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Abstract: Mn-based catalysts have attracted significant attention in the field of catalytic research,
particularly in NOx catalytic reductions and CO catalytic oxidation, owing to their good catalytic
activity at low temperatures. In this review, we summarize the recent progress of Mn-based catalysts
for the removal of NOx and CO. The effects of crystallinity, valence states, morphology, and active
component dispersion on the catalytic performance of Mn-based catalysts are thoroughly reviewed.
This review delves into the reaction mechanisms of Mn-based catalysts for NOx reduction, CO oxida-
tion, and the simultaneous removal of NOx and CO. Finally, according to the catalytic performance
of Mn-based catalysts and the challenges faced, a possible perspective and direction for Mn-based
catalysts for abating NOx and CO is proposed. And we expect that this review can serve as a reference
for the catalytic treatment of NOx and CO in future studies and applications.

Keywords: Mn-based catalysts; NOx catalytic reduction; CO catalytic oxidation; reaction mechanism

1. Introduction

As the primary pollutants emitted from sintering, the coking and cement industries,
etc., nitrogen oxides (NOx) and carbon monoxide (CO) are harmful to both the environment
and human health, often leading to acid rain, photochemical smog, ozone depletion, global
warming, and so on [1,2]. Consequently, many scholars have focused their efforts on
exploring effective strategies for removing these pollutants [3–6]. Among the available
technologies, selective catalytic reduction (SCR) using NH3 as the reducing agent was
identified as an effective and reliable method for mitigating NOx emissions [7]. Additionally,
CO catalytic oxidation is also considered as a pivotal method for reducing hazardous
exhaust emissions [8]. However, the lack of good-performance catalysts restricts the
extensive utilizations of NH3-SCR and CO catalytic oxidation technologies.

For the NH3-SCR reaction, V2O5-WO3(MoO3)/TiO2 catalysts have been commercially
employed in power plants due to their excellent de-NOx performance within the temper-
ature range of 300–400 ◦C. Nevertheless, the narrow working temperature window and
poor SCR activity at lower temperatures have constrained the application of this method
in low-temperature flue gas denitrification. Additionally, Cu-CHA catalysts have been
commercially used in vehicles due to their superior SCR activity and hydrothermal sta-
bility [9]. Nevertheless, Cu-CHA catalysts are sensitive to sulfur oxides, resulting in a
significant decrease in SCR activity at lower temperatures [10,11]. As for CO catalytic
oxidation, noble metal catalysts, including Au [12], Pt [13,14], Pd [15], etc., have been
extensively employed to remove CO. Noble metal catalysts display a higher intrinsic ac-
tivity for the conversion of CO and demonstrate good resistance to sulfur poisoning at
lower temperatures [16]. However, noble metal catalysts also present some disadvantages.
For instance, they are chemically sensitive and might degrade rapidly in the presence of
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impurities [17]. Furthermore, they also show poor catalytic activity at lower tempera-
tures [18]. Comparing transition metal and noble metal catalysts, it has been found that
they could control CO almost equally, provided that the transition metal catalysts are used
in larger volumes [19]. Therefore, transition metal catalysts have been considered as a
promising alternative [20,21]. Among the transition metal oxide catalysts, Mn-based cata-
lysts have attracted much attention due to their good low-temperature redox property [22].
However, Mn-based catalysts are easily poisoned by SO2 and H2O at lower temperatures
and suffer from a low N2 selectivity at higher temperatures in the NH3-SCR reaction, as well
as a narrow operating window [23]. Therefore, great efforts have been made to improve
the catalytic performance and widen the temperature window [24,25]. Although some
review articles have discussed the NH3-SCR reaction over Mn-based catalysts, a systematic
summary of Mn-based catalysts for NOx catalytic reductions and CO catalytic oxidation is
still missing. Hence, this review aimed to present a comprehensive review for the progress
of Mn-based catalysts for both NH3-SCR reactions and CO catalytic oxidation processes. In
this review, the catalytic performance, reaction mechanisms, and interaction effects of the
catalytic process for NOx and CO are summarized. Furthermore, the crucial factors which
influence the catalytic activity of Mn-based catalysts for NO reduction and CO oxidation
are systematically identified. The structure diagram of this review is elucidated in Figure 1.
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Figure 1. Structure diagram of this review.

2. Mn-Based Catalysts for Abating NOx and CO
2.1. NOx Removal

As low-temperature SCR catalysts, manganese oxide catalysts have exhibited great
potential for NOx reduction due to their diverse crystal structures and diverse metallization
valences. However, pure MnOx catalysts have the disadvantages of poor anti-SO2 and H2O
catalytic activities and an inferior N2 selectivity, which restrict their further applications.
To address these shortcomings, some researchers have made efforts to enhance the SCR
catalytic performance by forming other mixed oxides, such as transition or rare earth metal
oxides, regulating the morphology and structure, and introducing suitable supports for the
catalysts [26,27].

