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Abstract: Polymeric microparticles of polyethyleneglycol-polylactic acid-co-glycolic acid (PEG-PLGA)
are widely used as drug carriers for a variety of applications due to their unique characteristics.
Although existing techniques for producing polymeric drug carriers offer the possibility of achieving
greater production yield across a wide range of sizes, these methods are improbable to precisely
tune particle size while upholding uniformity of particle size and morphology, ensuring consistent
production yield, maintaining batch-to-batch reproducibility, and improving drug loading capacity.
Herein, we developed a novel scalable method for the synthesis of tunable-sized microparticles with
improved monodispersity and batch-to-batch reproducibility via the coaxial flow-phase separation
technique. The study evaluated the effect of various process parameters on microparticle size and
polydispersity, including polymer concentration, stirring rate, surfactant concentration, and the
organic/aqueous phase flow rate and volume ratio. The results demonstrated that stirring rate and
polymer concentration had the most significant impact on the mean particle size and distribution,
whereas surfactant concentration had the most substantial impact on the morphology of particles. In
addition to synthesizing microparticles of spherical morphology yielding particle sizes in the range
of 5–50 µm across different formulations, we were able to also synthesize several microparticles
exhibiting different morphologies and particle concentrations as a demonstration of the tunability
and scalability of this method. Notably, by adjusting key determining process parameters, it was
possible to achieve microparticle sizes in a comparable range (5–7 µm) for different formulations
despite varying the concentration of polymer and volume of polymer solution in the organic phase
by an order of magnitude. Finally, by the incorporation of fluorescent dyes as model hydrophilic
and hydrophobic drugs, we further demonstrated how polymer amount influences drug loading
capacity, encapsulation efficiency, and release kinetics of these microparticles of comparable sizes.
Our study provides a framework for fabricating both hydrophobic and hydrophilic drug-loaded
microparticles and elucidates the interplay between fabrication parameters and the physicochemical
properties of microparticles, thereby offering an itinerary for expanding the applicability of this
method for producing polymeric microparticles with desirable characteristics for specific drug
delivery applications.
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1. Introduction

Polymeric microparticles (MPs) are highly regarded as suitable carriers for a wide
range of drug delivery applications due to their unique characteristics. Among the different
polymeric materials available, polylactide-co-glycolide (PLGA) and poly(ethylene glycol)-
poly(lactide-co-glycolide) (PEG-PLGA) copolymers have been widely recognized as ideal op-
tions for producing microparticles, owing to their biocompatibility and FDA approval [1–3].
While PLGA offers the advantage of controllable drug release due to its favorable degra-
dation properties [3], PEG, due to its hydrophilicity and inert surface charge, can reduce
particle aggregation, prolong circulation time, improve cellular uptake, and serve as an
anchor for ligand attachment [4]. As a result of these additional benefits, PEG-PLGA is
highly desirable for the synthesis of particulate systems for drug delivery applications [5,6].

To date, several methods exist to fabricate PEG-PLGA MPs, the most common being
emulsion solvent evaporation, spray drying, electrospray, phase separation, and microflu-
idics method [7,8]. Depending on the fabrication technique, MPs exhibit distinct size,
polydispersity, and morphological characteristics which are crucial to ensuring the stability,
encapsulation efficiency, loading capacity, and release of drugs from microparticles [9]. As
a result, the biomolecule to be encapsulated and the application for which the MPs are
intended remain dependent on the technique chosen for MP synthesis [10,11].

While the microfluidic technique allows the fabrication of monodispersed polymeric
MPs with precisely controlled size and morphology, its reliance on expensive and compli-
cated instruments makes it challenging for large-scale production [9,12]. On the contrary,
despite being quick, easy, and highly scalable, spray drying and solvent extraction and
evaporation methods (single and double emulsion) are constrained by their inability to
tune and control particle size [11]. As a result, these methods often produce particles
with inconsistent batch-to-batch reproducibility, non-uniform size distribution, and low
drug loading [5,9,12,13]. Thus, the development of a simple, quick, low-cost, and scalable
technique for synthesizing polymeric microparticles with desirable characteristics holds
much promise in expanding the use of particulate systems for drug delivery applications.

As opposed to emulsification and solvent extraction-based techniques, phase separa-
tion has been demonstrated to be a simple and tunable method for the synthesis of poly-
meric microparticles with high encapsulation efficiency and narrow size distribution [14];
however, achieving high-scale production is difficult and generating optimal uniform and
monodisperse particle size remains a challenge due to the tendency of coarcevate formation
caused by particle aggregation [11]. To overcome this limitation, this study presents a novel
approach to fabricate PEG-PLGA microparticles of tunable sizes with improved monodis-
persity and batch-to-batch reproducibility while demonstrating the scalability of particle
production yield using a modified phase separation method based on a co-flow technique.

Benefiting from the combination of coflow and phase separation techniques, this
modified method offers several advantages including the flexibility of tuning particle size
and morphology with uniformity, enhancement of particle production yield, consistency
in batch to batch reproducibility, improvement of encapsulation of both hydrophobic
and hydrophilic drugs with high loading capacity, and easy and quick processing steps
owing to the low dependency on certain conventional microencapsulation steps, such
as mechanical agitation, prolonged solvent evaporation, and particle solidification time,
which significantly impact particle characteristics [8,15,16]. Moreover, the requirement
of low sample volumes, due to the simplicity of our developed coaxial needle construct,
makes it beneficial as no special setup and space are needed for sophisticated equipment,
thereby leading to a reduction of system footprint [17].

We show herein that fabrication parameters had an impact on the microparticle charac-
teristics both independently and in conjunction with each other. Consequently, by varying
fabrication parameters such as polymer concentration, surfactant flow rate, and concentra-
tion, organic solvent choice, stirring rate, and the volume ratio of the organic phase to the
aqueous phase, it was possible to synthesize microparticles of tunable sizes between 5 µm
and 50 µm, as well as particles of different morphologies.



