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Abstract: Currently, energy storage systems are of great importance in daily life due to our de-
pendence on portable electronic devices and hybrid electric vehicles. Among these energy storage
systems, hybrid supercapacitor devices, constructed from a battery-type positive electrode and a
capacitor-type negative electrode, have attracted widespread interest due to their potential applica-
tions. In general, they have a high energy density, a long cycling life, high safety, and environmental
friendliness. This review first addresses the recent developments in state-of-the-art electrode mate-
rials, the structural design of electrodes, and the optimization of electrode performance. Then we
summarize the possible classification of hybrid supercapacitor devices, and their potential applica-
tions. Finally, the fundamental theoretical aspects, charge-storage mechanism, and future developing
trends are discussed. This review is intended to provide future research directions for the next
generation of high-performance energy storage devices.

Keywords: hybrid supercapacitors; electrode materials; design structure; energy storage mechanism

1. Introduction

In recent years, the increasing environmental problems and energy challenges have
stimulated urgent demand for developing green, efficient, and sustainable energy sources,
as well as revolutionary technologies associated with energy conversion and storage sys-
tems [1,2]. Among the diverse energy storage devices, supercapacitors (SCs) have received
extensive attention due to their high power density, fast charge and discharge rates, and
long-term cycling stability [3–5]. Generally, SCs can be classified as electrical double-layer
capacitors (EDLCs), pseudocapacitors (PCs), or hybrid supercapacitors (HSCs) depend-
ing on the energy storage mechanism [6–10]. EDLCs collect energy through the ion ab-
sorption/desorption on the electrode/electrolyte interface without the charge transfer
reaction [7,8]. PCs harvest energy through fast redox reactions at or near the surface of
the electrode material [3,9]. Different charge storage mechanisms occur in the electrode
materials of HSCs. For example, the negative electrode utilizes the double-layer storage
mechanism (activated carbon, graphene), whereas the others accumulate charge by using
fast redox reactions (typically transition metal oxides and hydroxides) [11–14]. HSCs have
attracted enormous attention as they can provide excellent performance with higher en-
ergy and power densities at high charge/discharge rates [12,13]. More importantly, HSCs
provide an important future opportunity for energy storage devices to meet the demands
of both higher energy and power densities for powering portable electronic devices, hybrid
electric vehicles, and industrial equipment.

At present, nanostructured transition metal oxides, sulfides, and hydroxides [15–21]
are being widely explored as positive electrodes for HSCs. Such materials display a very fast
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charge/discharge rate to offer high power density. Unfortunately, many battery-type elec-
trodes, such as Ni(OH)2 [22,23] or other materials, that exhibit faradaic behavior (even those
that are electrochemically irreversible) have been considered as pseudocapacitive materials
in many reports, which confuses the readers [24–26]. As suggested by Gogosti et al. [10],
it is inappropriate to describe nickel-based oxides, sulfides, and hydroxides as pseudoca-
pacitive electrode materials in alkaline aqueous electrolytes because they undergo faradaic
reactions, where their electrochemical signature is analogous to that of a “battery” material.
Therefore, the concept of “capacitance” (F) cannot be applied to purely faradaic behavior,
and “capacity” (C or mAh) is the most appropriate and meaningful metric to represent
the performance of such materials [26]. In addition, some researchers may mistakenly
consider the HSCs as asymmetric supercapacitors (ASCs) that are based on two different
supercapacitor-type electrodes (i.e., capacitive electrodes and/or pseudocapacitive elec-
trodes), which also aggravates the confusion for readers [27]. The definition of an ASC
device is very broad since it refers to every combination of positive and negative electrodes
with the same nature regardless of the difference between the two electrodes (weight,
thickness, material, etc.) [7]. However, an HSC device should be used when pairing two
electrodes with different charge storage behaviors, such as one capacitive and the other
faradaic, and the performance of such a device is in between a supercapacitor and a bat-
tery [27]. Some researchers have presented a well-rounded view in recent literature [27–29].