2.1.1. Single Mn Oxide Catalysts for NOx Removal

(1) Effect of crystal phase and morphology

The SCR catalytic performance of manganese oxide catalysts is influenced by sev-
eral key factors, including the oxidation state, crystallinity, specific surface area, and
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morphology [28–31]. And these factors exert crucial influences on the catalysts’ catalytic
performance to varying degrees. Manganese oxides are composed of octahedral [MnO6]
units, which could form diverse arrays of tunnels and layered structures through the
sharing of corners or edges [32,33]. These crystalline MnO2 materials (α-, β-, δ-, γ-, λ-,
and ε-MnO2) can be categorized into three primary groups based on their structures: 1D,
2D, and 3D mesh structures, respectively. The 1D tunnel structures include α-, β-, and
γ-MnO2, each of which feature different tunnel arrangements: 1D (1 × 1) (2 × 2), (1 × 1),
and (1 × 1) (1 × 2) tunnel, respectively. ε-MnO2, which is similar to γ-MnO2, exhibits a
tunnel structure with highly disordered manganese lattice points and an irregular tunnel
shape. δ-MnO2 exhibits 2D-layered structures formed by the shared side of the [MnO6]
octahedron. On the other hand, λ-MnO2 shows a typical spinel structure, characterized
by a 3D (1 × 1) tunnel arrangement [34,35]. Figure 2 illustrates the schematics of different
MnO2 crystal structures, suggesting their unique arrangements and configurations [36].
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It has been reported that crystal structures could significantly influence the NOx con-
version efficiency of MnO2 catalysts [37]. Dai et al. [38] suggested that α-MnO2 catalysts
display a higher de-NOx activity compared to δ-MnO2 catalysts, primarily due to them
being assigned a higher abundance of surface chemisorbed oxygen species. Yang et al. [39]
indicated that the NH3 species adsorbed at Lewis sites on β-MnO2 catalysts exhibited poor
reactivity with O2, resulting in less N2O formation and a lower NO conversion. And the
catalytic performance of γ-, α-, and δ-MnO2 catalysts were also investigated (Figure 3).
Furthermore, a range of MnO2 catalysts with various morphologies, including MnO2
nanorods, nanospheres, nanowire, nanotubes, nanoflower, mesoporous MnO2 nanosheets,
and 3D mesoporous MnO2, were synthesized for removing NOx [40–43]. Li et al. [44] syn-
thesized MnO2 nanomaterials with various morphologies via the hydrothermal method, as
illustrated in Figure 4. The results indicated that the NO conversion efficiency decreased
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in the following order: nanospheres > nanosheets > nanorods for MnO2, and the removal
efficiency of NO for the MnO2 nanosphere catalyst could reach nearly 100% over the tem-
perature range of 200 to 350 ◦C. Gao et al. [45] successfully synthesized mesoporous MnO2
catalysts by employing KIT-6, SBA-15, and MCM-41 mesoporous silica as the templates.
Among them, the mesoporous MnO2-KIT-6 catalyst, characterized by 3D cubic channels,
exhibited the highest NH3-SCR activity and the widest temperature window.
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(2) Effect of valence state

Each valence state of manganese is associated with a stable oxide, including MnO,
Mn2O3, Mn5O8, Mn4O3, and MnO2. The good de-NOx activity of MnOx catalysts at lower
temperatures could be attributed to the presence of the multivalent oxidation state of
manganese and high mobility of lattice oxygen [46–48]. Additionally, Yang et al. [48]
conducted a study on the pathways of N2O formation during an NH3-SCR reaction over
different valence states of manganese oxide catalysts, as depicted in Figure 5. It could
be observed that the MnO2 catalysts yielded more N2O at lower temperatures. In situ
DRIFTS results indicated that the most of the N2O was generated from the SCR reaction on
the MnO2 catalysts at lower temperatures, and the N2O amounts produced via the NH3
oxidation of the catalyst increased with the rising temperature. Wan et al. [49] emphasized
the significance of Mn4+ species as the primary active species in the NH3-SCR reaction.
These findings were also confirmed by the studies of Zhang et al. [50] and Pappas et al. [51].
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2.1.2. Composite MnOx Catalysts for NOx Removal

As for the stringent emission standards for NOx, relying solely on a single MnOx
catalyst in the NH3-SCR system is not sufficient to meet the discharge requirements. Mix-
ing or doping MnOx with other metal oxides can enhance the catalytic activity of MnOx
catalysts, owing to the synergistic effects achieved by combining Mn and other metal
elements. Transition metal oxides, such as Fe2O3, CeO2, Co3O4, CuO, etc., have been
widely employed for the modification of MnOx catalysts [52–54]. The incorporation of
other metal oxides usually generates abundant active sites, rich oxygen vacancies, and
an excellent redox capacity, all of which contribute to the enhancement of the catalytic
performance [55–57]. For instance, Shi et al. [58] synthesized Mn-based bimetallic transition
oxide catalysts and investigated the impact of various transition metals on the catalytic
activity of pure MnOx catalysts. As illustrated in Figure 6, the Co-MnOx catalyst achieved
about a 95% NO conversion efficiency at 100 ◦C. This superior catalytic activity of the
Co-MnOx catalyst was likely attributed to the unique manganese-rich surface activity.
Kang et al. [59] synthesized a Ni-doped MnOx catalyst using the solvent-free doping
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method and evaluated its SCR performance. The result suggested that Ni doping could en-
hance the medium-temperature activity, obtaining a remarkable 100% NO conversion rate at
100–200 ◦C. Jiang et al. [60] suggested that the incorporation of Zr could improve the
catalytic activity and SO2 tolerance of Mn-based catalysts. The characterization results
revealed that the introduction of Zr strengthened the interaction between Zr and the active
sites, resulting in the amorphous structure of the catalysts. Moreover, in situ DRIFTS
studies displayed that the addition of Zr promoted the L-H reaction pathways at lower
temperatures. Long et al. [61] indicated that the co-doping of Nb and Fe optimized the
low-temperature SCR activity and N2 selectivity of MnCeOx catalysts, as depicted in
Figure 7.