Molecules 2023, 28, 6679 3 of 22

Moreover, the scalability of this method was demonstrated by producing micropar-
ticles of comparable sizes yet different particle concentrations through adjustments of
either the polymer concentration in the organic phase or the volume ratio of the organic
phase to the aqueous phase, a testament to this being evident in the two-fold increase in
encapsulation efficiency of rhodamine 6G dye, a model hydrophilic drug.

2. Results and Discussion
2.1. Optimization of Experimental Design and Mechanical Parameters

As a step towards ensuring the reproducibility of this method, we first investigated
the impact of major non-fabrication parameters, including mechanical instrumentations
and device components, on the characteristics of synthesized microparticles.

Generally, fabrication methods that rely on phase separation to generate emulsion
droplets for microparticle synthesis require mechanical agitation, such as stirring, ho-
mogenization, or sonication, to create small droplets dispersed in the aqueous phase [18].
Notably, rotor type has been reported to significantly impact the size and distribution of
particles as different rotors require specific motors, subsequently influencing the input
energy and performance of the stirrer [19,20]. To investigate this, two magnetic stirrers, the
RT Basic Series Magnetic Stirrer, Thermo Scientific™, and the Fisherbrand™ Isotemp™ Hot
Plate Stirrer, were used for the synthesis of microparticles based on the same formulation
conditions. Of interest, while very little difference in morphology was seen for micropar-
ticles produced by these two magnetic stirrers, the size of the particles was observed to
be impacted, as shown in Figure S1.1 and 1.2 with the RT Basic Series Magnetic Stirrer
identified to produce microparticles with smaller and narrow size distribution (9.3 ± 4.0
vs. 6.8 ± 3.1 µm). A potential explanation to this observed difference in size regardless
of maintaining all fabrication parameters constant for both stirrers could be due to their
respective design, top plate material, wattage requirement, and type of motor. Another
process parameter that was investigated was the size of the magnetic stir bar. As indicated
in Figure S1.1 and 1.2, an inverse correlation between stir bar size and particle average
diameter was observed with the larger stir bar of length 25.4 mm and diameter 8 mm,
resulting in a smaller microparticle size and narrow distribution as compared to the smaller
stir bar (length and diameter, 12.7 mm and 8 mm) also tested for the same formulation. This
resulting difference in size and particle distribution could be attributed to the differences
in vortex flow intensity, as a larger magnetic stir bar ensures an appropriate ratio of stir
bar length to beaker diameter. Subsequently, influencing the generation of a higher vortex
flow intensity facilitates a more vigorous agitation and stronger shear stress necessary to
break down large droplets and prevent the coacervation of droplets, as hypothesized in the
literature [21]. Thus, the larger stir bar and the RT Basic Series Magnetic Stirrer, Thermo
Scientific™, were used for the synthesis of the reference formulation and all subsequent
microparticle formulations. This selection was also influenced by the wider range of RT
Basic Series stirrer (150–2500 rpm) as compared to the Fisherbrand™ Isotemp™ Hot Plate
Stirrer, which is limited to 1500 rpm. Lastly, we also studied the impact of the diameter
of the inner needle of the coaxial needle construct, as this will influence the size of the
droplet generated. As expected [22], the coaxial needle construct consisting of a bigger
inner needle diameter (24 G) resulted in a small yet statistically significant increase in
the microparticle size and polydispersity as compared to microparticles synthesized with
a smaller inner needle diameter (30 G, which was adopted as a reference parameter for
further microparticle synthesis).

Considering these findings, maintaining consistency in both configurational and non-
fabrication factors, including the magnetic stirrer type, the dimensions and shape of the
stir bar, the beaker or evaporating dish type and size, and the coaxial needle diameter and
geometry, remains vital to ensure the reproducibility of this method. Hence, the parameters
that yielded microparticles of small size while maintaining consistency in reproducibility
across repeated batches were adopted for the establishment of the reference formulation
(Figures S1.1 and S1.2).
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2.2. Preparation and Characterization of Reference Formulation

In this study, PEG-PLGA microparticles were successfully prepared by a modified
phase separation method using a coaxial needle, resulting in co-flow geometry. Since
our main objective is to investigate the impact of the individual fabrication parameters
on the characteristics of microparticles synthesized via this method, we sought to first
prepare microparticles based on a reference formulation against which all other subsequent
microparticle formulations were compared. Optical microscopy characterization of these
particles revealed a uniform spherical morphology for all microparticles, with a normal
particle distribution and an average size of 6.7 ± 3.1 µm, as shown in Figure 1. Notably, no
statistically significant difference was observed upon analyzing over 200 particles across
three independent batches, thus emphasizing the high reproducibility of this method as
illustrated in Figure 1C.
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Figure 1. Microparticle size distribution of reference formulation: (A) optical micrograph of the
microparticle, (B) histogram of the microparticle size distribution of a representative batch, (C) batch-
to-batch comparison of the mean values of three independent batches of the reference formulation.
B1: Batch 1, B2: Batch 2, and B3: Batch 3. ns indicates no significance.

2.3. Summary of the Effect of Process Parameters on Microparticle Mean Size and
Size Distributions

A summary of the effect of the process parameters on the PEG-PLGA microparticle
formulated by the co-flow phase separation method is provided in Table 1 and Figure 2.
Overall, the stirring rate had the highest impact on microparticle size, followed by polymer
and surfactant concentration. By varying these parameters, we were able to obtain mi-
croparticles ranging in size from 4.7 to 23 µm. The CV values representing polydispersity
for each formulation run, calculated by considering all analyzed microparticles across
three independent batches as a single batch, remained in the range of 0.33 to 0.53 range.
Conversely, the %CV values, determined from averaging the batch-to-batch mean values
of three experimental batches of the same formulation, ranged from 1.5% to 17%, thus indi-
cating high reproducibility and narrow particle size distributions. The organic/aqueous
phase volume ratio had the most significant impact on reducing polydispersity, but it also
led to a slight but significant increase in microparticle sizes under those conditions.

Table 1. Summary of process parameters affecting PEG-PLGA microparticle size and batch -to-batch
reproducibility across three independent batches for each formulation.

