
Citation: Nozawa-Kumada, K.;

Hayashi, M.; Kwon, E.; Shigeno, M.;

Yada, A.; Kondo, Y. Copper-Catalyzed

Intramolecular Olefinic C(sp2)–H

Amidation for the Synthesis of

γ-Alkylidene-γ-lactams. Molecules

2023, 28, 6682. https://doi.org/

10.3390/molecules28186682

Academic Editors: Gianfranco Favi

and Saïd El Kazzouli

Received: 11 August 2023

Revised: 7 September 2023

Accepted: 13 September 2023

Published: 18 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Communication

Copper-Catalyzed Intramolecular Olefinic C(sp2)–H Amidation
for the Synthesis of γ-Alkylidene-γ-lactams
Kanako Nozawa-Kumada 1,2,* , Masahito Hayashi 1, Eunsang Kwon 3,4 , Masanori Shigeno 1,5 , Akira Yada 2

and Yoshinori Kondo 1

1 Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku,
Sendai 980-8578, Miyagi, Japan; masanori.shigeno.e5@tohoku.ac.jp (M.S.);
yoshinori.kondo.a7@tohoku.ac.jp (Y.K.)

2 Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science
and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; a-yada@aist.go.jp

3 Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science,
Tohoku University, Aoba-ku, Sendai 980-8578, Miyagi, Japan; ekwon@tohoku.ac.jp

4 Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku,
Sendai 980-8578, Miyagi, Japan

5 Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and
Technology (PRESTO), Kawaguchi 332-0012, Saitama, Japan

* Correspondence: k.kumada@aist.go.jp; Tel.: +81-29-861-5908

Abstract: Herein, we report the copper-catalyzed dehydrogenative C(sp2)–N bond formation of
4-pentenamides via nitrogen-centered radicals. This reaction provides a straightforward and efficient
preparation method for γ-alkylidene-γ-lactams. Notably, we could controllably synthesize α,β-
unsaturated- or α,β-saturated-γ-alkylidene-γ-lactams depending on the reaction conditions.
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1. Introduction

Cross-dehydrogenative coupling (CDC) of C(sp2)–H/N–H bonds is one of the most
straightforward methods for forming C(sp2)–N bonds [1–4], which are found in many phar-
maceuticals, natural products, and materials [5–8]. Consequently, various approaches to
accomplish CDC reactions have been reported, including aza-Wacker [9–15] and transition-
metal-catalyzed, directing-group-assisted reactions [16–19]. The nitrogen-centered, radical-
mediated reaction is considered a powerful strategy for dehydrogenative C(sp2)–N bond
formation, which proceeds via the addition of N-radical species to the π-system of arenes
or alkenes, following recovery of the π-system by oxidation or elimination, because it can
preclude the use of precious transition-metals or the introduction and removal of directing
groups. Over the past few decades, various such processes have been developed [20–24];
however, most of them have been applied to aryl C–H bonds, whereas olefinic C–H amina-
tions are less explored [25].

γ-Alkylidene-γ-lactams are core structures of various natural and bioactive com-
pounds (Scheme 1a) [26–30]. Several preparation methods have been developed, such as
the cyclization of 4-ketoamides followed by dehydration [31–33], hetero Pauson–Khand
reaction of ketenimines [34], cobalt-catalyzed reductive coupling of nitriles with acry-
lamides [35], Zn/TiCl4-mediated reductive coupling of imides with ketones [36], and
photooxidative coupling of furans with amines [37,38]. Dehydrogenative C–N bond for-
mation of 4-pentenamides is considered an efficient preparation approach because it can
achieve atom- and step-economic syntheses. Recently, Poli et al. reported a palladium-
catalyzed γ-methylidene-γ-lactam synthesis through the CDC between olefinic C–H and
N–H bonds (Scheme 1b) [39]. However, to the best of our knowledge, this is the only
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example of its dehydrogenative synthesis; therefore, further development of such synthetic
methods is highly desirable. Herein, we report a copper-catalyzed intramolecular dehydro-
genative coupling reaction of 4-pentenamides for the synthesis of γ-alkylidene-γ-lactams
via nitrogen-centered radicals (Scheme 1c). Notably, the reaction affords α,β-unsaturated- or
α,β-saturated-γ-alkylidene-γ-lactams, which could be controlled by the reaction conditions.
Furthermore, our method can be applied to various 4-pentenamides with methoxy, alkyl,
halogen (fluoride, chloride, and bromide), trifluoromethyl, ester, and cyano substituents.
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2. Results

We began our investigation of intramolecular C(sp2)–H amidation using N,5,5-triphenyl
pent-4-enamide 1a as the model substrate (Table 1). When the reaction was performed in
the presence of CuF2 (10 mol%), 4-tert-butylpyridine (1.0 equiv), and tBuOOtBu (4.0 equiv)
in 1,2-DCE at 120 ◦C for 18 h (condition A), 5-alkylidene-3-pyrrolin-2-one 2a was obtained
in high yield (entry 1). Reactions with other copper sources, such as CuCl, CuCl2, and
Cu(OAc)2, also proceeded (entry 2). Subsequent screening of pyridine derivatives revealed
that 4-tert-butylpyridine afforded the best yield of 2a (entry 3). Performing the reaction in
the absence of 4-tert-butylpyridine drastically decreased the yield of 2a (entry 4). Other
oxidants such as tert-butyl peroxide and tert-butyl peroxyacetate lowered the yield (entry 5).
On the other hand, when MnO2 was used as the oxidant, 5-alkylidene-pyrrolidin-2-one
derivative 3a, which has a saturated lactam ring, was obtained with high selectivity (entry 6).
Evaluation of various solvents revealed 1,2-DCE to be the most effective (entry 7). Lowering
the reaction temperature to 100 ◦C resulted in a slightly decreased yield of the desired
product 2a (entry 8). Finally, the reaction could be scaled up to 1.0 mmol to afford 2a in a
good yield (entry 9).

With the optimized reaction conditions in hand, we next investigated the substrate
scope for the 5-alkylidene-3-pyrrolin-2-one synthesis using tBuOOtBu as the oxidant
(Scheme 2). First, we explored the scope of diarylethylene acceptors. Substrates pos-
sessing functional groups such as methyl and methoxy groups, and halogen atoms on
both benzene rings afforded the desired products in moderate to high yields (2b–f). The
cyclization of the substrates with tricyclic scaffolds proceeded to furnish the corresponding
products (2g and 2h). Subsequently, we investigated substitution in the aniline ring and
observed that the process afforded good-to-high amounts of cyclized products, regardless
of the electronic properties of the aniline ring (2i–r).
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Table 1. Effect of reaction parameters a.
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Entry Variation from Standard Conditions Yield (%) b

1 None 76 (85)
2 CuCl, CuCl2, or Cu(OAc)2 instead of CuF2 39–75
3 Pyridine, DMAP, or 1,10-phen instead of 4-tert-butylpyridine 21–66
4 W/O 4-tert-butylpyridine 29
5 tBuOOH, tBuOOAc, or PIDA instead of tBuOOtBu 0–35
6 MnO2 instead of tBuOOtBu 5 c

7 DCM, toluene, or PhCF3 instead of 1,2-DCE 0–44
8 At 100 ◦C 73
9 1.0 mmol Scale 83 (87)

a Reaction conditions: 1a (0.20 mmol), 4-tert-butylpyridine (0.20 mmol), tBuOOtBu (0.80 mmol), 1,2-DCE (2.5 mL),
at 120 ◦C for 18 h under Ar. b Determined by 1H-NMR using 1,1,2-trichloroethane as the internal standard.
Isolated yield in parentheses. c 5-(Diphenylmethylene)-1-phenylpyrrolidin-2-one 3a was obtained in 89% yield
instead of 2a.