Herein, we will classify HSCs into several types based on the design and structure
of the devices. It is well known that the performance of an energy storage device is deter-
mined mainly by the electrode materials. The design and development of nanomaterials
and hybrid nanomaterials/nanostructures are considered as effective strategies to obtain
advanced energy storage devices with high power, fast charging, and long cycle-life fea-
tures [30,31]. More importantly, it enables us to develop a new generation of devices that
approach the theoretical limit for electrochemical storage and deliver electrical energy
rapidly and efficiently [30]. Although nanostructuring provides marvelous benefits, there
are still some challenges in developing high-performance electrode nanomaterials for HSCs.
For example, the electrode thickness of transition metal oxides and hydroxides (Ni(OH)2,
NiS, NiO, etc.) is limited due to the low electrical and ionic conductivities of these materials,
which retard the overall device kinetics. Both electronic and ionic conductivities are critical
for increasing the rate performance of electrodes, especially when large and multivalent
ions are used in electrolytes [32]. Therefore, it is necessary to improve electronic conduction
by doping, partial reduction, and creating good electrical contact between nanomaterials
and conductive additives [7]. Thus, some recent advances in electrode materials will be
presented and discussed in this review article. Moreover, we will summarize the recent
advances of HSCs, especially in the development of fundamental scientific principles and
concepts. Then, we will provide a comprehensive summary of recent progress on elec-
trode material design and burgeoning device constructions for high-performance HSCs.
Finally, the future developing trends and perspectives, as well as the challenges, will also
be discussed.

2. Recent Advances in Materials for Hybrid Supercapacitors

HSCs are generally composed of three components (Figure 1): electrodes, electrolytes,
and separators. The performance of HSCs is mainly determined by the electrochemical
activity and kinetic features of the electrodes. To improve the energy and power density of
HSCs, it is crucial to enhance the kinetics of ion and electron transport in electrodes and at
the electrode/electrolyte interface [33]. Therefore, electrode materials, as the essential soul
of the devices, play a decisive role in the performance of HSCs.
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Figure 1. Illustration of a hybrid supercapacitor system.

2.1. Positive Electrode Materials

The performance of a HSC device is mainly determined by the positive electrode
materials [10]. In recent years, transition metal oxides/sulfides/hydroxides [34] have been
considered as promising electrode materials for HSCs since they can provide a variety of
oxidation states for fast surface redox reactions.

2.1.1. Nickel Oxides/Hydroxides/Sulfides

Recently, Ni-based oxides/hydroxides, such as NiO [35–39] and Ni(OH)2 [40–44], have
been widely reported as electrode materials for HSCs due to their attractive theoretical
specific capacity and potentially high-rate capability in alkaline aqueous solutions. NiO is a
promising battery-type material due to its high theoretical specific capacity (1292 C g−1 in
a potential window of 0.5 V), well-defined redox behavior, and low cost [38]. For instance,
Ren et al. [45] prepared honeycomb-like mesoporous NiO microspheres and revealed a
high specific capacitance of 635 C g−1 at 1 A g−1. Even at 5 A g−1, it also exhibited a high
specific capacity of 472.5 C g−1 with 88.4% retention after 3500 cycles, demonstrating its
superior performance. Cai et al. [46] prepared NiO nanoparticles and found a high specific
capacity of 693 C g−1 at 1 A g−1, but the rate of capability could only retain 62% (430 C g−1)
as the current density increased to 50 A g−1. The poor rate performance is caused by its
low electrical conductivity. Although many recent efforts have been carried out on NiO
electrodes, the acquired specific capacity is usually lower than the theoretical capacity of
NiO. The relatively poor conductivity of NiO limited its specific capacity, and hindered the
fast electron transport required for high charge–discharge rates.