Parameter Formulation Mean Size (µm ± sd) %CV

Reference Reference 6.8 ± 0.1 1.5

Stir Rate

300 rpm 23 ± 1.9 8.3

600 rpm 11.6 ± 0.6 5.2

1500 rpm 4.9 ± 0.5 10.2
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Table 1. Cont.

Parameter Formulation Mean Size (µm ± sd) %CV

Polymer (PEG-PLGA)
concentration

1% w/v 12.5 ± 0.6 4.8

5% w/v 17.2 ± 1 5.8

Surfactant (PVA)
concentration

0.5% w/v 16.7 ± 0.7 4.2

2.5% w/v 7.5 ± 0.3 4

Organic/aqueous
phase volume Ratio

0.01% v/v 8.8 ± 0.4 4.5

0.02% v/v 10.6 ± 0.6 5.7

Organic/aqueous
phase flow rate Ratio

0.01 7.6 ± 0.4 5.3

0.025 6.6 ± 0.3 4.5

Organic solvent 25% w/v ACN/DCM 4.7 ± 0.8 17
Note: Mean size (µm ± sd) was determined by the average of combining the mean values of each independent
batch across the same formulation. %CV, calculated as an index of reproducibility, was determined by the ratio of
the corresponding SD to the resulting mean expressed as a percentage.
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Figure 2. Comparison plots of the influence of individual conditions tested for all process parameters
on microparticle size. (A–F). Blue bars represent each individual reference parameter selected from
the reference formulation. One-way ANOVA: * p < 0.05, ** p < 0.01, and *** p < 0.001 Student’s
t test: * p < 0.05 and ** p < 0.01. ns indicates no significance.

2.4. Influence of Process Parameters on Microparticle Characteristics
2.4.1. Effect of Stirring Rate

Generally, as the stirring rate increases, the shear energy generated by the magnetic
stirrer also increases, thereby causing large droplets of the polymer phase to be broken
into smaller droplets [23]. Consistent with previous studies [24–26], an inverse relation-
ship was observed between stirring rate and mean particle size. As the stirring rate was
increased from 300 rpm to 1500 rpm, the particle size of the microparticles decreased
from 23 ± 1.9 µm to 4.9 ± 0.5 µm as shown in Table 1 and Figures 2A and 3. On com-
paring to the reference formulation, we did not find a statistically significant difference
between microparticle mean sizes made using 1000 rpm or 1500 rpm (Figure 2A). However,
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there was a statistically significant difference when comparing the reference formulation
to the 300 rpm (p < 0.01) or 600 rpm (p < 0.05), which had higher mean microparticle
sizes (Figures 2A and 3C, D and Table 1). The observation in the particle size distribution
also aligns with similar reports showing that increasing the stirring rate improves the
mixture and diffusion of the phases, resulting in microparticles with a relatively narrow
particle size distribution [24]. For instance, while 90% of all microparticles were in the size
range of 2–6 µm when made at 1500 rpm, only ~30 and ~15% of microparticles were in that
size range when fabricated at 600 and 300 rpm, respectively (Figure 3A,C,D).
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Figure 3. Effect of stirring rate (rpm) on microparticle size and distributions. Optical micrograph
and histogram of particle size distribution: (A,E) 1500 RPM, (B,F) 1000 RPM, (C,G) 600 RPM, and
(D,H) 300 RPM.

2.4.2. Effect of Surfactant Concentration

Several previous studies have shown that surfactant concentration in the aqueous
phase has a significant effect on the size and size distribution of the microparticles [6,23,26].
Generally, an increase in the concentration of surfactant has been shown to cause a decrease
in microparticle size [16,27,28]. In this study, the concentration of PVA in the aqueous
phase was identified to have a negative correlation with the average size of microparticles.
Hence, as PVA concentration was increased from 0.5% w/v to 5% w/v, a correspond-
ing decrease in size from 16.7 ± 0.7 µm to 6.8 ± 0.1 µm (p < 0.001) was observed, as
indicated in Figures 2B and 4 and Table 1. Similar effects of increasing surfactant concen-
tration were also seen when the polymer concentration was changed to 1% w/v and PVA
concentration was varied from 0.5 to 10% w/v (Supplementary Information; Figure S2).
At higher concentrations of PVA, the interfacial tension between the organic and aqueous
phases decreases [29,30], leading to the stabilization of the emulsion against droplet coales-
cence, hence the observed finding. Interestingly, there was no significant size difference
between microparticles synthesized with 2.5% w/v and 5% w/v PVA concentrations despite
the former being slightly larger (Figures 2B and 4). This could be due to the similarity
in the emulsification effect induced by these two concentrations of PVA, as it has been
reported that the concentration of surfactants with comparable viscosity produces a similar
effect against particle coalescence [25,30]. Although the particle mean particle size was not
significantly different between the two formulations, the particle distribution showed that
about ~76% and ~60% of particles were in the size range of 2–6 µm when made using 5%
or 2.5% w/v PVA, respectively (Figure 4). Another observed effect worth mentioning is
the impact of the concentration of PVA on the morphology of the microparticles [31]. As
shown in Figure 4D,F, microparticles synthesized with 5% w/v PVA concentration were
characterized by a high degree of smoothness and sphericity, while the surface of micropar-
ticles produced by 0.5% w/v was observed to be rough and wrinkled. Other formulations
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with increased PVA concentration at 10% w/v and 0.5% w/v also show the emergence of an
oval shape (aspect ratio ~1.7) irregular morphology, respectively (Figure S2).
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2.4.3. Effect of Organic and Aqueous Phase Flow Rate Ratio

As established in the literature, fabrication methods based on co-flow technology to
generate droplets are influenced by the flow rates of the organic and aqueous phases [22,32–35].
In this study, the influence of the flow rate ratio of the organic to aqueous phase was investigated
across three different ratios (0.005, 0.01, and 0.025), as presented in Figures 2C and 5 and Table 1.
In agreement with previous findings [12,22,34], a slight increase in microparticle size
from 6.8 ± 0.1 µm to 7.6 ± 0.4 µm was observed when the flow rate ratio was increased
from 0.005 to 0.01, as a generally higher flow rate ratio due to a lower flow rate of the
aqueous phase results in a faster production of polymer droplets, thereby increasing the
tendency of particle coalescence. On the contrary, a further increase in the flow rate ratio
to 0.025 resulted in a slight decrease in size to 6.6 ± 0.3 µm (Figures 2C and 5). The
lack of significance observed in these formulations may be attributed to the overriding
influence of dominant parameters that determine particle size, such as stir rate and polymer
concentration. Another possible explanation for this observation could be the stabilizing
effect of the pre-existing PVA in the collecting vessel prior to initiating the co-flow. This may
have minimized the impact of a higher flow rate ratio despite the dispersed phase having
higher flow rates that would typically result in faster generation of polymer droplets in the
emulsion.