Next, we investigated the synthesis of 5-alkylidene-pyrrolidin-2-ones using MnO2
as the oxidant (Scheme 3). When the reaction of 1a was performed with CuBr (10 mol%),
AgBF4 (10 mol%), 4-tert-butylpyridine (25 mol%), and MnO2 (3.0 equiv) in 1,2-DCE, at
120 ◦C, for 24 h (condition B) [40–42], 5-alkylidene-pyrrolidin-2-one 3a was obtained in a
high yield (for details, see Supplementary Materials). Using these optimized conditions, we
then explored the scope and generality of the 5-alkylidene-pyrrolidin-2-one synthesis. Sub-
strates with various functional groups on the diarylethylene moieties were first examined
and afforded the corresponding cyclized products with high selectivities (3b–e). Subse-
quently, the reaction of amide bearing tricyclic dibenzo[a,d]cycloheptene scaffold proceeded
smoothly (3h). Finally, the effect of aryl groups on the nitrogen atoms was investigated.
Substrates possessing benzene derivatives on their amide nitrogen atoms smoothly under-
went cyclization (3i–r). This process could also be applied to N-benzothiazole-substituted
amide, which, however, afforded a low yield (3s).

Having studied the scope of the reaction, we next conducted experiments to obtain an
insight into the reaction mechanism (Scheme 4). First, under both optimized conditions,
the reactions were performed in the presence of the radical scavengers 2,6-di-tert-butyl-4-
methylphenol (BHT) or hydroquinone, which led to a significant decrease in the yield of
2a (condition A) or 3a (condition B) (Scheme 4a). These results suggest that the reactions
proceeded via radical processes. Next, to investigate the possibility of saturated-r-lactam 3a
acting as an intermediate for 2a, the reaction using 3a as a substrate was conducted under
condition A (Scheme 4b). Consequently, 2a was obtained in 32% yield, indicating that 3a
is one of the intermediates in the synthesis of 2a. In contrast, we recovered the starting
material 3a under condition B. Furthermore, regarding α,β-unsaturated-γ-alkylidene-γ-
lactam 2 synthesis, we shortened the reaction time to unveil the reaction intermediate, and
aminochlorinated product 4a was obtained in a good yield (Scheme 4c). The structure of 4a
was confirmed by X-ray crystallographic analysis (for details, see Supplementary Materials).
Contrary, the reaction under condition B for 3 h produced only 6% of 4a. Subsequently,
the reaction starting from 4a under condition A proceeded smoothly, suggesting that 4a
is a possible intermediate for the synthesis of α,β-unsaturated-γ-alkylidene-γ-lactam 2a
(Scheme 4d). Additionally, transformation of 4a under condition B also proceeded to afford
2a in good yield. From these results, we assume that the preference for either 2 or 3 is
determined by whether aminochlorinated compound 4 is formed in situ.
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Scheme 2. Substrate scope of 5-alkylidene-3-pyrrolin-2-one synthesis. a Isolated yields. Reaction
conditions: 1 (0.20 mmol), CuF2 (0.020 mmol), 4-tert-butylpyridine (0.20 mmol), and tBuOOtBu
(0.80 mmol) in 1,2-DCE (2.5 mL) at 120 ◦C for 18 h. b Concentration of 1 was 0.10 M. c 5.0 equiv
of tBuOOtBu was used. d 75 mol% of 4-tert-butylpyridine was used. e 3.0 equiv of tBuOOtBu was
used. f Concentration of 1 was 0.13 M. g Reaction was conducted at 140 ◦C. h Concentration of 1 was
0.067 M. i Reaction conditions: 1 (0.20 mmol), CuF2 (0.020 mmol), 4-tert-butylpyridine (0.30 mmol),
and tBuOOtBu (1.0 mmol) in 1,2-DCE (1.0 mL) at 140 ◦C for 26 h.
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determined by 1H-NMR analysis. a Reaction conditions: 1 (0.20 mmol), CuBr (0.020 mmol), AgBF4

(0.020 mmol), 4-tert-butylpyridine (0.050 mmol), and MnO2 (0.60 mmol) in 1,2-DCE (1.5 mL) at 120 ◦C
for 24 h. b Reaction was conducted at 140 ◦C.
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Scheme 4. Control experiments.

Based on these experimental results, a plausible mechanism is proposed for copper-
catalyzed intramolecular olefinic C(sp2)–H amidation (Scheme 5). For the formation of
5-alkylidene-3-pyrrolin-2-ones 2 under condition A, the nitrogen-centered radical A is
initially generated by the CuII species [43–45]. It subsequently undergoes addition to an
alkene moiety present in the substrate to afford the dibenzylic radical species B. For the
next step, there are two possibilities: In the first, B is chlorinated under condition A to form
the aminochlorinated product 4a [46–49], and. subsequent HCl elimination and further
oxidation results in the formation of 2a. In the second, 3a is generated by oxidation and
deprotonation of B, and further oxidation of 3a occurs to provide 2a [50–52]. On the other
hand, under condition B, 3a is formed via oxidation and deprotonation of B as in condition
A, however, no further transformation of 3a occurs, resulting in the formation of 3a as the
major product. The detailed mechanism is unclear at present and needs to be clarified
through further investigation.
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3. Materials and Methods
3.1. Materials

Materials were purchased from Tokyo Kasei Co. (Tokyo, Japan), Sigma-Aldrich Inc.
(St. Louis, MO, USA) and other commercial suppliers, and were used as received. Flash
column chromatography was performed with Kanto silica gel 60 N (spherical, neutral,
70–230 mesh). Melting points were measured with a Yazawa micro melting point apparatus
and uncorrected. IR spectra were recorded on a SHIMADZU IRAffinity. 1H NMR spectra
were recorded on a JEOL JNMAL400 (400 MHz) spectrometer or a JEOL ECA600 (600 MHz)
spectrometer. Chemical shifts are expressed in δ (parts per million, ppm) values and
coupling constants are expressed in herts (Hz). 1H NMR spectra were referenced to
tetramethylsilane as an internal standard or to a solvent signal (CDCl3: 7.26 ppm, DMSO-d6:
2.49 ppm). 13C NMR spectra were referenced to a solvent signal (CDCl3: 77.0 ppm,
DMSO-d6: 39.5 ppm). 19F NMR spectra were referenced to 4-fluorotoluene as an internal
standard (−118.0 ppm). The following abbreviations are used: s = singlet, d = doublet,
t = triplet, q = quartet, dd, = double doublet, m = multiplet, and br.s. = broad singlet.
Low- and high-resolution mass spectra (LRMS and HRMS) were obtained from Mass
Spectrometry Resource, Graduate School of Pharmaceutical Sciences, Tohoku University,
on a JEOL JMS-DX 303 and JMS700/JMS-T 100 GC spectrometer. The Bruker D8 VENTURE
X-ray diffractometer was used to determine the structure of the grown crystals.

3.2. General Procedure for the Synthesis of 5-Alkylidene-pyrrolin-2-ones

In a glove box, amide 1 (0.20 mmol), CuF2 (2.0 mg, 0.020 mmol), 4-tert-butylpyridine
(29.3 µL, 0.020 mmol), tBuOOtBu (147.0 µL, 0.80 mmol), and 1,2-dichloroethane (2.5 mL)
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were added to a sealed tube. The mixture was stirred at 120 ◦C for 18 h. The reaction was
diluted with water (10 mL) and extracted with chloroform (10 mL × 3). The organic layers
were washed with brine (10 mL) and dried over MgSO4. The solvent was removed under a
reduced pressure and the residue was purified by SiO2 column chromatography.