Compared to NiO materials, Ni(OH)2 has been considered as a promising candidate
for HSCs due to its high theoretical capacity (1041 C g−1 in a potential window of 0.5 V),
excellent redox behavior, ease of synthesis, abundant sources, low cost, and environmental
friendliness [47]. Currently, many advances have been widely reported, as summarized
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in Table 1. During the last decades, numerous efforts have been devoted to fabricating
high-performance electrodes based on Ni(OH)2 materials for energy storage devices, but
there are still some challenging issues. Owing to its low conductivity, the Faradic redox
reactions can only take place on its surface, and most of the reported Ni(OH)2 materials
are inaccessible to electrolyte ions and remain as dead volumes in HSCs [48,49]. In recent
years, many strategies have been explored to address this issue, including the synthesis of
nanoscale or porous structures (Figure 2a), atomic substitution or doping (Figure 2b), and
forming a composite with carbon-based or other materials (Figure 2c) [50,51]. For instance,
the as-prepared hybrid electrode (Ni(OH)2/carbonnantube/polymer) by Jiang et al. [49]
delivered an ultrahigh specific capacity of 1631 C g−1 at 5 mV s−1, excellent rate capability
(71.9% capacity retention at 100 mV s−1), and long cycle life (85% capacitance retention
after 20,000 cycles). In the hybrid, the conducting polymer coating contributes to stabilizing
the whole electrode by reducing the dissolution of active materials, thus greatly improv-
ing the rate capability and cycling stability of the electrode. Fabricating a composite by
incorporating highly conductive graphene nanosheets into Ni(OH)2 materials is considered
as the most effective strategy to enhance the intrinsic properties of Ni(OH)2. Li et al. [52]
reported a novel Ni(OH)2/rGO hybrid material, which not only exhibited a high specific
capacity (1007.5 C g−1 at 0.5 A g−1), but also showed good life cycle stability (108% ca-
pacitance retention after 8000 cycles), revealing its good performance by incorporating
rGO. Guo et al. [53] prepared a Ni(OH)2/rGO hybrid electrode and found a high specific
capacity (1388 C g−1 at 2 A g−1) and remarkable rate capability (785 C g−1 at 50 A g−1).
A Ni(OH)2-porous nitrogen-doped graphene hybrid architecture was also synthesized by
Aghazadeh et al. [54]. The composite exhibited a specific capacity of 701 C g−1 and a
capacity retention of 92.8% after 7000 cycles at 10 A g−1. In addition, the electrochemical
performances of Ni(OH)2/rGO composites that have been reported thus far are compared
in Table 2. It clearly reveals that, despite great achievement by hybridizing with rGO,
Ni(OH)2 still requires further improvements, particularly in high-rate performance as well
as in long cycle life.

Table 1. Specific capacity of Ni(OH)2 electrodes.

Electrode Materials Electrolyte Voltage
(V)

Current Load
or Scan Rate

Specific Capacity
(C g−1) Reference

3D nanoporous Ni(OH)2 6.0 M KOH 0–0.5 7 A g−1 759.5 [55]
Ni(OH)2 nanospheres 1.0 M KOH 0–0.5 20 A g−1 934 [56]
α-Ni(OH)2 nanobristles 1.0 M KOH 0–0.45 2 A g−1 940.5 [57]
Ni(OH)2 microspheres 2.0 M KOH 0–0.55 0.5 A g−1 704.5 [58]
Mesoporous a-Ni(OH)2 2.0 M KOH 0–0.55 0.5 A g−1 983.9 [59]

Ni(OH)2 nanoboxes 2.0 M KOH 0–0.5 1 A g−1 1247.5 [60]
α-Ni(OH)2 nanowires 2.0 M KOH 0–0.4 1 A g−1 889.2 [61]
Ni(OH)2 nanosheets 6.0 M KOH 0–0.5 2 A g−1 825.6 [62]
Ni(OH)2 nanoflakes 1.0 M KOH 0–0.4 1 A g−1 566.4 [63]
Ni(OH)2 nanocubes 3.0 M KOH 0–0.45 1 A g−1 828.9 [64]

Amorphous α-Ni(OH)2 2.0 M KOH 0–0.35 2 A g−1 818.3 [65]
Cabbage-like α-Ni(OH)2 1.0 M KOH 0.2–0.6 1 mA cm−2 761.2 [66]

Ni(OH)2 nanosheets 2.0 M KOH 0–0.45 1 A g−1 1072.9 [67]
Ni(OH)2 platelets 2.0 M KOH 0–0.6 0.5 A g−1 1160.4 [68]

β-Ni(OH)2 nanosheets 6.0 M KOH 0–0.6 5 mV s−1 1041 [69]
α-Ni(OH)2 2.0 M KOH 0–0.5 2 mV s−1 267 [70]

α-Ni(OH)2 microspheres 6.0 M KOH 0–0.4 1 A g−1 992.3 [71]
β-Ni(OH)2 nanosheets 6.0 M KOH 0–0.4 5 mA cm−2 790.3 [72]

β-Ni(OH)2 6.0 M KOH −0.05–0.35 1 A g−1 712 [73]
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Figure 2. Illustration of nanoscale or porous structures of Ni(OH)2 (a), atomic substitution or doping
(b), and fabricating a composite with carbon-based or other materials (c).

Table 2. Summary of performances of Ni(OH)2/rGO composites.

Electrode Materials ∆E
(V)

Maximum Capacity
(C g−1)

Capacity
Retention Cycle Stability Ref.