2.4.4. Effect of Polymer Concentration

Increasing polymer concentration has been shown to increase the size of particles [23,34,36].
This observation can be explained by the heightened viscosity of the organic phase caused
by the increased concentration of the polymer solution, making it challenging to generate
small emulsion droplets and ultimately leading to an increase in particle size [6,37]. Con-
sistent with previous literature, this study’s findings demonstrate that the concentration
of PEG-PLGA in the organic phase has a significant impact on microparticle size. As
shown in Figures 2D and 6 and Table 1, increasing the concentration of PEG-PLGA in
the organic phase from 0.1% w/v (reference formulation) to 5% w/v was accompanied
by a corresponding increase in the mean particle size from 6.8 ± 0.1 µm to 17.2 ± 1 µm)
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(p < 0.001, Figure 2D). We also observed wider size distribution with increasing polymer
concentration, where formulation made using 0.1% polymer concentration had ~76% of
particles below 6 µm while formulations of 5% polymer concentration had only ~17% of
particles in that size range (Figure 6A,C).
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2.4.5. Effect of Organic Solvent Choice

Generally, organic solvents with increased solubility in water generate particles with
smaller particle sizes and narrower size distribution [38]. Thus, it was anticipated that
the introduction of acetonitrile (ACN), a more polar solvent in DCM, would increase
the solubility of the resulting organic phase in the aqueous phase, thereby leading to
the generation of microparticles with smaller size. As shown compared to the reference
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formulation (Figures 2E and 7 and Table 1), the size of microparticles decreased from
6.8 ± 0.1 µm to 4.7 ± 0.8 µm (p < 0.05) upon adding 25% v/v ACN as a cosolvent to pure
DCM. There is also a minor difference in particle size distributions with formulations
made in ACN-DCM, which have about ~38% of microparticles below the size of 2 µm,
while in DCM, only ~16% of microparticles are below 2 µm. This finding aligns with
previous studies that report an increase in microparticle size synthesized using DCM as the
organic phase solvent as compared to ethyl acetate, a moderately polar solvent similar to
ACN [16,27].
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2.4.6. Effect of Organic to Aqueous Phase Volume Ratio

The size of the microparticles has also been described to be influenced by the vari-
ation of the volume ratio of both the organic and aqueous phases [27,30,39]. For this
investigation, the volume of the aqueous phase was maintained at a constant 20 mL, and
the volume of the dispersed phase was increased from 0.1 mL to 0.4 mL, constituting an
organic: aqueous phase volume ratio of 0.005% v/v and 0.02% respectively. As shown
in Figures 8 and 2F and Table 1, the size of the microparticles increased (p < 0.01) from
6.8 ± 0.1 µm to 10.6 ± 0.6 µm, with a corresponding elevation in particle concentration or
number of particles formed as the phase volume ratio was increased. This observation
aligns with similar findings reporting the role of the viscosity of the emulsion due to an in-
crease in the dispersed phase as a justification for the increase in particle size [20,30]. Other
explanations could be the increase in the tendency of collision and coalescence among the
dispersed oil droplets as a higher phase volume ratio allows for a lesser distance between
the aqueous and organic phases, leading to poor phase separation [40,41].

2.5. Scalability and Tunability of Co-Flow Phase Separation Method

While phase separation has been reported as a tunable method, achieving high-scale
production remains challenging [11,42]. Here, by utilizing a combination of specific deter-
mining fabrication parameters that have been discussed in this study to impact microparti-
cle size and concentration, we demonstrate that microparticles of comparable size to the
reference formulation can be synthesized while achieving high scale-up production without
compromising particle characteristics. Here, we varied the three parameters surfactant
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(PVA) concentration, stir rate, and polymer concentration, which significantly affected
particle size simultaneously to obtain particles of similar size and narrower polydispersity.
Our results demonstrate that careful combination and variation of these parameters can
allow us to obtain particles with higher yields, desired particle size, and narrow particle
size distribution.
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2.5.1. Combined Effect of Increasing Phase Volume Ratio, Surfactant Concentration and
Stir Rate

While an increase in the organic/aqueous phase volume ratio has been shown to
increase the number of particles generated, this effect also leads to a size increase of
particles, as supported by our data (Figures 7 and 8F) and others [20,43]. As opposed
to this, the concentration of surfactant (PVA) and the stirring rate of the emulsion have
both been identified to have an inverse correlation to particle size (20, 27–31). Thus, to
keep microparticle size in a comparable range to the reference formulation, increasing PVA
concentration and stir rate was adopted as a strategy to control the potential increase in
particle size owing to the subsequent increase of the organic/aqueous phase volume ratio.
As depicted in Table 2 and Figure 9, when the volume ratio of the organic to aqueous phase
was increased, along with higher PVA concentration and stir rate of the emulsion, particles
with similar morphology and size to the reference formulation were synthesized. Notably,
these particles exhibited reduced polydispersity, narrower size distribution, and increased
particle concentration (Figure 9).

Table 2. Scalability and tunability of method via phase volume ratio (PVR) modification.