Molecules 2023, 28, x FOR PEER REVIEW 6 of 22 
 

 

evaluated its SCR performance. The result suggested that Ni doping could enhance the 
medium-temperature activity, obtaining a remarkable 100% NO conversion rate at 100–
200 °C. Jiang et al. [60] suggested that the incorporation of Zr could improve the catalytic 

activity and SO2 tolerance of Mn-based catalysts. The characterization results revealed that 
the introduction of Zr strengthened the interaction between Zr and the active sites, result-
ing in the amorphous structure of the catalysts. Moreover, in situ DRIFTS studies dis-
played that the addition of Zr promoted the L-H reaction pathways at lower temperatures. 
Long et al. [61] indicated that the co-doping of Nb and Fe optimized the low-temperature 
SCR activity and N2 selectivity of MnCeOx catalysts, as depicted in Figure 7.  

 
Figure 6. Influence of different metal oxides as additives on the catalytic activity of a MnOx catalyst: 
(a) CoOx, MnOx, and Co-MnOx; (b) NiOx, MnOx, and Ni-MnOx; (c) CuOx, MnOx, and Cu-MnOx; (d) 
Cu-MnOx, Ni-MnOx, and Co-MnOx [58]. 

 
Figure 7. (a) NOx conversion and (b) N2O concentration over Mn-based oxide catalysts [61]. 

 

Figure 6. Influence of different metal oxides as additives on the catalytic activity of a MnOx catalyst:
(a) CoOx, MnOx, and Co-MnOx; (b) NiOx, MnOx, and Ni-MnOx; (c) CuOx, MnOx, and Cu-MnOx;
(d) Cu-MnOx, Ni-MnOx, and Co-MnOx [58].

Molecules 2023, 28, x FOR PEER REVIEW 6 of 22 
 

 

evaluated its SCR performance. The result suggested that Ni doping could enhance the 
medium-temperature activity, obtaining a remarkable 100% NO conversion rate at 100–
200 °C. Jiang et al. [60] suggested that the incorporation of Zr could improve the catalytic 

activity and SO2 tolerance of Mn-based catalysts. The characterization results revealed that 
the introduction of Zr strengthened the interaction between Zr and the active sites, result-
ing in the amorphous structure of the catalysts. Moreover, in situ DRIFTS studies dis-
played that the addition of Zr promoted the L-H reaction pathways at lower temperatures. 
Long et al. [61] indicated that the co-doping of Nb and Fe optimized the low-temperature 
SCR activity and N2 selectivity of MnCeOx catalysts, as depicted in Figure 7.  

 
Figure 6. Influence of different metal oxides as additives on the catalytic activity of a MnOx catalyst: 
(a) CoOx, MnOx, and Co-MnOx; (b) NiOx, MnOx, and Ni-MnOx; (c) CuOx, MnOx, and Cu-MnOx; (d) 
Cu-MnOx, Ni-MnOx, and Co-MnOx [58]. 

 
Figure 7. (a) NOx conversion and (b) N2O concentration over Mn-based oxide catalysts [61]. 

 

Figure 7. (a) NOx conversion and (b) N2O concentration over Mn-based oxide catalysts [61].



Molecules 2023, 28, 6885 7 of 22

2.1.3. Supported MnOx Catalysts for NOx Removal

The choice of suitable supports has a profound impact on shaping the crystalline and
catalytic performance of NH3-SCR catalysts. An ideal support not only provides a large
specific surface area for the efficient dispersion of the active components, but also creates a
favorable environment for catalytic reactions to occur. To date, extensive efforts have been
dedicated to exploring various support materials, including TiO2 [62,63], Al2O3 [64–66],
CeO2 [67–69], SiO2 [70], ZrO2 [71,72], and active carbon (AC) [21,73], as potential supports
for the immobilization of MnOx catalysts.

(1) TiO2 as support

TiO2 as a support has demonstrated an excellent resistance to SO2 [74]. Moreover, it
can interact with MnOx catalysts to enhance the dispersion of Mn species [75,76]. Smirniotis
et al. [77] investigated the impact of different TiO2 phases on the SCR catalytic activity of
MnO2/TiO2 catalysts. The result indicated that MnOx/TiO2 (hombikat, anatase) displayed
the highest SCR activity, attributed to the larger specific surface area and abundant acid sites
of TiO2 (hombikat, anatase). Li et al. [74] prepared Mn-Ce/TiO2-NS and Mn-Ce/TiO2-NP
catalysts, utilizing anatase TiO2 with exposed {001} crystal faces (TiO2-Ns) and anatase TiO2
with exposed {101} crystal faces (TiO2-NP) as supports, respectively. The Mn-Ce/TiO2-NS
catalyst exhibited higher SCR activity than that of the Mn-Ce/TiO2-NP catalyst, even in
the presence of SO2, as illustrated in Figure 8. This was due to the anatase TiO2 {001}
facets potentially preferentially reacting with SO2, thus avoiding the inactivation of the
active sites.
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(2) Al2O3 as support