3.3. General Procedure for the Synthesis of 5-Alkylidene-pyrrolidin-2-ones

In a glove box, amide 1 (0.20 mmol), CuBr (2.8 mg, 0.020 mmol), AgBF4 (3.8 mg,
0.020 mmol), tert-butylpyridine (7.4 µL, 0.050 mmol), MnO2 (52.2 mg, 0.60 mmol), and
1,2-dichloroethane (1.5 mL) were added to a sealed tube. The mixture was stirred at 120 ◦C
for 24 h. After the reaction, the mixture was filtered through Celite and a SiO2 pad with
AcOEt, and then the solvent was removed under a reduced pressure. The residue was
purified by SiO2 column chromatography.

3.4. Spectroscopic Data of Products

5-(Diphenylmethylene)-1-phenyl-1,5-dihydro-2H-pyrrol-2-one (2a). Obtained as yel-
low needles in 85% (55.0 mg, 0.20 mmol scale), 87% (286.6 mg, 1.0 mmol scale), recrystallized
from DCM/hexane, mp. 160–163 ◦C. 1H NMR (400 MHz, CDCl3/TMS) δ (ppm): 7.38–7.36
(3H, m), 7.26–7.23 (2H, m), 7.21 (1H, d, J = 5.8 Hz), 7.00–6.83 (10H, m), 6.28 (1H, d, J = 5.4 Hz);
13C{1H} NMR (100 MHz, CDCl3/TMS) δ (ppm): 171.8, 140.5, 140.3, 138.1, 137.9, 135.8, 131.6,
130.94, 130.89, 128.4, 128.0, 127.9, 127.7, 127.2, 127.1, 126.0, 121.7; LRMS (EI) m/z: 323 (M+);
HRMS (EI-TOF) Calcd. for C23H17NO: 323.1310, found: 323.1286; IR (neat): 3052, 1691,
1683, 1498, 1443, 1370, 1213, 1203, 1163, 1073, 968, 801, 774, 765, 756 cm−1.

5-(Bis(4-methoxyphenyl)methylene)-1-phenyl-1,5-dihydro-2H-pyrrol-2-one (2b). Ob-
tained as red crystals in 80% (61.5 mg), recrystallized from DCM/hexane, mp. 177–178 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.19–7.17 (3H, m), 7.01 (2H, t, J = 7.6 Hz),
6.97–6.94 (3H, m), 6.90 (2H, d, J = 8.9 Hz), 6.77 (2H, d, J = 8.9 Hz), 6.42 (2H, d, J = 8.9 Hz),
6.23 (1H, d, J = 5.5 Hz), 3.85 (3H, s), 3.66 (3H, s); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ
(ppm): 171.9, 160.1, 159.3, 140.3, 136.8, 136.1, 133.1, 132.5, 131.0, 130.6, 127.8, 127.0, 125.73,
125.72, 120.6, 113.5, 112.7, 55.3, 55.2; LRMS (EI) m/z: 383 (M+); HRMS (EI-TOF) Calcd. for
C25H21NO3: 383.1521, found: 383.1539; IR (neat): 1675, 1604, 1508, 1498, 1252, 1179, 1028,
969, 831 cm−1.

5-(Di-p-tolylmethylene)-1-phenyl-1,5-dihydro-2H-pyrrol-2-one (2c). Obtained as col-
orless needles in 60% (42.4 mg), recrystallized from DCM/hexane, mp. 161–162 ◦C. 1H
NMR (600 MHz, DMSO-d6) δ (ppm): 7.21 (2H, d, J = 8.2 Hz), 7.18 (1H, d, J = 5.9 Hz), 7.11
(2H, d, J = 8.3 Hz), 6.99 (2H, t, J = 7.2 Hz), 6.94–6.91 (3H, m), 6.70 (2H, d, J = 8.2 Hz), 6.67
(2H, d, J = 8.2 Hz), 6.30 (1H, d, J = 5.9 Hz), 2.34 (3H, s), 2.07 (3H, s); 13C{1H} NMR (150 MHz,
DMSO-d6) δ (ppm): 171.0, 140.6, 138.1, 137.5, 137.3, 137.1, 136.0, 135.1, 131.4, 130.6, 130.3,
128.8, 127.7, 127.6, 127.2, 125.5, 121.0, 20.8, 20.7; LRMS (EI) m/z: 351 (M+); HRMS (EI-TOF)
Calcd. for C25H21NO: 351.1623, found: 351.1606; IR (neat): 1688, 1497, 1371, 1300, 1209,
1182, 969, 823, 802 cm−1.

5-(Bis(4-fluorophenyl)methylene)-1-phenyl-1,5-dihydro-2H-pyrrol-2-one (2d). Ob-
tained as yellow crystals in 82% (58.9 mg), recrystallized from DCM/hexane, mp. 153–155 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.21 (2H, dd, J = 8.6, 5.2 Hz), 7.17 (1H, d,
J = 5.5 Hz), 7.08 (2H, t, J = 8.6 Hz), 7.03 (2H, t, J = 7.6 Hz), 6.98 (1H, t, J = 7.6 Hz), 6.95–6.93
(2H, m), 6.80 (2H, dd, J = 8.9, 5.5 Hz), 6.59 (2H, t, J = 8.9 Hz), 6.29 (1H, d, J = 5.5 Hz);
13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 171.6, 163.0 (d, JC–F = 249.3 Hz), 162.1
(d, JC–F = 249.3 Hz), 139.8, 138.2, 136.4 (d, JC–F = 2.9 Hz), 135.7, 133.9 (d, JC–F = 2.9 Hz),
133.2 (d, JC–F = 8.6 Hz), 132.6 (d, JC–F = 8.6 Hz), 128.2, 128.1, 127.1, 126.3, 122.1, 115.3 (d,
JC–F = 21.5 Hz), 114.4 (d, JC–F = 22.9 Hz); 19F NMR (565 MHz, CDCl3) δ (ppm): −111.7,
−111.9; LRMS (EI) m/z: 359 (M+); HRMS (EI-TOF) Calcd. for C23H15F2NO: 359.1122,
found: 359.1110; IR (neat): 3039, 1688, 1594, 1505, 1497, 1366, 1305, 1231, 1156, 1101, 969,
844 cm−1.

5-(Bis(4-chlorophenyl)methylene)-1-phenyl-1,5-dihydro-2H-pyrrol-2-one (2e). Ob-
tained as yellow crystals in 70% (54.6 mg), recrystallized from DCM/hexane, mp. 206–208 ◦C.
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1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.36 (2H, d, J = 8.2 Hz), 7.18–7.16 (3H, m),
7.05–6.99 (3H, m), 6.93–6.92 (2H, m), 6.86 (2H, d, J = 8.3 Hz), 6.74 (2H, d, J = 8.9 Hz), 6.31
(1H, d, J = 5.5 Hz); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 171.5, 139.6, 138.7, 138.5,
136.0, 135.5, 134.9, 133.9, 132.7, 132.0, 128.5, 128.2, 127.6, 127.5, 127.1, 126.3, 122.4; LRMS (EI)
m/z: 391 (M+); HRMS (EI-TOF) Calcd. for C23H15

35Cl2NO: 391.0531, found: 391.0503; IR
(neat): 3063, 1689, 1595, 1498, 1489, 1216, 1087, 1011, 806 cm−1.

