
can be used as a new dietary therapy to exert antidepressant-like effects [333,334]. Gouda
cheese induced alterations in the microbiome of CUMS mice, contributing to the restoration
of cognition and enhancement of mood and brain function [335]. A clinical study from
Japan found that the frequency of consumption of low-fat dairy products was inversely
associated with the risk of depressive symptoms [336]. Additionally, the consumption of
skim milk and moderate quantities of dairy desserts exhibited a negative correlation with
depressive symptoms, whereas the consumption of whole milk demonstrated a positive
correlation with depressive symptoms in adults [337]. Interestingly, another study found
that high-fat and low-fat dairy products were linked to a reduced incidence of psychological
disorders [338]. The possible mechanism of dairy products in depression is unclear, and
more prospective studies are needed.

5.7. Dietary Treatments for Depression

The Expert Consensus of Overweight/Obesity Medical Nutrition Therapy in China
(2016 edition) advocates 5 days of normal eating and 2 days of light fasting, called 5 + 2 light
fasting, which can intervene in bad dietary habits and improve mood [339]. The Orthodox
Christian Church (COC) dietary regimen involves strict fasting periods characterized by the
abstention from animal products and the increased consumption of fruits, vegetables, and
legumes. The COC fasting diet is associated with lower levels of depression and anxiety
and better cognitive performance in middle age [340]. However, studies have found that a
long-term low-quality diet can increase the likelihood of depressive symptoms in elderly
individuals [341]. For older persons, adopting a healthy “Mediterranean” diet rich in
vegetables and whole grains may reduce the risk of developing depressive symptoms [342].
Population studies suggest that dietary patterns and specific dietary factors may reduce the
risk of depression [173]. The results of a meta-analysis suggest that a healthy diet of fruits,
vegetables, whole grains, and fish may reduce the risk of depression, while a Western diet
characterized by processed meat, refined grains, sweets, and high-fat dairy products may
increase the risk [343]. Furthermore, it is worth considering the potential links between
diet-related factors, such as obesity and metabolic conditions such as type 2 diabetes, and
their impact on mood and mental health [344,345]. Animal studies have provided valuable
insights, demonstrating that a short-term high-fat diet can lead to the overactivity of orexin
neurons, potentially contributing to persistent depressive states [346]. Additionally, this
dietary factor induces anxiety and anhedonia in rats by altering the insulin/mTORC1
signaling pathway, affecting synaptic plasticity and the production of pro-inflammatory
cytokines [347]. The significant comorbidity between obesity and depression, which can
lead to a vicious cycle of emotional overeating exacerbating metabolic dysfunction, high-
lights the complex relationship between metabolic and mood disorders [348]. Additionally,
there is a correlation between obesity and chronic low-grade inflammation, which may
directly contribute to depression in individuals with obesity [349,350]. The complexity
of this interaction is further underscored by the potential of obesity to trigger both an
increase in fat cells, leading to the release of inflammatory factors, and instability in the gut
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microbiota, which also contributes to the release of inflammatory molecules [351,352]. Acti-
vation of inflammatory factors stimulates immune cells, resulting in neuroinflammation
and subsequent neurochemical changes, including HPA axis dysfunction, neurotransmitter
metabolism abnormalities, and neurotrophic factor disruptions [353,354]. These alterations
may contribute to depression development and increase the risk of obesity [355]. These
intricate relationships are visually illustrated in Figure 2. Additionally, our laboratory’s
research has revealed intriguing insights into dietary conditioning, including a 9-h fasting
regimen, which demonstrates an antidepressant-like effect and significantly improves
depression-like behavior in OVX mice [356]. The possible mechanisms may be related to
the activation of the 5-HT2 receptor and CREB-BDNF pathway [356,357]. Dietary interven-
tions sometimes produce conflicting results in studies, and this complexity needs further
study [358]. These results underscore the importance of making healthy dietary choices.
There is no perfect food, only a proper diet.
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6. Limitations

The majority of studies encompassed in this review pertain to preclinical animal trials.
Nevertheless, a scarcity of clinical literature exists concerning dietary interventions for
preventing and managing depression. Challenges emerge when attempting to extrapolate
findings from animal studies to clinical contexts, underscoring the necessity of enhancing
the alignment, timing, and scope of clinical investigations. The foundation established by
animal studies thus guides the direction for future clinical research. In clinical research,
efforts must be directed toward discerning the specific constituents of healthy dietary
interventions. This entails delving into the potential synergies among various food elements
to mitigate the prevalence of depression. Such research promises to unveil efficacious
therapeutic avenues for both clinical practice and public health settings. By delving into
the intricate interplay between dietary factors and depressive states, we can shape a more
comprehensive understanding of the impacts of diet on mental well-being.

7. Overview

In this review, we summarized the antidepressant-like effects of typical foods and
their effects on neurotransmitters (Figure 3). Antidepressant-like effects are seen in a wide
range of foods, including vegetables, fish, caffeine, vitamins, and meat. The antidepres-
sant mechanisms of food mainly involve monoamine neurotransmitters (5-HT, DA, NE),
BDNF, glial cells, inflammation, neuroendocrine and so forth, mechanisms that are also
seen in pharmacological treatments. Dietary treatment has become a trend to prevent
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and improve depressive symptoms, either in a preventative fashion or as a supplement to
other treatments. The precise mechanisms remain to be fully elucidated, as do the effect
magnitudes of dietary changes, but such interventions would have many obvious bene-
fits. Changes in eating, such as reduced appetite loss or overeating, represent significant
symptoms of severe depression. Hence, the potential influence of diet on depression is
not unexpected. The emerging field of food therapy holds promise as a novel avenue
for treatment development, offering a potentially lower toxic potential for adverse side
effects than traditional pharmacological approaches. To advance our understanding and
therapeutic strategies, further research is warranted to explore the intricate relationship
between dietary intake and depression. Additionally, investigating potential interactions
between diet and medications could provide valuable insights to bolster efforts aimed at
preventing and improving the treatment of depression.
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8. Future Perspectives

While we have summarized the potential effects of foods on combating depression
and the associated mechanisms, several important avenues for future investigation emerge.
Future research should delve deeper into the mechanisms of different food components
on neurotransmitters, brain-derived neurotrophic factors, and other depression-related
biomarkers. Clinical studies can illuminate how diverse populations might benefit from
dietary interventions and effective methods for integrating such treatments into clinical
practice. Additionally, investigating potential interactions between food and medication is
crucial for comprehensively understanding treatment outcomes. Tailoring dietary inter-
vention plans for individual patients based on their unique physiological characteristics
and dietary habits may be an exciting area for exploration in future research. Discussing
these future perspectives emphasizes the potential of this field and can inspire additional
research efforts to explore the therapeutic potential of food in addressing depression.
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