A large surface area, abundant acid sites, and a superior mechanical property makes
Al2O3 an outstanding support for SCR catalysts. Yao et al. [78] synthesized MnOx catalysts
with different supports, and the influence of these supports on the physicochemical prop-
erties and denitration performance of the catalysts was evaluated. The results indicated
that the MnOx/γ-Al2O3 catalyst exhibited a strong NOx adsorption capacity and had
abundant Mn4+ species, resulting in a higher SCR activity in the entire reaction temperature
(Figure 9). Furthermore, comparative studies on Mn-Ce oxides supported on TiO2 and
Al2O3 for NH3-SCR at low temperatures were conducted by Jin et al. [79]. The results
demonstrated that the Mn-Ce/Al2O3 catalyst showed a relatively higher SCR activity
than the Mn-Ce/TiO2 catalyst at the temperature range of 80–150 ◦C, primarily due to
the Mn-Ce/Al2O3 catalyst having more acid sites. Li et al. [80] synthesized supported
catalysts of FeOx and MnOx that were co-supported on aluminum-modified CeO2 for a
low-temperature NH3-SCR reduction of NOx. It was observed that the Fe-Mn/Ce1Al2
catalyst achieved over a 90% NO conversion at 75–250 ◦C and displayed superior SO2
resistance compared to the Fe-Mn/CeO2 catalyst. The improved catalytic performance
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could be ascribed to the larger surface area, and the enhanced reducibility was due to the
introduction of Al2O3.
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(3) Carbon materials as support

Carbon materials, including carbon nanotubes (CNTs), activated carbon (AC), acti-
vated carbon fiber (ACF), and graphene (GR), have been identified as attractive supports
for SCR catalysts [81,82]. Su et al. [83] synthesized a range of MnOx catalysts supported
by CNTs and assessed their SCR catalytic performance. The results showed that the cat-
alyst with MnOx introduced into the CNT channels demonstrated superior SCR activity
compared to the MnOx on the outside surface of the CNTs. Xiao et al. [84] reported that
the denitration performance of a MnOx-CeO2/GR catalyst was better than that of a MnOx-
CeO2 catalyst even in the presence of SO2 and H2O, as displayed in Figure 10. The result
suggested that the introduction of GR altered the composition of the Mn species, thereby
exerting a notable influence on the electron mobility. Jiang et al. [85] revealed that the
introduction of AC into the catalyst resulted in an enhancement in the NO conversion
efficiency. Table 1 summarizes the research results of Mn-based catalysts for NO catalytic
reduction in recent years.
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2.2. CO Removal
2.2.1. Single MnOx Catalysts for CO Oxidation

Manganese oxide catalysts with different crystal structures and morphologies have ex-
hibited significant differences in their catalytic performance for CO catalytic oxidation [86].
Xu et al. [87] reported that an α-MnO2 nanowire catalyst exhibited higher catalytic ac-
tivity than a β-MnO2 catalyst, which was attributed to the α-MnO2 catalyst possessing



Molecules 2023, 28, 6885 9 of 22

a remarkable oxidation ability. Frey et al. [88] prepared non-stoichiometric MnOx cata-
lysts and studied the relationship between their micro-structural correlation and catalytic
activity for CO oxidation. The results revealed that the excellent catalytic activity of the
non-stoichiometric MnOx catalyst could be attributed to the presence of nanocrystals at
the ending of the nanorods. Additionally, earlier studies have indicated that the catalyst’s
reactivity is linked to the ability of Mn to form different oxidation states, such as the redox
of Mn2+/Mn3+ or Mn3+/Mn4+, as well as the mobility of lattice oxide species [89,90].

Table 1. Details of catalytic performance, preparation methods, and reaction conditions for Mn-based
catalysts removing NOx.

Catalysts Preparation Method Reaction Conditions NOx/NO
Conversion (%) T (◦C) References

α-MnO2 Hydrothermal 0.1% NO, 0.1% NH3, 2% O2, N2
as balance, 38,000 h−1 90% 125 ◦C [38]

γ-MnO2 Hydrothermal 500 ppm NO, 500 ppm NH3, 19%
O2, N2 as balance, 36,000 h−1 90% 100 ◦C [39]

MnO2
nanosphere Hydrothermal 500 ppm NO, 500 ppm NH3, 3%

O2, N2 as balance, 28,000 h−1 95% 150 ◦C [44]

MnO2-KIT-6 Impregnation 1000 ppm NO, 1000 ppm NH3,
5% O2, Ar as balance, 30,000 h−1 98% 100 ◦C [45]

MnO2 Hydrothermal 500 ppm NO, 500 ppm NH3, 19%
O2, N2 as balance, 36,000 h−1 100% 150 ◦C [48]

Mn3O4 Hydrothermal 500 ppm NO, 500 ppm NH3, 19%
O2, N2 as balance, 36,000 h−1 100% 175 ◦C [48]