5-(Bis(4-(trifluoromethyl)phenyl)methylene)-1-phenyl-1,5-dihydro-2H-pyrrol-2-one (2f).
Obtained as yellow crystals in 63% (58.3 mg), recrystallized from DCM/hexane, mp.
168–170 ◦C. 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.66 (2H, d, J = 8.2 Hz), 7.37 (2H,
d, J = 8.2 Hz), 7.21 (1H, d, J = 6.2 Hz), 7.14 (2H, d, J = 8.2 Hz), 7.02–6.95 (3H, m), 6.93–6.90
(4H, m), 6.37 (1H, d, J = 5.5 Hz); 13C{1H, 19F} NMR (150 MHz, CDCl3/TMS) δ (ppm): 171.3,
143.4, 140.9, 140.0, 139.4, 135.3, 131.8, 130.9, 130.7, 129.8, 128.3, 127.3, 126.7, 126.4, 125.4,
124.3, 123.9, 123.6, 123.4; 19F NMR (565 MHz, CDCl3) δ (ppm): −62.1, −62.5; LRMS (EI)
m/z: 459 (M+); HRMS (EI-TOF) Calcd. for C25H15F6NO: 459.1058, found: 459.1048; IR
(neat): 1696, 1612, 1322, 1155, 1121, 1065, 810 cm−1.

1-Phenyl-5-(9H-xanthen-9-ylidene)-1,5-dihydro-2H-pyrrol-2-one (2g). Obtained as
yellow crystals in 25% (16.4 mg), recrystallized from DCM/hexane, mp. 180–183 ◦C. 1H
NMR (600 MHz, CDCl3/TMS) δ (ppm): 8.02 (1H, d, J = 6.0 Hz), 7.62 (1H, dd, J = 7.5, 1.5 Hz),
7.40–7.37 (1H, m), 7.30–7.25 (2H, m), 7.07–7.02 (4H, m), 6.99 (1H, td, J = 7.7, 1.5 Hz), 6.92
(2H, dd, J = 8.0, 1.5 Hz), 6.70 (1H, dd, J = 7.5, 1.5 Hz), 6.40 (1H, d, J = 6.0 Hz), 6.38–6.35 (1H,
m); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 171.7, 154.2, 153.2, 138.8, 136.5, 134.4,
128.9, 128.7, 128.6, 128.1, 127.5, 126.6, 126.3, 124.2, 123.8, 122.5, 122.0, 121.6, 116.9, 116.3,
115.2; LRMS (EI) m/z: 337 (M+); HRMS (EI-TOF) Calcd. for C23H15NO2: 337.1103, found:
337.1096; IR (neat): 1684, 1593, 1495, 1447, 1199, 966, 872 cm−1.

5-(5H-Dibenzo[a,d][7]annulen-5-ylidene)-1-phenyl-1,5-dihydro-2H-pyrrol-2-one (2h).
Obtained as yellow crystals in 78% (54.0 mg), recrystallized from DCM/hexane, mp.
235–236 ◦C. 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.40–7.38 (1H, m), 7.35–7.32 (3H,
m), 7.28–7.18 (3H, m), 7.08 (1H, d, J = 8.3 Hz), 6.99–6.89 (4H, m), 6.70–6.65 (3H, m), 6.29–6.24
(2H, m); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 171.3, 138.4, 136.8, 136.3, 135.7,
135.3, 134.8, 133.5, 131.2, 130.9, 129.3, 128.5, 128.1, 128.0, 127.8, 127.54, 127.49, 127.4, 127.3,
126.9, 126.6, 126.3, 122.6; LRMS (EI) m/z: 347 (M+); HRMS (EI-TOF) Calcd. for C25H17NO:
347.1310, found: 347.1286; IR (neat): 1690, 1496, 1371, 1210, 1167, 786 cm−1.

5-(Diphenylmethylene)-1-(4-methoxyphenyl)-1,5-dihydro-2H-pyrrol-2-one (2i). Ob-
tained as yellow crystals in 77% (54.1 mg), recrystallized from DCM/hexane, mp. 133–134 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.37–7.35 (3H, m), 7.23 (2H, dd, J = 7.9, 1.7 Hz),
7.18 (1H, d, J = 6.2 Hz), 6.99–6.96 (1H, m), 6.91 (2H, t, J = 7.6 Hz), 6.86–6.82 (4H, m), 6.53–6.51
(2H, m), 6.27 (1H, d, J = 6.2 Hz), 3.66 (3H, s); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm):
172.0, 157.6, 140.6, 139.9, 138.3, 137.9, 131.6, 130.9, 130.6, 128.8, 128.33, 128.28, 128.0, 127.6,
127.2, 121.7, 113.4, 55.3; LRMS (EI) m/z: 353 (M+); HRMS (EI-TOF) Calcd. for C24H19NO2:
353.1416, found: 353.1410; IR (neat): 3052, 1690, 1613, 1512, 1443, 1248, 1159, 1026, 830,
806 cm−1.

5-(Diphenylmethylene)-1-(p-tolyl)-1,5-dihydro-2H-pyrrol-2-one (2j). Obtained as
yellow crystals in 81% (54.4 mg), recrystallized from DCM/hexane, mp. 103–105 ◦C. 1H
NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.37–7.35 (3H, m), 7.24 (2H, dd, J = 7.9, 1.7 Hz),
7.18 (1H, d, J = 6.2 Hz), 6.95 (1H, t, J = 7.5 Hz), 6.88 (2H, t, J = 7.5 Hz), 6.83–6.81 (4H, m),
6.77 (2H, d, J = 8.2 Hz), 6.26 (1H, d, J = 6.2 Hz), 2.14 (3H, s); 13C{1H} NMR (150 MHz,
CDCl3/TMS) δ (ppm): 171.9, 140.7, 140.0, 138.3, 138.0, 135.7, 133.2, 131.6, 130.9, 130.7, 128.5,
128.4, 128.0, 127.4, 127.1, 127.0, 121.8, 20.8; LRMS (EI) m/z: 337 (M+); HRMS (EI-TOF) Calcd.
for C24H19NO: 337.1467, found: 337.1441; IR (neat): 3030, 1690, 1593, 1515, 1489, 1446, 1374,
1218, 1162, 971, 824 cm−1.

5-(Diphenylmethylene)-1-(4-isopropylphenyl)-1,5-dihydro-2H-pyrrol-2-one (2k). Ob-
tained as orange crystals in 81% (58.9 mg), recrystallized from DCM/hexane, mp. 121–124 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.37–7.34 (3H, m), 7.25–7.23 (2H, m), 7.19 (1H, d,
J = 5.5 Hz), 6.91 (1H, t, J = 7.2 Hz), 6.86–6.78 (8H, m), 6.27 (1H, d, J = 6.2 Hz), 2.69 (1H, sep,
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J = 6.9 Hz), 1.09 (6H, d, J = 6.9 Hz); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 171.8,
146.7, 140.7, 139.9, 138.2, 137.9, 133.3, 131.6, 130.8, 130.7, 128.3, 128.0, 127.5, 127.1, 127.0,
125.9, 121.7, 33.6, 23.8; LRMS (EI) m/z: 365 (M+); HRMS (EI-TOF) Calcd. for C26H23NO:
365.1780, found: 365.1752; IR (neat): 2958, 2863, 1692, 1371, 1155, 805 cm−1.

5-(Diphenylmethylene)-1-(4-fluorophenyl)-1,5-dihydro-2H-pyrrol-2-one (2l). Obtained
as yellow crystals in 78% (53.3 mg), recrystallized from DCM/hexane, mp. 153–155 ◦C. 1H
NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.39–7.36 (3H, m), 7.25–7.21 (3H, m), 7.01 (1H, t,
J = 7.2 Hz), 6.94–6.90 (4H, m), 6.83 (2H, d, J = 6.9 Hz), 6.68 (2H, t, J = 8.6 Hz), 6.27 (1H, d,
J = 6.2 Hz); 13C{1H, 19F} NMR (150 MHz, CDCl3/TMS) δ (ppm): 171.9, 160.6, 140.4, 140.3,
138.1, 137.9, 131.9, 131.7, 131.03, 130.95, 128.8, 128.6, 128.2, 128.0, 127.4, 121.7, 114.8; 19F
NMR (565 MHz, CDCl3) δ (ppm): −115.4; LRMS (EI) m/z: 341 (M+); HRMS (EI-TOF) Calcd.
for C23H16FNO: 341.1216, found: 341.1239; IR (neat): 1693, 1600, 1506, 1490, 1382, 1216, 974,
838, 808, 738 cm−1.