Ni(OH)2 nanoplatelets/rGO 0.45 955 C g−1 (1 A g−1) 58.6% (80 A g−1) 102% (5000 cycles) [74]
3D Ni(OH)2/rGO network 0.5 563 C g−1 (0.5 A g−1) 61.8% (10 A g−1) 87% (1000 cycles) [75]

Ni(OH)2/rGO 0.6 941 C g−1 (4 A g−1) 27% (11.2 A g−1) 75% (1000 cycles) [76]
Ni(OH)2/rGO aerogel 0.5 516 C g−1 (0.5 A g−1) 54.3% (2 A g−1) 95% (2000 cycles) [77]

Ni(OH)2/3D rGO 0.5 690 C g−1 (1 A g−1) 86.7% (60 A g−1) 78% (1000 cycles) [78]
Ni(OH)2 nanoparticles/rGO 0.38 858 C g−1 (0.5 A g−1) 52.7% (10 A g−1) 89% (1000 cycles) [79]

Ni(OH)2 nanosheets/rGO 0.45 838 C g−1 (0.8 A g−1) 62.3% (6.4 A g−1) 92% (2000 cycles) [80]
Ni(OH)2 nanocrystals/rGO 0.5 951.5 C g−1 (1 A g−1) 60.9% (20 A g−1) 70% (1000 cycles) [81]
Ni(OH)2 nanoplates/rGO 0.5 667 C g−1 (2.8 A g−1) 71% (45.7 A g−1) 100% (2000 cycles) [82]

Ni(OH)2/rGO 0.55 1206 C g−1 (2 mV s−1) 41% (20 mV s−1) 95% (2000 cycles) [83]
Ni(OH)2/rGO 0.55 954 C g−1 (1 mV s-1) 30% (50 mV s−1) 88% (1000 cycles) [84]
β-Ni(OH)2/rGO 0.5 971 C g−1 (1 A g-1) 67.9% (40 A g−1) 81% (2000 cycles) [85]

Ni(OH)2 nanoflowers/rGO 0.55 598 C g−1 (1 A g-1) 58% (10 A g−1) 95% (1000 cycles) [86]
Flower-like Ni(OH)2/rGO 0.4 642 C g−1 (1 A g-1) 18.7% (30 A g−1) 86% (2200 cycles) [87]

Ni(OH)2/rGO 0.45 546 C g−1 (5 mV s-1) 35% (100 mV s−1) 88% (1000 cycles) [88]

Compared with corresponding oxides/hydroxides, transition metal sulfides have
higher conductivity, mechanical and thermal stability, and richer redox reactions [89].
Over the past few years, transition metal sulfides (NiS, Ni3S2, MoS2, CoS, CuS, and
FeS2, etc.) with superior optical, electrical, magnetic, and catalytic properties have been
extensively used in the field of lithium ion batteries, SCs, and hydrogen evolution reac-
tion catalysts [90–93]. Among numerous transition metal sulfides, nickel sulfides have
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been extensively investigated as positive electrode materials for HSCs due to their high
electronic conductivity, low cost, and environmental sustainability [94–98]. For example,
Zhang et al. [89] synthesized V-doped NiS2 with a high specific capacity of 981 C g−1 at
1 A g−1, and a good electrochemical cycling stability (100% of the capacity is retained after
6000 cycles). The as-prepared nanocrystalline β-NiS by Kushwaha et.al [95] exhibited a
high specific capacity of 710 C g−1 at 1 A g−1, and long cycle stability (86% of the capacity
retention after 10,000 cycles). Although nickel sulfides have been reported as promising
positive electrodes for HSCs, they still suffer from some drawbacks, such as poor kinetics,
polarization, dissolution of polysulfides in the electrolyte, thus reducing its conductivity,
electrode pulverization, and the capacity loss [96,97]. In order to overcome these short-
comings, many researchers have devoted themselves to exploring the composites of nickel
sulfide with carbonaceous materials. For instance, the as-prepared graphene-wrapped
NiS nanocomposite by Zhang et al. [98] showed high specific capacity (1078.9 C g−1 at
2 A g−1) and good rate capacity (580.3 C g−1 at 15 A g−1), revealing that graphene plays
a critical role in improving the performance of nickel sulfide at high current densities. In
our recent work [12], we also found that the incorporation of graphene with nickel sulfide
could stabilize its electrochemical properties. When integrated with rGO, the NixSy/rGO
(NiS-Ni3S2-Ni3S4/rGO) composite electrode demonstrated not only higher specific capacity
(807 C g−1 at 1 A g−1) but also better rate capability (~72% capacity retention as the current
density was increased from 1 to 20 A g−1) [12]. Therefore, fabricating a composite with
rGO is an effective strategy to enhance the specific capacity, rate capability, and cycling life
of the whole electrode.