Mn0.25/TNT-H Hydrothermal
900 ppm NO, 100 ppm NO2,
1000 ppm NH3, 10% O2, He as
balance, 50,000 h−1

100% 100 ◦C [51]

MnFeOx Co-precipitation 500 ppm NO, 500 ppm NH3, 5%
O2, N2 as balance, 75,000 h−1 100% 100 ◦C [52]

MnCe nanowire Hydrothermal+ co-precipitation 500 ppm NO, 500 ppm NH3, 5%
O2, N2 as balance, 32,000 h−1 100% 150 ◦C [44]

Co-MnOx Solvothermal 2000 ppm NO, 2000 ppm NH3,
8% O2, N2 as balance, 128,000 h−1 100% 100 ◦C [58]

NbFeMnCeOx Co-precipitation 500 ppm NO, 500 ppm NH3, 11%
O2, N2 as balance, 60,000 h−1 95% 175 ◦C [61]

Mn/γ-Al2O3 Sol-gel 500 ppm NO, 500 ppm NH3, 5%
O2, N2 as balance, 60,000 h−1 95% 200 ◦C [78]

Mn-Ce/Al2O3 Impregnation 800 ppm NO, 800 ppm NH3, 3%
O2, N2 as balance, 120,000 h−1 90% 180 ◦C [79]

FeMn/CeAl Impregnation 500 ppm NO, 500 ppm NH3, 5%
O2, N2 as balance, 30,000 h−1 100% 100 ◦C [80]

Ce-Mn/AC Impregnation 500 ppm NO, 500 ppm NH3, 5%
O2, N2 as balance, 30,000 h−1 95% 175 ◦C [81]

Mn/CNT Impregnation 0.08% NO, 0.08% ppm NH3, 5%
O2, A2 as balance, 35,000 h−1 95% 200 ◦C [83]

MnOx-CeO2/GR Hydrothermal 500 ppm NO, 500 ppm NH3, 5%
O2, N2 as balance, 24,000 h−1 100% 200 ◦C [84]

Mn-Fe/Z-AC Hydrothermal 450 ppm NO, 450 ppm NH3, 5%
O2, N2 as balance, 2,000 h−1 98% 125 ◦C [85]

2.2.2. Composite MnOx Catalysts for CO Oxidation

Composite oxides consist of two or more active components, and the interaction
between different active species can modify their dispersion state, ultimately leading
to an enhanced catalytic activity and the stability of the catalysts. In comparison to a
pure MnOx catalyst, composite MnOx catalysts have preferable crystal structures and
redox properties, which exhibit higher catalytic activity in CO catalytic oxidation [91].
Pan et al. [92] found that CO conversion efficiency on MnOx catalysts was significantly
enhanced after introducing copper oxides. And the improved CO catalytic activity of
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CuMnOx catalysts was related to the resonance system of Cu2++Mn3+
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Cu++Mn4+ and
the efficient oxidation of CO onto Cu2+ and Mn4+ species. Zhang et al. [93] prepared a
range of MnOx-CeO2 catalysts with varying Mn/Ce molar ratios and studied the catalytic
activity for CO catalytic oxidation. It could be observed that a Mn1Ce1 catalyst showed a
better catalytic performance and wider operating temperature window than pure MnOx
and CeO2 catalysts.

2.2.3. Supported MnOx Catalysts for CO Oxidation

Loading MnOx on the support materials, such as TiO2 [94,95], Al2O3 [96], and CeO2 [68],
provided a prospective practical application of Mn-based catalysts in CO catalytic oxidation.
Dong et al. [94] designed a Mn3O4/TiO2 catalyst grown in situ on a titanium mesh sub-
strate for CO catalytic oxidation. As shown in Figure 11, the Mn3O4/TiO2 catalyst achieved
nearly complete CO conversion (100%) at a relatively low temperature of 160 ◦C, surpass-
ing the performance of some noble metal catalysts. Li et al. [97] prepared CuMn/Al2O3
catalysts employing ordered mesoporous Al2O3 as a support. The result suggested that
the ordered mesoporous Al2O3 led to catalysts with higher specific surface areas and large
pore volumes, as well as more surface activity species, thereby enhancing the CO catalytic
oxidation activity of the catalyst. A comprehensive summary of the research results of
Mn-based catalysts for CO catalytic oxidation are presented in Table 2.
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Table 2. Details of catalytic performance, preparation methods, and reaction conditions for Mn-based
catalysts removing CO.