1-(4-Chlorophenyl)-5-(diphenylmethylene)-1,5-dihydro-2H-pyrrol-2-one (2m). Ob-
tained as yellow crystals in 88% (63.2 mg), recrystallized from DCM/hexane, mp. 128–130 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.39–7.36 (3H, m), 7.25–7.22 (3H, m), 7.03 (1H,
t, J = 7.2 Hz), 6.95–6.92 (4H, m), 6.89–6.87 (2H, m), 6.83 (2H, d, J = 6.9 Hz), 6.27 (1H, d,
J = 6.2 Hz); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 171.5, 140.4, 140.2, 137.8, 137.7,
134.5, 131.62, 131.57, 131.2, 130.9, 128.6, 128.2, 128.1, 127.99, 127.97, 127.4, 121.6; LRMS (EI)
m/z: 357 (M+); HRMS (EI-TOF) Calcd. for C23H16

35ClNO: 357.0920, found: 357.0910; IR
(neat): 1688, 1593, 1554, 1493, 1446, 1374, 1203, 1089, 971, 833, 798 cm−1.

1-(4-Bromophenyl)-5-(diphenylmethylene)-1,5-dihydro-2H-pyrrol-2-one (2n). Ob-
tained as yellow crystals in 89% (71.4 mg), recrystallized from DCM/hexane, mp. 149–151 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.39–7.36 (3H, m), 7.25–7.22 (3H, m), 7.10 (2H,
d, J = 8.2 Hz), 7.04 (1H, t, J = 7.6 Hz), 6.94 (2H, t, J = 7.9 Hz), 6.83–6.81 (4H, m), 6.27 (1H, d,
J = 5.5 Hz); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 171.5, 140.5, 140.2, 137.8, 137.6,
135.0, 131.6, 131.2, 130.93, 130.89, 128.61, 128.58, 128.1, 128.0, 127.4, 121.7, 119.5; LRMS (EI)
m/z: 401 (M+); HRMS (EI-TOF) Calcd. for C23H16

79BrNO: 401.0415, found: 401.0427; IR
(neat): 3068, 1684, 1489, 1162, 1068, 1015, 831, 798 cm−1.

5-(Diphenylmethylene)-1-(4-(trifluoromethyl)phenyl)-1,5-dihydro-2H-pyrrol-2-one (2o).
Obtained as colorless needles in 46% (35.8 mg), recrystallized from DCM/hexane, mp.
136–137 ◦C. 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.41–7.37 (3H, m), 7.27–7.26 (3H, m),
7.23 (2H, d, J = 8.9 Hz), 7.06 (2H, d, J = 8.2 Hz), 6.97 (1H, t, J = 7.2 Hz), 6.90 (2H, t, J = 7.6 Hz),
6.82 (2H, d, J = 7.6 Hz), 6.30 (1H, d, J = 5.5 Hz); 13C{1H, 19F} NMR (150 MHz, CDCl3/TMS)
δ (ppm): 171.3, 140.8, 140.1, 139.1, 137.8, 137.5, 131.7, 131.5, 130.8, 128.8, 128.24, 128.19, 127.9,
127.5, 127.2, 124.9, 123.8, 121.7; 19F NMR (565 MHz, CDCl3) δ (ppm): −62.1; LRMS (EI)
m/z: 391 (M+); HRMS (EI-TOF) Calcd. for C24H16F3NO (M+): 391.1184, found: 391.1174; IR
(neat): 1691, 1379, 1322, 1112, 1063, 975, 853, 800 cm−1.

4-(2-(Diphenylmethylene)-5-oxo-2,5-dihydro-1H-pyrrol-1-yl)benzonitrile (2p). Ob-
tained as yellow crystals in 73% (51.0 mg), recrystallized from DCM/hexane, mp. 178–179 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.43–7.38 (3H, m), 7.29–7.25 (5H, m), 7.09–7.08
(2H, m), 7.03 (1H, t, J = 7.2 Hz), 6.94 (2H, t, J = 7.9 Hz), 6.86–6.84 (2H, m), 6.29 (1H, d,
J = 6.2 Hz); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 171.0, 141.2, 140.0, 139.8, 137.8,
137.0, 131.8, 131.7, 131.6, 130.9, 128.9, 128.5, 128.3, 127.6, 127.2, 121.5, 118.5, 109.0; LRMS (EI)
m/z: 348 (M+); HRMS (EI-TOF) Calcd. for C24H16N2O: 348.1263, found: 348.1263; IR (neat):
2226, 1690, 1600, 1506, 1367, 1207, 1159, 970, 845, 799 cm−1.

Methyl 4-(2-(diphenylmethylene)-5-oxo-2,5-dihydro-1H-pyrrol-1-yl)benzoate (2q).
Obtained as colorless needles in 78% (58.9 mg), recrystallized from DCM/hexane, mp.
193–195 ◦C. 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.67 (2H, d, J = 8.2 Hz), 7.41–7.38
(3H, m), 7.27–7.25 (3H, m), 7.04 (2H, d, J = 8.2 Hz), 6.94 (1H, t, J = 7.2 Hz), 6.90 (2H, t,
J = 7.6 Hz), 6.85 (2H, d, J = 6.8 Hz), 6.28 (1H, d, J = 6.2 Hz), 3.84 (3H, s); 13C{1H} NMR
(150 MHz, CDCl3/TMS) δ (ppm): 171.4, 166.4, 140.8, 140.2, 140.1, 137.9, 137.5, 131.65, 131.58,
131.57, 130.9, 129.3, 128.7, 128.2, 127.5, 127.1, 126.5, 121.6, 52.0; LRMS (EI) m/z: 381 (M+);
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HRMS (EI-TOF) Calcd. for C25H19NO3: 381.1365, found: 381.1341; IR (neat): 3062, 1722,
1696, 1601, 1507, 1437, 1361, 1275, 1167, 1102, 1072, 969, 863, 802 cm−1.

1-(3-Bromophenyl)-5-(diphenylmethylene)-1,5-dihydro-2H-pyrrol-2-one (2r). Ob-
tained as yellow needles in 85% (68.2 mg), recrystallized from DCM/hexane, mp. 143–145 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.39–7.36 (3H, m), 7.25–7.23 (3H, m), 7.04 (1H,
d, J = 8.2 Hz), 7.01–6.96 (5H, m), 6.89 (1H, t, J = 7.9 Hz), 6.86 (2H, d, J = 6.8 Hz), 6.27 (1H, d,
J = 5.5 Hz); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 171.4, 140.5, 140.2, 137.8, 137.5,
136.9, 131.6, 131.3, 130.6, 130.2, 129.1, 128.9, 128.6, 128.14, 128.10, 127.4, 125.8, 121.6, 121.3;
LRMS (EI) m/z: 401 (M+); HRMS (EI-TOF) Calcd. for C23H16

79BrNO (M+): 401.0415, found:
401.0438; IR (neat): 1690, 1587, 1476, 1364, 1201, 1152, 980, 802 cm−1.

5-(Diphenylmethylene)-1-phenylpyrrolidin-2-one (3a). Obtained as colorless plates
in 91% (59.0 mg), recrystallized from DCM/hexane, mp. 146–148 ◦C. 1H NMR (600 MHz,
CDCl3/TMS) δ (ppm): 7.31–7.29 (2H, m), 7.25–7.22 (1H, m), 7.19–7.18 (2H, m), 7.00–6.96
(4H, m), 6.90–6.88 (1H, m), 6.83–6.81 (3H, m), 6.72–6.71 (2H, m), 2.99–2.97 (2H, m), 2.71–2.68
(2H, m); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 176.3, 142.1, 139.2, 137.9, 136.1,
130.1, 130.0, 128.2, 127.9, 127.1, 126.7, 126.2, 126.0, 125.9, 120.2, 30.9, 28.3; LRMS (EI) m/z:
325 (M+); HRMS (EI-TOF) Calcd. for C23H19NO: 325.1467, found: 325.1456; IR (neat): 3046,
1723, 1620, 1595, 1495, 1359, 1160, 1027, 773, 751 cm−1.