2.1.2. Cobalt Oxides/Hydroxides

Among various transition metal oxides, Co3O4 has attracted wide attention for its high
energy storage capacity (3560 F g−1), low cost, environmental friendliness, multiple valence
sites, and high activity in water oxidation [99,100]. Electron and ion transport efficiency for
charge storage in Co3O4-based pseudocapacitors mainly depends on electrode properties
such as surface area, morphology, and alignment of nanocrystalline phases [101,102]. In the
past decade, numerous Co3O4 nanostructures have been fabricated and tested for superior
performance in the field of energy storage [103–110]. For example, Yang et al. [109] synthe-
sized Pr-doped Co3O4 nanoflakes, which exhibited a high specific capacity of 640 C g−1 at
a current density of 2 A g−1, and 64% of the capacity retention at a high current density
of 10 A g−1. Zhang et al. [110] fabricated the Cl-doped Co3O4 hierarchical nanospheres
and observed significant performance with an ultrahigh specific capacity of 814 C g−1 at
a current density of 1 A g−1, high-rate capability (63.2% capacity retention at 32 A g−1)
and good cycling stability. However, the observed specific capacity values for Co3O4 are
much lower than their theoretical values, and the specific capacity usually severely decays
at high charge/discharge currents. Therefore, it is an ongoing challenge to further improve
its specific capacity and rate capability.

Cobalt hydroxide (Co(OH)2) is another kind of cobalt compound that has been
widely investigated for its rich redox reactions [111]. Compared with nickel oxide and
hydroxide, cobalt hydroxide provides more electrons when a redox reaction is going
on [112–114]. Furthermore, hydrotalcite-like cobalt hydroxide usually shows a positively
charged Co(OH)2−x layer and an interlayered gallery with negatively charged anions
(e.g., Cl−, SO42−, NO3−) [115–118]. Recently, Xu et al. [117] reported the preparation of
α-Co(OH)2 nanoparticles by cobalt zeolitic-imidazolate frameworks (ZIF-67) hydrolyza-
tion, and the as-prepared α-Co(OH)2 nanoparticles presented superior specific capacity of
314 C g−1 at a low current density of 1 A g−1, high rate capability (77% of capacity retention
at 20 A g−1) and good cycling stability (100% of capacity retention after 20,000 cycles).
In order to further improve the cycling stability, some researchers have tried to fabricate
the hybrids. For instance, Gan et al. [119] recently reported the Co(OH)2/CoS hybrid
nanostructure, which displays high rate capability (75.8% capacity retention as the current
density was increased from 0.5 to 10 A g−1) and long cycling stability. Wang et al. [120]
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synthesized a Co(OH)2/nitrogen-doped porous graphene composite and realized ultrahigh
specific capacity (1144 C g−1 at 2 A g−1), and long cycling stability (95.9% of capacity
retention after 4000 cycles).