Catalysts Preparation Method Reaction Condition Best CO
Conversion (%) T (◦C) Reference

MnOx-CeO2 Co-precipitation 1% CO, 20% O2, Ar as
balance, 75,000 h−1 100% 175 ◦C [68]

α-MnO2 Hydrothermal 2% CO, 98% air, 12,000 h−1 100% 120 ◦C [86]

β-MnO2 Hydrothermal 1% CO, 16% O2, N2 as
balance, 60,000 h−1 90% 169 ◦C [87]

Ce-MnO2 Hydrothermal 1% CO, 10% O2, N2 as
balance, 30,000 h−1 100% 175 ◦C [89]

Cu-MnOx Hydrothermal 1% CO, 0.6% O2, He as
balance, 150,000 h−1 100% 150 ◦C [92]

Mn3O4/TiO2 Urea-assisted deposition 1% CO, 20% O2, He as
balance, 7200 h−1 100% 150 ◦C [94]

CuMnOx/γ-Al2O3 Sol-gel + co-precipitation 2.5% CO, air as balance,
30,000 h−1 100% 120 ◦C [96]

CuMn-Al2O3 Co-precipitation 1% CO, air as balance,
10,000 h−1 100% 120 ◦C [97]
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2.3. Simultaneous Removal of NOx and CO

Nitrogen oxides and carbon monoxide coexist in the emissions of some plants, includ-
ing coal-fired power plants, the steel industry, coking plants, and the cement industry. The
development of bifunctional catalysts was of great importance for effectively removing
both NOx and CO simultaneously. Manganese-based catalysts exhibit a range of oxidation
states and unstable oxygen species, which play a crucial role in enhancing the adsorption
and activation of NOx and CO on the catalyst surface [98,99]. In our earlier study [100], we
found that γ-MnO2 catalysts exhibit higher catalytic activity for both NO reduction and CO
oxidation compared to α-, β-, and δ-MnO2 catalysts (see Figure 12). And the outstanding
catalytic performance of the γ-MnO2 catalyst could be assigned to its remarkable redox
property and abundant active sites, which promote the adsorption and activation of NO and
CO molecules. Zheng et al. [101] prepared CuMnOx bifunctional catalysts and evaluated
their catalytic performance for NO reduction and CO oxidation. As shown in Figure 13,
a Cu1Mn1 catalyst exhibited excellent activity for removing NO and CO simultaneously,
achieving nearly 100% NO conversion and 96% CO conversion at 125 ◦C, respectively.
Gui et al. [102] reported a bifunctional catalyst of Mn2Cu2Al1Ox which possessed dual ac-
tive sties and was highly active for both NH3-SCR and CO oxidation reactions. The results
indicated that CO was more easily adsorbed on the Cu active sites, while NH3 was more
inclined to absorb on the Mn active sites, which enabled the simultaneous occurrence of
NO catalytic reduction and CO oxidation on the catalyst surface. Guo et al. [53] synthesized
a CuMn-HZSM-5 catalyst via the impregnation method. The optimized catalyst achieved a
90% NO removal efficiency and nearly a 100% CO conversion rate at 200 ◦C. The results of
the bifunctional catalysts for removing both NOx and CO simultaneously are concluded in
Table 3.
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Table 3. Details of catalytic performance, preparation methods, and reaction conditions for Mn-based
catalysts removing NOx and CO.

Catalysts Preparation
Method Reaction Conditions NOx Conversion

(%)
CO Conversion
(%) T (◦C) Reference

CuMn-
HZSM-5 Impregnation

500 ppm NO, 500 ppm
NH3, 5000 ppm CO,
5% O2, N2 as balance,
120,000 h−1

90% 100% 200 ◦C [53]

γ-MnO2 Hydrothermal

500 ppm NO, 500 ppm
NH3, 1000 ppm CO,
11% O2, N2 as balance,
90,000 h−1

91% 80% 175 ◦C [100]

Cu1Mn2 Co-precipitation

500 ppm NO, 500 ppm
NH3, 2000 ppm CO,
5% O2, N2 as balance,
100,000 h−1

96% 100% 125 ◦C [101]

Mn2Cu2Al1Ox

Aqueous miscible
organic solvent
treatment

500 ppm NO, 500 ppm
NH3, 5000 ppm CO,
5% O2, Ar as balance,
80,000 h−1

97% 100% 200 ◦C [102]

MnCuCeOx/γ-
Al2O3

Impregnation

300 ppm NO, 300 ppm
NH3, 3000 ppm CO,
16% O2, N2 as balance,
25,000 h−1

100% 100% 200 ◦C [103]

Mn2Co1Ox/IM Hydrothermal
500 ppm NO, 500 ppm
NH3, 5% O2, 5000 ppm
CO, A2 as balance,

98% 100% 200 ◦C [104]

3. Mechanisms and Interactions of NOx Catalytic Reduction and CO Catalytic
Oxidation
3.1. Pathways and Mechanisms of NOx Catalytic Reduction on Mn-Based Catalysts

Understanding the pathways and mechanisms of NOx catalytic reductions over the
catalysts was of significance in attaining efficient denitrification. In the NH3-SCR reaction,
the primary pathways of NOx reduction could be outlined using Equations (1)–(5):

4NO + 4NH3+O2 → 4N2+6H2O (1)

4NH3+2NO + 2NO2 → 4N2+6H2O (2)

2NO2+4NH3+O2 → 3N2+6H2O (3)

6NO2+4NH3 → 7N2+12H2O (4)

6NO + 4NH3 → 5N2+6H2O (5)

Among them, Reaction (1) was referred to as the “standard SCR” reaction, containing a
stoichiometry with identical amounts of NO and NH3. In the presence of NO2, Reaction (2)
proceeded at a higher rate compared to the “standard SCR”, so it was defined as “fast
SCR”. When an excess of NO2 (NO2/NO > 1) was present in the flue gas, Reactions (3)
and (4) happened. Reaction (5), between NH3 and NO, proceeded in an oxygen-free or
low-oxygen atmosphere.