Formulation Formulation Parameters Mean Size (µm ± sd) CV

REF-FM 0.005 PVR, 5% PVA, 1000 rpm 6.7 ± 3.1 0.45

0.01 PVR-FM 0.01 PVR, 5% PVA, 1500 rpm 5.7 ± 1.5 0.27

0.02 PVR-FM 0.02 PVR, 7% PVA, 1500 rpm 6.1 ± 2.2 0.36
Note: Formulation code: REF FM: reference formulation; 0.01 PVR-FM: 0.01 phase volume ratio formulation,
0.02 PVR-FM: 0.02 phase volume ratio formulation.
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2.5.2. Combined Effect of Increasing Polymer Concentration, Surfactant Concentration, and
Stir Rate

Generally, since microparticles are generated by oil droplets owing to the polymer
dissolution in the organic phase, one will expect a higher polymer concentration to cor-
respond to an increase in oil droplets, subsequently promoting the production of more
microparticles. While this is true, the formation of more oil droplets due to increased
polymer concentration also increases the tendency of particle coalescence that ultimately
leads to an increase in particle size, as shown by our data (Figures 5 and 8D) and found in
the literature [5,6]. To avoid this effect and foster the synthesis of microparticles with prop-
erties comparable to the reference formulation, an increase in PVA concentration and the
emulsion stir rate speed was adopted as similarly investigated for the scalability achieved
via increasing the organic/aqueous phase volume ratio. As shown in Figure 10, increasing
polymer concentration with high PVA concentration and stir rate resulted in the successful
tuning of the microparticles to an approximate size of ~7 µm while achieving increased
microparticle concentration. As reported in the literature, usually increasing polymer con-
centration increases microparticle size, which reduces the range of applications [11,30,42].
We hereby present a method whereby controlling PVA concentration and stir rate led to
the formation of particles of similar size irrespective of the polymer concentration. More
specifically, we attained microparticles measuring around ~7 µm in size across three distinct
formulations, with the formulation based on the highest polymer concentration resulting
in an increase in particle polydispersity as shown in Table 3.

Table 3. Scalability and tunability of method via increasing polymer concentration.

Formulation Formulation
Parameters Size (µm) CV

REF-FM 0.1% w/v PC, 5%
PVA,1000 rpm 6.7 ± 3.1 0.45

1% PC-FM 1% w/v PC, 5% PVA,
1500 rpm 7.1 ± 2.7 0.38

5% PC-FM 5% w/v PC, 7% PVA,
1500 rpm 7.2 ± 4.1 0.57

Note: Formulation code: REF FM: reference formulation; 1% PC-FM: 1% w/v polymer concentration formulation;
5% PC-FM: 5% w/v polymer concentration formulation.
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To further illustrate the tunability and the microparticle size ranges that can be ob-
tained using this method with high polymer concentration, we also tested the combined
effect of increasing polymer and PVA concentration with a lower stir rate to examine the
effect of the surfactant concentration. Our result indicates that microparticle size up to
~40 µm can be obtained at a lower stir rate and higher concentration of PVA, which also
influences microparticle morphology (Figure S2). Lastly, to demonstrate the versatility of
this method to obtain a range of microparticles, we simultaneously varied several process
parameters and obtained microparticles in different size ranges, including ~50, 76, 100, and
114 µm (Supplementary data Table S3 and Figure S4).

2.6. Encapsulation of Model Dyes in PEG-PLGA Microparticles

To showcase the potential application of microparticles generated through this method
for controlled drug delivery, hydrophilic rhodamine 6G and hydrophobic coumarin 6, were
incorporated as model drugs into the organic phase at a theoretical loading of 1% v/v
dye concentration. Thus, by maintaining all process parameters at the levels specified by
the reference formulation, Rho6G and Coum6-loaded microparticles were prepared. As
expected, the encapsulation efficiency and drug loading of coumarin 6, a hydrophobic dye,
were found to be approximately two times higher than that of the hydrophilic rhodamine
in the microparticles, as shown in Table 4. We also observed a small but significant increase
(p < 0.05) in microparticle size with encapsulation of coumarin, while no such significant
difference in size was found in rhodamine-loaded microparticles (Figure S3).

Consistent with previous findings, these observed differences in drug loading and
encapsulation efficiency can be attributed to the distinct physicochemical properties of
the dyes [44,45]. The hydrophilicity of rhodamine necessitates enhanced diffusion of the
dye out of the emulsion droplets into the external aqueous phase during microparticle
production. In contrast, the hydrophobic nature of coumarin facilitates its efficient loading
into the hydrophobic PLGA core of the polymer matrix. Thus, these findings underscore
the significant influence of the physicochemical properties of biomolecules on their loading
efficiency within polymeric carriers [30]. Further characterization of the successful incor-
poration of these dyes into the microparticles was visually confirmed using a fluorescent
microscope (Leica DMI 6000), as shown in Figure 11.
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Table 4. Drug loading and encapsulation efficiency of 1% v/v Coum6 MP and Rho6G MP.

Formulation Encapsulation Efficiency (%) Drug Loading
(%)

REF-FM with Rho 16.73 ± 0.83 0.43 ± 0.08

REF-FM with Coum 36.33 ± 2.34 0.74 ± 0.09

1% PC-FM with Rho 39.53 ± 5.13 0.21 ± 0.03

5% PC-FM with Rho 58.2 ± 3.99 0.04 ± 0.004

0.01 PVR-FM 20.55 ± 1.07 0.32 ± 0.04

0.02 PVR-FM 23.3 ± 1.14 0.23 ± 0.02
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Figure 11. Fluorescence microscopy characterization of dye-loaded PEG-PLGA microparticles.