5-(Bis(4-methoxyphenyl)methylene)-1-phenylpyrrolidin-2-one (3b). Obtained as
yellow crystals in 61% (46.8 mg), recrystallized from DCM/hexane, mp. 164–166 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.09 (2H, d, J = 8.9 Hz), 6.99–6.98 (4H, m),
6.91–6.90 (1H, m), 6.84 (2H, d, J = 8.9 Hz), 6.61 (2H, d, J = 8.9 Hz), 6.36 (2H, d, J = 8.9 Hz),
3.80 (3H, s), 3.62 (3H, s), 2.96 (2H, t, J = 7.7 Hz), 2.68 (2H, t, J = 7.7 Hz); 13C{1H} NMR
(150 MHz, CDCl3/TMS) δ (ppm): 176.3, 158.3, 157.7, 136.7, 136.1, 134.6, 132.0, 131.1, 131.0,
127.9, 126.1, 125.9, 119.5, 113.5, 112.6, 55.2, 55,1, 31.1, 28.4; LRMS (EI) m/z: 385 (M+); HRMS
(EI-TOF) Calcd. for C25H23NO3: 385.1678, found: 385.1706; IR (neat): 2969, 2835, 1713, 1606,
1508, 1358, 1179, 1027, 829, 761 cm−1.

5-(Di-p-tolylmethylene)-1-phenylpyrrolidin-2-one (3c). Obtained as colorless nee-
dles in 99% (69.4 mg, 3c:2c = 93:7), recrystallized from DCM/hexane, mp. 208–211 ◦C. 1H
NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.10 (2H, d, J = 8.2 Hz), 7.06 (2H, d, J = 8.2 Hz),
6.98–6.95 (4H, m), 6.90–6.87 (1H, m), 6.61 (2H, d, J = 8.2 Hz), 6.58 (2H, d, J = 8.2 Hz), 2.97
(2H, t, J = 7.6 Hz), 2.68 (2H, t, J = 7.6 Hz), 2.34 (3H, s), 2.09 (3H, s); 13C{1H} NMR (150 MHz,
CDCl3/TMS) δ (ppm): 176.3, 139.3, 137.3, 136.4, 136.3, 136.2, 135.5, 129.9, 129.8, 128.8,
127.85, 127.76, 126.2, 125.7, 120.2, 31.1, 28.4, 21.1, 20.9; LRMS (EI) m/z: 353 (M+); HRMS
(EI-TOF) Calcd. for C25H23NO: 353.1780, found: 353.1775; IR (neat): 3019, 2927, 1732, 1636,
1496, 1369, 1228, 1154, 815 cm−1.

5-(Bis(4-fluorophenyl)methylene)-1-phenylpyrrolidin-2-one (3d). Obtained as col-
orless crystals in 80% (58.2 mg, 3d:2d = 95:5), recrystallized from DCM/hexane, mp.
179–181 ◦C. 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.14–7.12 (2H, m), 7.03–6.94 (7H,
m), 6.67–6.64 (2H, m), 6.52 (2H, t, J = 8.6 Hz), 2.95 (2H, t, J = 7.9 Hz), 2.70 (2H, t, J = 7.9 Hz);
13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 176.2, 161.6 (1JC–F = 246.4 Hz), 161.0
(1JC–F = 246.4 Hz), 138.4, 137.8 (4JC–F = 4.3 Hz), 135.9, 135.1 (4JC–F = 2.9 Hz), 131.55 (3 JC–F
= 7.2 Hz), 131.48 (3JC–F = 8.6 Hz), 128.1, 126.4, 126.3, 117.8, 115.2 (2JC–F = 21.5 Hz), 114.1
(2JC–F = 21.5 Hz), 30.8, 28.2; 19F NMR (565 MHz, CDCl3) δ (ppm): −114.5, −115.2; LRMS
(EI) m/z: 361 (M+); HRMS (EI-TOF) Calcd. for C23H17F2NO: 361.1278, found: 361.1262; IR
(neat): 3040, 1736, 1632, 1598, 1505, 1370, 1293, 1153, 831, 758 cm−1.

5-(Bis(4-chlorophenyl)methylene)-1-phenylpyrrolidin-2-one (3e). Obtained as col-
orless needles in 82% (65.5 mg, 3e:2e = 94:6), recrystallized from DCM/hexane, mp.
204–206 ◦C. 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.28 (2H, d, J = 8.2 Hz), 7.09
(2H, d, J = 8.2 Hz), 7.04–7.01 (2H, m), 6.98 (1H, d, J = 6.9 Hz), 6.95 (2H, d, J = 7.6 Hz), 6.79
(2H, d, J = 8.2 Hz), 6.61 (2H, d, J = 8.2 Hz), 2.96 (2H, t, J = 7.7 Hz), 2.71 (2H, t, J = 7.7 Hz);
13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 176.1, 140.0, 139.1, 137.3, 135.8, 132.7, 132.0,
131.30, 131.26, 128.5, 128.2, 127.4, 126.5, 126.3, 117.4, 30.7, 28.2; LRMS (EI) m/z: 393 (M+);
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HRMS (EI-TOF) Calcd. for C23H17
35Cl2NO: 393.0687, found: 393.0671; IR (neat): 3064, 2944,

1732, 1612, 1488, 1355, 1156, 1012, 828, 756 cm−1.
5-(5H-Dibenzo[a,d][7]annulen-5-ylidene)-1-phenylpyrrolidin-2-one (3h). Obtained

as colorless crystals in 66% (46.3 mg), recrystallized from DCM/hexane, mp. 199–200 ◦C.
1H NMR (600 Hz, DMSO-d6) δ (ppm): 7.42–7.36 (3H, m), 7.27–7.24 (1H, m), 7.02–6.89 (6H,
m), 6.83–6.56 (5H, m), 3.12–3.08 (1H, m), 2.70–2.64 (1H, m), 2.45–2.41 (1H, m), 2.26–2.21 (1H,
m); 13C{1H} NMR (150 Hz, DMSO-d6), δ (ppm): 176.3, 138.3, 137.1, 136.8, 136.4, 134.9, 133.8,
131.3, 130.9, 128.9, 128.7, 128.3, 128.1, 127.8, 127.3, 127.2, 127.0, 126.4, 126.3, 125.6, 114.1, 28.7,
24.2; LRMS (EI) m/z: 349 (M+); HRMS (EI-TOF) Calcd. for C25H19NO: 349.1467, found:
349.1465; IR (neat): 3017, 1717, 1636, 1497, 1370, 1239, 1171, 803, 738 cm−1.

5-(Diphenylmethylene)-1-(4-methoxyphenyl)pyrrolidin-2-one (3i). Obtained as col-
orless needles in 76% (54.7 mg, 3i:2i = 93:7), recrystallized from DCM/hexane, mp. 158–161 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.29 (2H, t, J = 7.6 Hz), 7.22 (1H, t, J = 7.2 Hz),
7.18 (2H, d, J = 6.9 Hz), 6.88–6.84 (5H, m), 6.71–6.70 (2H, m), 6.50 (2H, d, J = 8.9 Hz),
3.65 (3H, s), 2.96 (2H, t, J = 7.9 Hz), 2.67 (2H, t, J = 7.9 Hz); 13C{1H} NMR (150 MHz,
CDCl3/TMS) δ (ppm): 176.6, 157.6, 142.2, 139.1, 138.2, 130.2, 129.9, 129.1, 128.2, 127.5, 127.1,
126.6, 125.9, 119.7, 113.4, 55.4, 30.7, 28.1; LRMS (EI) m/z: 355 (M+); HRMS (EI-TOF) Calcd.
for C24H21NO2: 355.1572, found: 355.1549; IR (neat): 3257, 1700, 1636, 1511, 1444, 1242,
1031, 741 cm−1.