The Eley–Rideal (E-R) and Langmuir–Hinshelwood (L-H) mechanisms are commonly
accepted pathways in the NH3-SCR reaction [105], as illustrated in Figure 14. As for the
E-R mechanism, ammonia molecules are initially adsorbed at the acid sites on the catalyst
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surface, leading to the formation of intermediates, such as -NH2 species and adsorbed NH3
species. Subsequently, these intermediates react with gaseous NO and NO2, ultimately
resulting in the generation of N2 and H2O. The reaction process can be described using
Equations (6)–(10):

NH3(gas) → NH3(ads) (6)

NH3(ads)+Mn+= O→ NH2(ads)+M(n−1)+−O−H (7)

NH2(ads)+Mn+= O→ NH(ads)+M(n−1)+−O−H (8)

NH2(ads)+NO(gas) → N2+H2O (9)

NH(ads)+NO(gas) → N2O + H+ (10)
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Marbán et al. [106] found that Mn3O4/AC catalysts primarily follow the E-R mech-
anism in the NH3-SCR reaction, in which NO2 and, to a lesser extent, NO react with
surface-active NH3 species. Xu et al. [107] also proposed that the SCR reaction over a MnOx
catalyst proceeds via the E-R mechanism, in which the adsorbed NH3 species could react
with the gaseous NO. Chen et al. [52] confirmed that the E-R mechanism plays a more
significant role in the SCR reaction over MnFeOx catalysts by employing the transient
reaction experiments.

For the L-H mechanism, NO was adsorbed on the active sites of the catalyst to form
NOx adsorbed species. Then, the adsorbed NH3 reacted with the adsorbed NOx species to
produce N2 and H2O. The specific processes are shown in Figure 15. In general, the L-H
mechanism is easier to proceed with than the E-R mechanism owing to its low activation
energy [108]. Kijlstra et al. [66] proposed that the Mn3+ site over the MnOx/Al2O3 catalyst
was the center of Lewis acid sites, and -NH2 species were generated via the deamination
of adsorbed NH3 reacting with gaseous NO and adsorbed NO at the same time. That is,
both the L-H and E-R mechanisms occurred. Wei et al. [109] explored the mechanism of a
Mn/TiO2 catalyst in the NH3-SCR reaction via a series of experiments and DFT calculations.
The result showed that the catalytic reaction pathway on the catalysts consisted of two
fundamental steps, as illustrated in Figure 16.
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3.2. Mechanisms of CO Oxidation on Mn-Based Catalysts

The catalytic oxidation of CO is one of the most representative prototype reactions
in heterogeneous catalysis, and attracts significant interest due to its extensive applica-
tions in the environmental and energy fields. At present, the proposed mechanisms for
CO catalytic oxidation mainly encompass the L-H, E-R, and Mars–van Krevelen (MvK)
mechanisms [110–112], as depicted in Figure 17.

The L-H mechanism, as presented in Figure 17a, involves the following key steps: CO
reacts with OH- on the catalyst surface, leading to the formation of formate or carbonate
species. Subsequently, the adsorbed formate or carbonate species decompose to produce
CO2 and H2. Then, the presence of metal catalysts facilitates the preferential adsorption of
CO and promotes the easier breaking of C-H bonds in formate species. During this reaction
process, the lattice oxygen does not participate in the catalytic oxidation, and the reaction
occurs through the adsorption and reaction of CO and O2 on the catalyst surface [111,113].
Dey et al. [114] proposed that CuMnOx catalysts predominantly follow the L-H mechanism
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in the CO catalytic oxidation process, primarily involving the reaction of surface-activated
oxygen species with adsorbed CO species to produce CO2.
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The E-R mechanism is displayed in Figure 17b. The mechanism involves the reaction
that occurs between gaseous CO molecules and chemisorbed oxygen species (atomic oxygen
and molecular oxygen). The MvK mechanism is also known as the redox mechanism, as
illustrated in Figure 17c. In this mechanism, the catalyst surface exhibits a preference for
the adsorption of activated CO molecules, which then react with lattice oxygen, resulting
in the formation of CO2 and the creation of oxygen vacancies on the catalyst surface [115].
Subsequently, gaseous oxygen enters the oxygen vacancies and reacts with the partially
reduced catalyst, replenishing its oxidation capacity [116]. The redox reaction mechanism
involves two types of active sites: (1) active metal cation sites, which are responsible
for oxidizing the reactants, and (2) active sites for the reduction of molecular oxygen.
Typically, transition metal ions exhibit excellent electron conductivity, which facilitates
efficient electron transfer during the redox process. Additionally, the mobility of lattice
oxygen in the catalyst ensures the re-oxidation of the reduced surface, thereby enabling
the regeneration of the active sites. Xu et al. [98] proposed that CO catalytic oxidation over
an α-Mn2O3 nano catalyst is dominated by the L-H mechanism at lower temperatures,
and turns to the MvK mechanism at higher temperatures, as shown in Figure 18. Morgan
et al. [112] found a significant predominance of the MvK mechanism and a relatively
minor involvement of the L-H mechanism for CO catalytic oxidation over both undoped
and gold-doped CuMnOx catalysts, and the introduction of gold clearly facilitated the
MvK mechanism.