Moreover, given that polymer concentration has been shown to have an impact on
encapsulation efficiency, the low amount of encapsulation of rhodamine in the REF-FM may
have been caused by the lower polymer concentration of 0.1% w/v adopted for the reference
formulation [6,36]. Likewise, while both formulations of higher polymer concentrations
(1% PC-FM and 5% PC-FM) demonstrated an increase in encapsulation efficiency as a
result of the availability of more amount of polymer to interact with the dye, there was an
apparent reduction in the drug loading as shown in Table 4. This observed difference could
be attributed to the possible turbulent effect of higher stir rate and PVA concentration as
described in the literature [16,30]. Particularly, an increase in the stirring speed has been
reported to generate higher energy in the emulsion, leading to an intensified breakdown of
the dispersed droplets forming the microparticles, hence reducing loading efficiency [46].
While higher PVA concentration has been identified with an increase in encapsulation
efficiency [30,47], the opposite has been reported for drug loading [29,30,48], as an increase
in viscosity due to high PVA concentration may increase the difficulty in achieving ultimate
purification and washing of PVA residue, thereby contributing to the mass increase of the
particles. Another potential explanation for the significantly lower drug loading observed
in the 5% PC-FM formulation could be attributed to the inherently greater mass of the
polymer as well as the low initial theoretical drug loading used in this formulation. This is
because the % drug loading, calculated as the weight ratio of the loaded drug to the total
mass of the drug-encapsulated particles, is often lower for particles prepared with lower
initial theoretical drug loading and higher polymer concentrations [36]. As illustrated in
Table 4, it is worth noting that loading the same initial drug content into formulations
with similar polymer concentrations in the organic phase as the reference formulation but
of increased polymer volume (0.01 PVR and 0.02 PVR) resulted in higher encapsulation
efficiency as similarly reported in the literature [49]. However, there was a slight reduction
in drug loading. This observation supports the idea that increasing the amount of polymer,
whether by concentration or volume, allows for more interaction between the drug and
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the available polymer, leading to enhanced encapsulation. However, the additional mass
resulting from the increased polymer quantity may contribute to a slight decrease in drug
loading [49].

As indicated in Table 5, we pursued further optimization of drug loading and encap-
sulation efficiency by elevating the initial theoretical dye loading in the organic phase from
1% v/v to 5% v/v. This adjustment resulted in a noteworthy increase in drug loading,
measuring at 1.06 ± 0.08 and 2.23 ± 0.33, respectively, for Rho MP and Coum MP, which
were synthesized using the reference formulation. However, there was a reduction in
encapsulation efficiency, A possible explanation for this occurrence could be the presence of
a fixed amount of available polymer to accommodate the loaded drug, thereby resulting in
a large amount of dye being unencapsulated due to the inadequacy of available polymer as
previously reported [49]. Guided by these findings, we successfully developed a formula-
tion that led to the fabrication of microparticles of similar size to the reference formulation
yet exhibiting a 2-fold enhancement in encapsulation efficiency of rhodamine, as shown in
Figure 11 and Table 5. This achievement was realized through an initial theoretical loading
of 5% v/v rhodamine dye in a 1% PC-FM while keeping the phase volume ratio constant as
the reference formulation. Thus, the microparticles synthesized via this resulting optimized
formulation hereafter were referred to as 1% PC-OPT-Rho6G MP.

Table 5. Drug loading and encapsulation efficiency of 5%v/v Coum6 MP and Rho6G MP.

Formulation Encapsulation Efficiency (%) Drug Loading
(%)

REF-FM with Rho 8.97 ± 0.42 1.06 ± 0.08

REF-FM with Coum 24.05 ± 0.54 2.23 ± 0.33

1% PC-OPT FM with Rho 34.6 ± 1.32 0.84 ± 0.02
Note: Formulation code: REF FM: reference formulation; 1% PC-OPT FM: 1% w/v polymer concentration
optimized formulation.

2.7. In-Vitro Release Studies

The reference formulation and microparticle formulation based on 1% w/v polymer
concentration, hereafter referred to as REF-FM and 1%PC-FM, respectively, were adopted
to investigate the release kinetics of R6G from the loaded microparticles in PBS (0.01 M,
7.4 pH). As depicted in Figure 12, all particle formulations displayed an initial burst release
pattern, with the formulation based on a 1% w/v PC-FM exhibiting a minimal level of burst
release. This observation could be attributed to a significant quantity of unencapsulated dye
adhering to the surface of the REF-FM-MP, primarily due to suboptimal encapsulation when
compared to the MPs generated using a 1% PC-FM, a higher polymer concentration. This,
in turn, resulted in the excessive initial release upon hydration [50–52]. Notwithstanding,
both formulations exhibited a gradual and steady release phase, which aligns with the
reported release pattern observed in PLGA microparticles. [28,53].

Notably, REF-FM showed a faster release of R6G as compared to 1% PC-FM with a cu-
mulative release of approximately 75% compared to 50% at 24 h, respectively. This finding
can be explained based on the slow diffusion in the case of 1% PC-FM, as the dye has to
travel a denser pathway from the polymer matrix to reach the dissolution medium [47].
Moreover, the slower hydrolytic degradation of the matrix may also account for the re-
duced cumulative quantity of drug release from the formulation based on higher polymer
concentration since slower water diffusion into the matrix may reduce the accessibility of
water molecules to polymer chains. The finding of this observation also emphasizes the
feasibility of achieving controlled release in microparticle formulations based on higher
polymer concentrations. Additionally, the results presented herein shed light on the distinct
impact of polymer concentration on the rate of drug release, as demonstrated through the
characterization of rhodamine release from two microparticle formulations of different
polymer concentrations but similar particle sizes and distributions. While several studies
have reported the influence of polymer concentration on drug release from PLGA particles,
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it is crucial to acknowledge that these studies often examined drug release using particle
formulations of different sizes and distributions, as an increase in polymer concentration
generally corresponds to an increase in particle size. Consequently, this results in a dual
effect, with both particle size and polymer concentration exerting influence on drug re-
lease, owing to the undeniable impact of particle size heterogeneity on drug release from
polymeric matrices [9,53,54].
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pH 7.4) under 37 ◦C shaker incubator (n = 3).