5-(Diphenylmethylene)-1-(p-tolyl)pyrrolidin-2-one (3j). Obtained as yellow oil in
92% (62.7 mg, 3j:2j = 93:7). 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.30 (2H, t, J = 7.5 Hz),
7.22 (1H, tt, J = 7.4, 1.5 Hz), 7.19–7.17 (2H, m), 6.85–6.80 (5H, m), 6.76 (2H, d, J = 8.1 Hz),
6.71–6.69 (2H, m), 2.98–2.95 (2H, m), 2.69–2.67 (2H, m), 2.13 (3H, s); 13C{1H} NMR (150 MHz,
CDCl3/TMS) δ (ppm): 176.5, 142.2, 139.2, 138.1, 135.8, 133.5, 130.2, 130.0, 128.5, 128.2, 127.1,
126.6, 126.2, 125.7, 119.9, 30.8, 28.2, 20.8; LRMS (EI) m/z: 339 (M+); HRMS (EI-TOF) Calcd.
for C24H21NO: 339.1623, found: 339.1617; IR (neat): 3057, 1718, 1631, 1512, 1364, 1229, 1167,
1030, 816, 751 cm−1.

5-(Diphenylmethylene)-1-(4-isopropylphenyl)pyrrolidin-2-one (3k). Obtained as
colorless oil in 99% (72.5 mg, 3k:2k = 92:8). 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.29
(2H, t, J = 7.6 Hz), 7.22 (1H, t, J = 7.6 Hz), 7.18 (2H, d, J = 7.6 Hz), 6.85 (2H, d, J = 8.9 Hz),
6.80–6.79 (5H, m), 6.67 (2H, dd, J = 6.5, 3.1 Hz), 2.96 (2H, t, J = 7.9 Hz), 2.70–2.65 (3H, m),
1.09 (6H, d, J = 6.8 Hz); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 176.5, 146.8, 142.2,
139.1, 138.1, 133.6, 130.1, 129.9, 128.2, 127.0, 126.5, 126.3, 126.0, 125.8, 119.7, 33.7, 30.7, 28.1,
23.9; LRMS (EI) m/z: 367 (M+); HRMS (EI-TOF) Calcd. for C26H25NO: 367.1936, found:
367.1925; IR (neat): 3018, 2959, 1723, 1630, 1512, 1364, 1300, 1229, 1167, 832 cm−1.

5-(Diphenylmethylene)-1-(4-fluorophenyl)pyrrolidin-2-one (3l). Obtained as color-
less needle in 92% (63.4 mg, 3l:2l = 93:7), recrystallized from DCM/hexane, mp. 128–130 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.32–7.29 (2H, m), 7.25–7.22 (1H, m), 7.18–7.16
(2H, m), 6.96–6.93 (2H, m), 6.91–6.85 (3H, m), 6.72–6.70 (2H, m), 6.68–6.65 (2H, m), 3.00–2.97
(2H, m), 2.70–2.68 (2H, m); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 176.4, 160.5
(1JC–F = 245.0 Hz), 141.9, 139.1, 137.9, 132.1 (4JC–F = 2.9 Hz) 130.2, 129.9, 128.2, 128.0
(3JC–F = 8.6 Hz), 127.3, 126.8, 126.2, 120.2, 114.8 (2JC–F = 22.9 Hz), 30.8, 28.2; 19F NMR
(565 MHz, CDCl3) δ (ppm): −115.1; LRMS (EI) m/z: 343 (M+); HRMS (EI-TOF) Calcd. For
C23H18FN: 343.1372, found: 343.1352; IR (neat): 3058, 1724, 1633, 1604, 1507, 1368, 1299,
1228, 1153, 910, 752 cm−1.

1-(4-Chlorophenyl)-5-(diphenylmethylene)pyrrolidin-2-one (3m). Obtained as col-
orless needles in 76% (55.4 mg), recrystallized from DCM/hexane, mp. 165–167 ◦C. 1H
NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.31 (2H, t, J = 7.6 Hz), 7.25–7.22 (1H, m), 7.18–7.17
(2H, m), 6.94–6.86 (7H, m), 6.72–6.70 (2H, m), 2.98 (2H, t, J = 7.9 Hz), 2.69 (2H, t, J = 7.9 Hz);
13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 176.1, 141.7, 139.0, 137.6, 134.6, 131.4, 130.1,
129.9, 128.2, 128.0, 127.42, 127.38, 126.8, 126.2, 120.5, 30.9, 28.2; LRMS (EI) m/z: 359 (M+);
HRMS (EI-TOF) Calcd. for C23H18

35ClNO: 359.1077, found: 359.1092; IR (neat): 3076, 2929,
1719, 1636, 1492, 1364, 1300, 1233, 1165, 1088, 833 cm−1.
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1-(4-Bromophenyl)-5-(diphenylmethylene)pyrrolidin-2-one (3n). Obtained as col-
orless needles in 80% (64.7 mg, 3n:2n = 96:4), recrystallized from DCM/hexane, mp.
188–189 ◦C. 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.30 (2H, t, J = 7.6 Hz), 7.25–7.24
(1H, m), 7.17 (2H, d, J = 7.5 Hz), 7.08 (2H, d, J = 8.9 Hz), 6.91 (1H, t, J = 9.6 Hz), 6.87–6.85
(4H, m), 6.70 (2H, d, J = 7.6 Hz), 2.98 (2H, t, J = 7.9 Hz), 2.68 (2H, t, J = 7.9 Hz); 13C{1H}
NMR (150 MHz, CDCl3/TMS) δ (ppm): 176.1, 141.7, 139.0, 137.5, 135.1, 131.0, 130.1, 129.9,
128.2, 127.7, 127.4, 126.8, 126.2, 120.5, 119.4, 30.9, 28.2; LRMS (EI) m/z: 403 (M+); HRMS
(EI-TOF) Calcd. For C23H18

79BrNO: 403.0572, found: 403.0550; IR (neat): 3074, 1718, 1636,
1488, 1365, 1301, 1235, 1166, 1067, 1012 cm−1.

5-(Diphenylmethylene)-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one (3o). Obtained
as yellow crystals in 69% (54.4 mg, 3o:2o = 95:5), recrystallized from DCM/hexane, mp.
169–170 ◦C. 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.32 (2H, t, J = 7.6 Hz), 7.26–7.18
(5H, m), 7.10 (2H, d, J = 8.3 Hz), 6.84–6.83 (3H, m), 6.69 (2H, dd, J = 7.6, 1.4 Hz), 3.01 (2H,
t, J = 7.7 Hz), 2.72 (2H, t, J = 7.7 Hz); 13C{1H, 19F} NMR (150 MHz, CDCl3/TMS) δ (ppm):
176.0, 141.5, 139.1, 139.0, 137.2, 130.0, 129.9, 128.2, 127.8, 127.4, 126.9, 126.4, 126.3, 125.0,
123.7, 121.0, 31.0, 28.2; 19F NMR (565 MHz, CDCl3) δ (ppm): −62.1; LRMS (EI) m/z: 393
(M+); HRMS (EI-TOF) Calcd. For C24H18F3NO: 393.1340, found: 393.1328; IR (neat): 3060,
1721, 1636, 1592, 1490, 1366, 1324, 1232, 1161, 851, 753 cm−1.