2.1.3. Multi-Metal Compounds

Owing to the multiple oxidation states and the synergistic effects between vari-
ous metal ions, the multi-metal compounds show superior electrochemical performance
for energy storage [12]. Generally, multi-metal compounds can be divided into multi-
metal oxides, sulfides, and hydroxides. Multi-metal oxides, such as NiCo2O4 [121–123],
ZnCo2O4 [124–127], MnMoO4 [128–130], and CoMoO4 [131–134], have been widely ex-
plored for energy conversion and storage. Among these multi-metal oxides, the NiCo2O4
nanomaterials have attracted increasing attention due to their merits of higher electrical
conductivity, and higher electrochemical activity, which would offer richer redox reactions,
including contributions from both Ni2+/Ni3+ and Co3+/Co4+ redox couples in the mate-
rials [121–123]. For example, Shen et al. [135] that reported the highly uniform NiCo2O4
hollow spheres exhibited a high specific capacity of 541 C g−1 at 1 A g−1, and excellent rate
performance (74.8% of capacity retention from 1 A g−1 to 15 A g−1). In addition, it also
demonstrated good cycling stability with 94.7% of capacity retention after 4000 cycles of
continuous charge-discharge testing at the continuous charge-discharge testing at a current
density of 5 A g−1. All these superior performances are caused by the advantageous
structural features of these NiCo2O4 hollow spheres [135]. Ji et al. [136] reported a NiCo2O4
positive electrode material with an urchin-like hollow hierarchical microsphere structure,
which delivered a high capacity of 424 C g−1 at 0.5 A g−1 and satisfactory rate capability
(62.6% capacity retention from 0.5 A g−1 to 10 A g−1). To further enhance the electrochem-
ical performance of NiCo2O4, many researchers have tried to design 3D porous hybrid
electrode architectures by incorporating carbon materials. This hybrid architecture could
solve the intrinsic poor conductivity and inevitable agglomeration of NiCo2O4 electrode
materials [137]. For example, Li et al. [137] prepared the layered NiCo2O4/RGO nanocom-
posite and achieved an ultrahigh specific capacity of 694 C g−1 at 0.5 A g−1 and excellent
cycle life with 90.2% capacity retention after 20,000 cycles at 5 A g−1. Al-Rubaye et al. [138]
recently reported the NiCo2O4-rGO nanocomposite, which consists of NiCo2O4 hexagons
wrapped in conducting rGO sheets, which exhibited a high specific capacity of 533 C g−1

at 2 A g−1 and excellent cycling stability with 98% capacity retention after 10,000 cycles.
Sun et al. [139] reported the NiCo2O4 nanoparticle/three-dimensional porous graphene
(NiCo2O4/3D-G) composite by a facile hydrothermal method combined with subsequent
annealing treatment. The obtained NiCo2O4/3D-G hybrid electrode displayed a high
specific capacity of 920 C g−1 at 1 A g−1. When being used as a positive electrode for HSC,
the NiCo2O4/3D-G//rGO HSC device exhibited a high energy density of 73.8 W h kg−1 at
a power density of 800 W kg−1 and long cycle stability with 94.3% capacity retention after
5000 cycles [139].

Compared to the multi-metal oxides, the multi-metal sulfides show better electrical conduc-
tivity, mechanical and thermal stability, and higher electrochemical activity [140–142]. Recently,
many advances have been widely reported, including Ni-Co-S [143–148], KCu7S4 [149–152],
CuCo2S4 [153–155], Zn-Co-S [156,157], Mn-Co-S [158–161], CuSbS2 [162,163], SnCoS2 [164–166].
Among these multi-metal sulfides, nickel–cobalt sulfides (NiCo2S4) have been reported
with a much higher conductivity and richer redox reactions due to the electrochemical
contributions from both nickel and cobalt ions, resulting in better electrochemical perfor-
mance [167–169]. For example, Yu et al. [168] reported a facile self-sacrificial template
method to synthesize uniform 3D NiCo2S4 hollow nanoprisms with controllable com-
position. SEM (Figure 3a) and TEM (Figure 3b,c) images display the rough surface and
well-defined inner cavities of the NiCo2S4 hollow nanoprisms. When evaluated as an
electrode for HSCs, the NiCo2S4 hollow nanoprisms show a high capacity (447.6 C g−1