3. Materials and Method
3.1. Materials

Poly (ethylene glycol)-methyl ether-block -poly (lactide-co-glycolide) (PEG-PLGA50:50,
MnPEG 2000 Da and 10,000 Da MnPLGA), dimethyl sulfoxide (DMSO), and coumarin 6
dye were purchased from Sigma Aldrich (St. Louis, MO, USA). Rhodamine 6G dye,
dichloromethane (DCM), polyvinyl alcohol (PVA) (87–89% hydrolyzed, high molecular
weight), acetonitrile, phosphate buffer saline (PBS), polyvinyl chloride (PVC) tubing, sy-
ringes (glass and plastic), syringe needles, and polytetrafluoroethylenes (PTFE) based
consumables such as syringe filters (0.45 µm), evaporating dish, and magnetic stirring bars
were obtained from Fisher Scientific. All other chemicals and reagents used in this study
were of analytical grade.

3.2. Assembly and Assessment of the Coaxial Needle Construct

Typical of all co-flow-based droplet formation devices, the design of our coaxial needle
construct was based on a co-flow geometry to facilitate the parallel flow of the dispersed
and continuous phases to each other [32,55]. As shown in Scheme 1, the assembly of our
simple handmade construct was achieved using three blunt-tip syringe needles with a
length of 1.5 inches each. Two of these needles were 16 G needles with plastic-based luer
ends, while the third needle was a 30 G Hamilton needle with a luer end made of stainless
steel. The plastic base of one of the 16 G needles was punctured and carefully drilled to
create a uniformly sized hollow channel using a sharp-tipped 16 G needle to allow the
flow of the aqueous phase. Subsequently, the second blunt 16 G needle was inserted gently
through the generated hollow channel in the first needle to establish a connection with the
first needle. The blunt 30 G Hamilton needle was then inserted centrally along the main
axis of the first 16 G needle bearing the orifice. For the purpose of achieving a stable and
centered configuration, the resulting assembly was firmly bonded using either parafilm or
a suitable adhesive, such as super glue. In this setup, the slender tip of the stainless-steel
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base of the inner 30 G needle was securely positioned on the wider end of the plastic base
of the outer 16 G needle bearing the drilled hollow channel.
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To assess the functionality and stability of the coaxial needle construct, appropriate
syringes were used to simultaneously flush DCM and DI water through the inner needle
and connecting needle, respectively. The efficacy and stability of the construct were verified
through the consistent unidirectional flow of the flushing agent via the blunt tip of the outer
needle into a collecting beaker. Notably, no discernible instances of leakage or blockages
impeding the flow were observed, thus affirming the construct’s effectiveness and stability.

3.3. Preparation of PEG-PLGA Microparticles

All microparticles were synthesized using a phase separation method based on coaxial
needle technology. In detail, the two phases, organic and aqueous, were prepared indepen-
dently and stored in clean containers. The organic phase consisted of PEG-PLGA polymer
dissolved at a desired concentration in dichloromethane (DCM), while the aqueous phase
consisted of polyvinyl alcohol (PVA) in deionized (DI) water. The PVA solution was made
by dissolving the desired amount of PVA in boiling water to obtain a homogenous solution.
Upon cooling, the solution was centrifuged (100× g, 5 min) and/or filtered through a
0.45 µm syringe filter with the help of a syringe pump to remove any particulate matter.
The glass syringe containing 0.1 mL of organic phase was then placed on a syringe pump
(New Era Pump Systems, Inc. in Farmingdale, NY, USA) and connected to the concentri-
cally fixated stainless-steel end of the coaxial needle. A 20 mL plastic syringe filled with
aqueous phase was connected to the female luer end of the PVC tubing and placed on
a second syringe pump. As illustrated in Scheme 2, the complete assembly of the setup
was achieved by connecting the male luer end of the PVC tubing to the plastic end of
the coaxial needle gently initiating the co-flow of the two phases into a collecting vessel
such as a beaker or PTFE evaporation dish containing 5 mL of PVA solution undergoing
continuous stirring at 1000 rpm. Unless stated otherwise, all microparticles were made by
setting the flow rate of the co-flow system at 0.1 mL/h for the organic phase and 20 mL/h
for the aqueous phase. Following the utmost injection of the volume of the phases, the
emulsion was continuously stirred for another hour to ensure complete evaporation of the
DCM and solidification of the synthesized microparticle. To remove any residual PVA, the
microparticle suspension was collected in a 50 mL falcon tube and washed twice with DI
water via centrifugation at (100× g, 5 min). Afterward, the microparticles were transferred
into a 2 mL microcentrifuge tube and subjected to a final wash before resuspending the
eventual microparticle pellet in 0.5 mL of DI water for further studies. For the fabrication
of microparticles, we conducted a preliminary analysis of the type of stirrer plate and
magnetic stir bar size to be used across all runs.

A comprehensive description of the selected process parameters investigated in this
study to assess the effect on microparticle sizes and polydispersity is shown in Table 6.
Each of these runs involved selectively varying one parameter while maintaining all other
fabrication parameters constant in accordance with the reference formulation. The reference



Molecules 2023, 28, 6679 17 of 22

formulation was made using 0.1% w/v of polymer concentration in the organic phase, 5%
w/v surfactant concentration in the aqueous phase, organic-aqueous phase volume ratio
(PVR) of 0.005% v/v, a flow rate of 0.1 mL/h, and 20 mL/h for the organic and aqueous
phases and a constant stirring rate of 1000 RPM.
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Table 6. Process parameters varied in this study.

Parameter. Condition

Stir rate/speed (rpm) 300, 600, 1000, 1500

Polymer concentration (% w/v) 0.1, 1, 0.5, 2.5, 5

Surfactant concentration (% w/v) 0.5, 2.5, 5

Organic/aqueous volume ratio (% v/v) 0.005, 0.01, 0.02

Organic/aqueous flow rate ratio (mL/h) 0.005, 0.01, 0.025

Organic solvent choice (% v/v) 25% acetonitrile in DCM, DCM
Note: The parameters in bold represent the ones used for the fabrication of reference formulation.

3.4. Preparation of Dye Loaded PEG-PLGA Microparticles

To prepare dye-loaded microparticles, 1 mL of the organic phase consisting of 0.1%
w/v PEG-PLGA in DCM was supplemented with 10 µL of either rhodamine 6G or coumarin
6 dye solution (0.5 mg/mL). The initial dissolution of the dye was performed in DMSO for
rhodamine 6G and DCM for coumarin 6 to ensure efficient miscibility and solubility of the
dye in the final organic phase.