4-(2-(Diphenylmethylene)-5-oxopyrrolidin-1-yl)benzonitrile (3p). Obtained as col-
orless crystals in 84% (59.1 mg, 3p:2p = 98:2), recrystallized from DCM/hexane, mp.
200–201 ◦C. 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.32 (2H, t, J = 7.5 Hz), 7.28–7.25
(3H, m), 7.18 (2H, d, J = 6.9 Hz), 7.14 (2H, d, J = 8.3 Hz), 6.90–6.86 (3H, m), 6.72–6.71 (2H,
m), 3.01 (2H, t, J = 7.7 Hz), 2.73 (2H, t, J = 7.7 Hz); 13C{1H} NMR (150 MHz, CDCl3/TMS)
δ (ppm): 175.8, 141.2, 140.0, 139.0, 136.73, 136.72, 131.8, 129.9, 128.3, 127.6, 127.1, 126.7,
126.2, 121.8, 118.5, 108.9, 31.2, 28.3; LRMS (EI) m/z: 350 (M+); HRMS (EI-TOF) Calcd. For
C24H18N2O: 350.1419, found: 350.1396; IR (neat): 3044, 2224, 1721, 1635, 1601, 1506, 1355,
1227, 1162, 844 cm−1.

Methyl 4-(2-(diphenylmethylene)-5-oxopyrrolidin-1-yl)benzoate (3q). Obtained as
colorless crystals in 84% (64.4 mg, 3q:2q = 98:2), recrystallized from DCM/hexane, mp.
191–192 ◦C. 1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.65 (2H, d, J = 8.9 Hz), 7.31 (2H,
t, J = 7.6 Hz), 7.26–7.24 (1H, m), 7.19 (2H, d, J = 6.8 Hz), 7.09 (2H, d, J = 8.2 Hz), 6.85–6.81
(3H, m), 6.73 (2H, d, J = 7.6 Hz), 3.84 (3H, s), 3.00 (2H, t, J = 7.9 Hz), 2.71 (2H, t, J = 7.9 Hz);
13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm): 176.0, 166.4, 141.6, 140.2, 139.0, 137.3, 130.0,
129.3, 128.2, 127.4, 127.1, 126.9, 126.40, 126.39, 125.6, 121.4, 52.0, 31.2, 28.4; LRMS (EI) m/z:
383 (M+); HRMS (EI-TOF) Calcd. For C25H21NO3: 383.1521, found: 383.1511; IR (neat):
3056, 2952, 1723, 1710, 1630, 1439, 1361, 1278, 1227, 855, 765 cm−1.

1-(3-Bromophenyl)-5-(diphenylmethylene)pyrrolidin-2-one (3r). Obtained as yel-
low crystals in 78% (63.2 mg, 3r:2r = 95:5), recrystallized from DCM/hexane, mp. 138–140 ◦C.
1H NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.31 (2H, t, J = 7.5 Hz), 7.25–7.23 (1H, m),
7.18 (2H, d, J = 7.5 Hz), 7.06 (1H, s), 7.01 (2H, d, J = 8.0 Hz), 6.92–6.85 (4H, m), 6.74 (2H,
d, J = 6.5 Hz), 2.99 (2H, t, J = 7.8 Hz), 2.69 (2H, t, J = 7.8 Hz); 13C{1H} NMR (150 MHz,
CDCl3/TMS) δ (ppm): 176.0, 141.6, 139.0, 137.4, 137.1, 129.93, 129.91, 129.4, 129.1, 129.0,
128.2, 127.4, 126.8, 126.3, 124.9, 121.4, 120.8, 30.9, 28.2; LRMS (EI) m/z: 403 (M+); HRMS
(EI-TOF) Calcd. For C23H18

79BrNO: 403.0572, found: 403.0580; IR (neat): 3057, 1724, 1631,
1590, 1571, 1476, 1352, 1220, 1155, 764 cm−1.

1-(Benzo[d]thiazol-2-yl)-5-(diphenylmethylene)pyrrolidin-2-one (3s). Obtained as
colorless needles in 38% (29.9 mg), recrystallized from DCM/hexane, mp. 192–193 ◦C. 1H
NMR (600 MHz, CDCl3/TMS) δ (ppm): 7.64 (1H, d, J = 8.2 Hz), 7.45 (1H, d, J = 8.3 Hz),
7.34–7.23 (6H, m), 7.19 (1H, t, J = 7.2 Hz), 6.93 (2H, d, J = 7.6 Hz), 6.82 (2H, t, J = 7.9 Hz), 6.64
(1H, t, J = 7.5 Hz), 3.08 (2H, t, J = 7.5 Hz), 2.79 (2H, t, J = 7.5 Hz); 13C{1H} NMR (150 MHz,
CDCl3/TMS) δ (ppm): 175.1, 154.2, 148.3, 140.9, 140.3, 134.8, 133.1, 130.2, 129.0, 128.1, 127.3,
127.2, 126.4, 125.7, 125.5, 124.3, 122.1, 120.8, 31.5, 28.5; LRMS (EI) m/z: 382 (M+); HRMS
(EI-TOF) Calcd. for C24H18N2OS (M+): 382.1140, found: 382.1167; IR (neat): 3048, 2914,
1723, 1635, 1512, 1279, 1234, 1168, 749 cm−1.
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5-(Chlorodiphenylmethyl)-1-phenylpyrrolidin-2-one (4a). Obtained as colorless nee-
dles in 50% (36.2 mg), recrystallized from DCM/hexane, mp. 156–157 ◦C. 1H NMR
(600 MHz, CDCl3/TMS) δ (ppm): 7.43 (2H, d, J = 6.9 Hz), 7.31–7.23 (5H, m), 7.09 (4H,
d, J = 4.8 Hz), 7.05–7.01 (3H, m), 7.00–6.96 (1H, m), 5.62 (1H, d, J = 8.3 Hz), 2.62–2.54 (1H,
m), 2.34–2.28 (2H, m), 2.24–2.15 (1H, m); 13C{1H} NMR (150 MHz, CDCl3/TMS) δ (ppm):
175.9, 142.6, 141.2, 138.7, 128.3, 128.2, 128.1, 127.9, 127.8, 127.5, 125.8, 125.77, 125.76, 82.5,
67.5, 30.5, 24.2; LRMS (FAB) m/z: 362 (M+H)+; HRMS (FAB-EB) Calcd. For C23H21

35ClNO
(M+H)+: 362.1312, found: 362.1324; IR (neat): 3067, 1689, 1599, 1499, 1404, 1291, 1039,
749 cm−1.

4. Conclusions

In conclusion, we developed a novel copper-catalyzed intramolecular olefinic C(sp2)–H
amidation of 4-pentenamides. This reaction is an efficient approach to synthesize α,β-
unsaturated-γ-alkylidene-γ-lactams or the α,β-saturated derivatives, which were control-
lable by varying the reaction conditions. The reaction exhibits good tolerance to various
functional groups including alkyl, methoxy, halogen (fluoride, chloride, and bromide), tri-
fluoromethyl, ester, and cyano moieties. Further studies aimed at expanding the substrate
scope and elucidating the reaction mechanism are currently underway.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28186682/s1, Table S1: Effect of reaction parameter for
the synthesis of 2a; Table S2: Copper optimization for the synthesis of 3a; Table S3: Optimization of
copper and silver salts for the synthesis of 3a; Table S4: Detailed reaction conditions for the synthesis
of 3a; Table S5: Crystal data and structure refinements for 4a; Scheme S1: Unsuccessful substrates
under condition B; Figure S1: ORTEP diagram of 4a with thermal ellipsoids drawn at 50% probability
level (CCDC No. 2284469). References [53–55] are cited in the supplementary materials.
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