at 1 A g−1) and remarkable rate capability (65.4% retention of initial capacity from 1 to
20 A g−1). Wang et al. [169] prepared NiCo2S4 nanosheets (Figure 3d,e) and realized an
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ultrahigh specific capacity of 1384 C g−1 at 2 mA cm−2. Guan et al. [170] reported an
onion-like NiCo2S4 particle with unique hollow structured shells using onion-like metal
oxide particles as the precursor, as illustrated in Figure 3f. As shown in the TEM images
in Figure 3g–i, the onion-like NiCo2S4 particles are composed of several crumpled layers.
Owing to its intriguing structural features, the obtained onion-like NiCo2S4 exhibited good
electrochemical performance with a high specific capacity of 508 C g−1 and long cycling
stability with 87% capacity retention after 10,000 cycles [170]. Typical CV curves of the
NiCo2S4 electrode at different scanning rates are shown in Figure 3f. All these curves exhibit
a typical battery-like feature. Figure 3g shows the galvanostatic charge-discharge curves of
the electrode at various current densities in a potential window of 0–0.5 V. All these curves
show a well-defined discharge voltage plateau at around 0.2–0.3 V, further demonstrating
a good electrochemical battery-type characteristic and superior reversible redox reaction.
Zhang et al. [146] reported a facile hydrothermal approach for the shape-controlled synthe-
sis of NiCo2S4 architectures with four different morphologies of urchin (Figure 3j), tube
(Figure 3k), flower (Figure 3l), and cubic-like (Figure 3m) microstructures. Among these
architectures, the tube-like NiCo2S4 electrode exhibited the best specific capacity value of
419 C g−1 at a current density of 3A g−1 [146]. Peng et al. [144] reported a facile two-step
method to synthesize 3D core/shell-structured composites (CNTs@Ni-Co-S). Figure 3n,o ex-
hibits the SEM images of the Ni@CNTs@Ni-Co-S composite, revealing the skeleton of CNTs
to form a clear and with each other to form a highly open structure, providing abundant
accessibltypical core-shell hybrid structure. These nanosheets are interconnected pathways
for electrolyte ions [144]. The TEM image (Figure 3p) presents the detailed information for
the core/shell hierarchical nanostructures of CNTs@Ni-Co-S composites. At the interface
between CNTs and Ni-Co-S nanosheets, Ni-Co-S nanosheets are found to adhere to the
surface of CNTs robustly, which is favorable for electron transfer through CNTs to Ni-Co-S
nanosheets [144]. The as-prepared composite electrode delivered a high specific capacity of
222 mA h g−1 at 4 A g−1 and excellent rate capability (193 mA h g−1 at 50 A g−1) [144].

In recent years, multi-metal layered double hydroxides (LDH) have also attracted
much more attention in the design of electrode materials for HSCs. Various success-
ful achievements have been widely reported in the literature [171–176]. For example,
Nagaraju et al. [173] reported a facile and cost-effective process to obtain well-assembled
porous Ni-Co LDH nanosheets on conductive textile substrates (Ni-Co LDH NSs/CTs) us-
ing a two-electrode system-based electrochemical deposition method. SEM images indicate
that the entire surface of the CTs has an average height of 1.2–1.3 µm (Figure 4a,b), and
the surfaces of these nanosheets are smooth with a thickness of approximately 10–15 nm
(Figure 4c) [173]. The as-prepared Ni-Co LDH NSs/CTs showed high specific capacity of
(Figure 4d) and good cycling stability (Figure 4e). To further improve the performance, some
researchers tried to incorporate foreign anions (e.g., nitrate, chloride, sulfate, acetate, etc.)
into the interlayer region, or grow the active materials on nano-architectured carbon-based
materials (graphene, carbon nanotube, etc.) to form hybrids [174–176]. Figure 4f,g show the
polyhedron morphology from typical SEM and TEM images of the NiCo-LDH/Co9S8 sam-
ple, respectively. The as-prepared NiCo-LDH/Co9S8 hybrid system collectively presents an
ideal porous structure, rich redox chemistry, and high electrical conductivity matrix, which
deliver a high specific capacity of 743.8 C g−1 (1653 F g−1) at 4 A g−1 (Figure 4h) [174].
Moreover, a hybrid supercapacitor device based on NiCo-LDH/Co9S8 polyhedrons and
carbon nanotubes delivers a high specific capacitance of 194 F g−1 and superior rate capa-
bility of 77.8% (Figure 4i) [174]. Bai et al. [175] reported the synthesis and characterization
of Ni-Co LDH hollow nanocages, which are deposited on commercial graphene nanosheets
derived from ZIF-67/graphene pristine material via a structure-induced anisotropic chem-
ical etching at elevated temperature (Figure 4j). Figure 4k,l show the SEM images of
the Ni-Co LDH/graphene composite, indicating that the shell of the hollow structure is
composed of interconnected nanosheets with ultrathin thickness. The unique nanocom-
posite electrode delivered a high specific capacity of 759 C g−1 (1265 F g−1) at 1 A g−1