Following this, 100 µL of the resulting organic phase comprising 1% v/v of the dye
solution was withdrawn using a glass syringe. The microparticle synthesis method here
onward was similar to that described above, and the resulting coumarin 6 and rhodamine
6G microparticles hereafter were referred to as Coum6 MP and Rho6G MP.

The drug loading and encapsulation efficiency were determined by dissolving freeze-
dried and pre-weighed dye-loaded microparticles in 1 mL of ethanol for coum6 MP and
1 mL of DMSO for Rho6G MP. The amount of dye release was determined spectropho-
tometrically at 540 nm (rhodamine 6G) and 460 nm (coumarin 6), respectively [44,56,57],
against standard calibration curves of the known concentration of the dyes. Encapsulation
efficiency (EE) determination was achieved by the ratio of the mass of encapsulated dye
(MDenc) to the initial mass of the dye added into the organic phase during the formulation
(MDinit), while drug loading (DL) was calculated as the ratio of the mass of encapsulated
dye (MDenc) to the total mass of the dried microparticle (MPtot) as depicted in the two
equations below.

EE% =
MDenc

MDinit
× 100 (1)

DL% =
MDenc

MPtot
× 100 (2)
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3.5. Characterization of PEG-PLGA Microparticles

The morphology and size of the microparticles were observed and determined using
an inverted microscope (Leica DMI 6000). Briefly, samples were prepared for imaging
by pipetting 10 µL of the microparticle suspension in DI water on a microscope glass
slide, and images were acquired in brightfield mode using a 20Xobjective. The dye-
loaded microparticles were imaged in both brightfield and fluorescent mode. The mean
size representing the average diameter of over 200 analyzed microparticles per three
independent batches of the same formulation was determined using the Image J (Fiji)
open-source image-processing software. The scales of the images were standardized by
measuring the distance in pixels of the scale bar provided by the Leica software, inputting
the known distance and units, and adjusting the pixel aspect ratio. The ImageJ processed
images were measured by zooming into the particles and drawing a diameter line across the
microparticles. As an index of the broadness or dispersity of the particle size distribution,
the coefficient of variation (CV) of all the analyzed particles was calculated as the ratio
of the standard deviation (SD) of the distribution to the mean particle size (SD/mean) as
previously reported in the literature [52,58].

3.6. In Vitro Release of Rhodamine 6G from Dye-Loaded Microparticles

Freeze-dried R6G-loaded microparticles were suspended in 1 mL of PBS (0.01 M, pH
of 7.4) in microfuge tubes. The tubes were then placed in a shaker incubator (C24-New
Brunswick Scientific, Edison, NJ, USA) at 37 ◦C with constant shaking at 90 rpm. Aliquots
of 1 mL were collected at regular intervals by centrifuging at 8000 rpm for 5 min and collect-
ing the supernatant as previously described [28]. The microparticles were resuspended in
the same amount of fresh PBS. The amount of dye released at each interval in the collected
supernatant was analyzed using a UV-vis spectrophotometer (Evolution 60) at 530 nm [57].
The corresponding concentration values were calculated by reference to a standard cali-
bration curve generated in the same release medium. Prior to measurements, instrument
calibration and baseline collection were performed. Each microparticle formulation was
analyzed in triplicate using a black-walled quartz micro cuvette (0.7 mL, 10 mm).

3.7. Statistical Analysis

The results in this study were analyzed and expressed in terms of the mean ± stan-
dard deviation of the distribution using GraphPad Prism 9.5.1 (GraphPad Software, Inc.
San Diego, CA, USA). Unless explicitly mentioned, all experiments related to microparticle
size measurements were conducted using a minimum of three independent batches. Batch
to batch reproducibility of the reference formulation as well as statistically significant
differences in microparticles size among various formulation conditions for the same tested
process parameter were assessed using Student’s t-test or one-way ANOVA followed by
a Dunnett multiple comparison test. A p-value less than 0.05 was considered to indicate
statistical significance.

4. Conclusions

In this study, we report the establishment of a reference formulation based on a combi-
nation of individual fabrication and process parameters for the synthesis of uniformly sized
microparticles and the subsequent investigation of the impact of process parameters on mi-
croparticle characteristics via a modified coaxial flow phase separation method. Among the
parameters investigated in this study, stir rate and polymer concentration were identified
as the most significant fabrication parameters that influence the size and distribution of
microparticles, while surfactant (PVA) concentration was observed as the most substantial
parameter that impacts the morphology of the particles. Interestingly, it was observed
that the microparticle characteristics were influenced by the fabrication parameters, both
individually and when combined with one another. This observation offered the possibility
of optimizing microparticle formulations by selecting specific combinations of fabrication
parameters, leading to a remarkable twofold increase in the encapsulation efficiency of a
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model drug without compromising particle characteristics. Hence, the technique described
here offers several advantages over methods found in the current literature. It provides
flexibility in tuning particle size and morphology with uniformity, enhances consistency
in particle reproducibility across batches, allows for scalable production yield, requires
less processing steps and time, utilizes simple, inexpensive, readily, and easily made in-
struments, and facilitates the optimization of drug loading, encapsulation efficiency, and
release kinetics for both hydrophobic and hydrophilic drugs.

Altogether, the findings in this study provide a framework for expanding the appli-
cability of this method for synthesizing tunable and scalable polymeric microparticles for
drug delivery applications, including the encapsulation of drug molecules for targeted
delivery purposes. Moreover, the demonstration of tunability of this method in synthe-
sizing microparticles of different sizes and morphology opens opportunities for further
investigation into understanding the interplay between particle characteristics, cellular
uptake, and immune cell clearance while also allowing for continuous optimization and
improvement of drug loading, encapsulation efficiency, and control over the release of
actual drug molecules and biological agents.
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distribution; Figure S4: Optical micrograph of different size microparticles; Figure S5: Degradation
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