3.3. Interactions between Simultaneous NOx Catalytic Reduction and CO Catalytic Oxidation on
Mn-Based Catalysts

The simultaneous removal of NOx and CO from industrial fumes involves complex
interactions between the NOx reduction and CO oxidation processes, resulting in some
favorable or unfavorable consequences. Nevertheless, these interactions between multi-
ple reactants were determined by various factors, such as the reaction temperature, the
concentration of the reactants, and the catalyst properties. Understanding the interactions
between various reactants and the influence of reaction conditions on the synergistic re-
moval efficiency was of great significance in designing the catalysts for the simultaneous
removal of NOx and CO.

3.3.1. Effect of CO Oxidation on NOx Reduction

Gaining insight into how CO oxidation reactants influence NOx reductions is crucial for
improving the efficiency of NOx removal during the joint removal process. Nevertheless,
there is currently no unanimous consensus regarding whether CO catalytic oxidation
promotes or inhibits NOx reduction. Some researchers have proposed that CO catalytic
oxidation promotes NOx reduction. For instance, Zeng et al. [117] confirmed that the CO
oxidation reaction has a positive effect on the NOx reduction reaction. This advantageous
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effect could be attributed to the heat that is generated during CO catalytic oxidation, which
acts as an ideal heat source to increase the flue gas temperature, thus enhancing the SCR
catalytic activity at lower temperatures. Guo et al. [53] demonstrated that the introduction
of CO could improve the removal efficiency of NO by facilitating NO adsorption on pre-
adsorbed sites. The adsorbed CO serves as a reducing agent, converting NO to N2, thereby
providing an alternative reaction pathway in the SCR process. Nevertheless, some scholars
have suggested that CO catalytic oxidation has an inhibitory effect on NOx reduction.
Gui et al. [102] found that the presence of CO has an adverse effect on the NH3-SCR catalytic
activity of Mn2Cu1Al1Ox catalysts. This was mainly due to the competitive adsorption
of NH3 and CO on the active sites. Similarly, Liu et al. [118] observed a noteworthy
reduction in NO conversion efficiency in the presence of CO. The decline was ascribed to
the simultaneous adsorption of NO and CO on a Mn/Ti catalyst, resulting in a competitive
adsorption between CO and NO, as depicted in Figure 19.
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3.3.2. Effect of NH3-SCR Atmosphere on CO Oxidation

For the simultaneous removal of NOx and CO in the NH3-SCR system, the CO con-
version rate displays notable distinctions when compared to the individual CO catalytic
oxidation reaction, suggesting that NOx might participate in the CO catalytic oxidation
reaction. Zheng et al. [101] found that the CO conversion in a coordinated experiment
over a Cu1Mn2 catalyst was higher than in a separate experiment, suggesting that NO
played a facilitating role in the CO catalytic oxidation reaction. Guo et al. [53] indicated that
the adsorption of NO on a CuMn-HZSM-5 catalyst surface generated NO2

− and N2O2
−

species, which served as key intermediates for the oxidation of CO to CO2, as depicted in
Figure 20.
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4. Conclusions and Perspectives

This review provided an in-depth summary of the research progress of Mn-based
catalysts in the elimination of NOx and CO. The catalytic performance, reaction mechanisms,
and influence factors of Mn-based catalysts for eliminating NOx and CO were summarized.
Pure MnOx catalysts exhibit a good catalytic activity for NOx catalytic reduction and CO
oxidation, but with a narrow operating window and poor resistance to toxic substances.
The modification of MnOx catalysts through the incorporation of other metal oxides has
been demonstrated to enhance the catalytic activity and widen the operating window.
Moreover, the introduction of supports, such as Al2O3, TiO2, and carbon materials, is
also an effective strategy for improving the catalytic activity in NH3-SCR and CO catalytic
oxidation reactions. Despite significant advancements in Mn-based catalysts for the removal
of NOx and CO, there remains a pressing need for further in-depth research to develop
catalysts with a higher catalytic activity for NOx reduction and CO oxidation in industrial
flue gas conditions. The following aspects could be considered in the future:

(1) Mn-based catalysts exhibit a poor N2 selectivity in the NH3-SCR reaction. This is
primarily ascribed to the strong oxidizing property of Mn-based catalysts, resulting in
the non-selective reduction of NH3 on the catalyst surface, thereby producing a large
amount of the by-products, N2O. Further research should focus on improving the N2
selectivity. For enhancing the SCR catalytic properties, it is imperative to inhibit the
non-selective catalytic reduction of NH3, thus enhancing the utilization rate of NH3.

(2) The resistance to SO2 and H2O of Mn-based catalysts is insufficient in both the
NH3-SCR and CO catalytic oxidation reactions. In future studies, scholars should
concentrate their efforts on optimizing the active components and developing new
structures and morphologies to avoid catalyst deactivation. Furthermore, a crucial
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focus should be placed on investigating the regeneration and recycling processes of
the catalysts after deactivation.

(3) The interaction mechanism between these two pollutants remains a controversial topic.
In further studies, it is essential to employ other methods, such as DFT calculations
and reaction kinetics, to gain a better understanding of the reaction processes.
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