(Figure 4m). Recently, Liu et al. [176] synthesized the Ni-Co@Ni-Co LDH nanotube arrays
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(NTAs) by using ZnO nanorod arrays (ZnO NRAs) grown on CFC as a template. SEM
images show that the Ni-Co@Ni-Co LDH nanorod is a fungus composed of a big top
and a small body (Figure 4n,o). The TEM image (Figure 4p) indicates that the top of the
Ni-Co@Ni-Co LDH nanotube has a diameter of ~700 nm and consists of many nanosheets,
whereas the body of the nanotube has a diameter of ~550 nm and consists of nanocrystals
(20~30 nm in size) [176]. The SAED pattern (inset of Figure 4q) reveals that the body
of the Ni-Co@Ni-Co LDH NTA consists of many nanocrystals, and the EDX mapping
(Figure 4r) shows that Ni, Co, and O are well-dispersed and homogeneously mixed in the
NTA. Owing to their intriguing structural features, the Ni-Co@Ni-Co LDH NTAs deliver
excellent rate performance (82.1% capacity retention from 1 to 20 A g−1) with an ultrahigh
specific capacity of 1207 C g−1 at 1 A g−1 [176]. The Ni-Co@Ni-Co LDH NTAs are further
paired with CNFs to fabricate HSCs, which delivered high specific capacitances of 280,
253, and 220 F g−1 at discharge current densities of 5, 10, and 20 A g−1, respectively. Most
remarkably, the device exhibited an ultrahigh energy density of 100 Wh kg−1 at a power
density of 1500 W kg−1 [176]. In addition to Ni and Co, some researchers also reported the
effect of other transition metals (i.e., Zn, Mn, Al, and Fe) contents in Ni or Co electrode
materials, as illustrated in Table 3.

Figure 3. (a) SEM and (b,c) TEM images of NiCo2S4 hollow prisms [168] (Copyright 2014
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). (d) SEM and (e) TEM images of NiCo2S4

nanosheet hetero-structured arrays [169] (Copyright 2015 Elsevier Ltd., all rights reserved).
(f) Schematic illustration of the formation process; (g–i) TEM images of onion-like NiCo2S4 hollow
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microspheres [170] (Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). (j–m) SEM
images of NiCo2S4 with different morphologies: urchin (j), flower (k), tube (l), and cubic (m) [146]
(Copyright 2014, The Royal Society of Chemistry). (n,o) SEM images of the core/shell-structured
CNTs@Ni-Co-S hybrids. (p) TEM image for detailed core/shell structure information of the CNTs@Ni-
Co-S hybrids [144] (Copyright 2016: The Royal Society of Chemistry).

Figure 4. (a–c) FESEM images of the Ni-Co LDH NSs/CTs. (d) Specific capacitance values as a
function of current density of Ni-Co LDH NSs/CTs. (e) Cycling performance of the sample at
a current density of 10 A g−1 in 1 M KOH electrolyte solution. The inset of (e) shows the EDX
spectrum and FE-SEM image of Ni-Co LDH NSs/CTs after the cycling process [173] (Copyright 2016:
The Royal Society of Chemistry). SEM (f) and TEM (g) images of NiCo-LDH/Co9S8 polyhedrons.
(h) Specific capacitances as a function of the current density. (i) Calculated specific capacitance
values for NiCo-LDH/Co9S8//CNTs hybrid supercapacitor cells. Inset is a schematic illustration of
the cells [174] (Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). (j) Schematic
illustration of the possible mechanism of reaction involved in forming Ni-Co LDH. (k,l) TEM images
of Ni-Co LDH hollow nanocages/graphene composites. (m) Cycling stability tests of the Ni-Co
LDH/graphene composite with different graphene masses [175] (Copyright 2017 American Chemical
Society). (n,o) SEM images of Ni-Co@Ni-Co LDH natube arraies. TEM (p) and HRTEM (q) images
of Ni-Co@Ni-Co LDH NTAs. (r) TEM elemental mapping of Ni, Co, and O. (Ni:Co = 5:5) [176]
(Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
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Table 3. Summary of performances of multi-metal LDH nanomaterials and their hybrids.

Electrode Materials ∆E
(V)

Maximum Capacity
(C g−1)

Capacity
Retention Cycle Stability Ref.

NiCo-LDH/CC 0.5 908 C g−1 (1 A g−1) 60% (100 A g−1) 88% (10000 cycles) [177]
NiCo-LDH/CFC 0.45 1009 C g−1 (1 A g−1) 61% (60 A g−1) 95% (2000 cycles) [178]

NiCoAl-LDH 0.6 1237 C g−1 (1 A g−1) 48.7% (10 A g−1) 93% (3000 cycles) [179]
NiCoAl-LDH@BG-NF 0.5 999 C g−1 (6 A g−1) 75.3% (20 A g−1) 91% (2000 cycles) [180]

rGO/Ni0.75−xCoxAl0.25-LDH 0.5 772 C g−1 (1 A g−1) 70% (40 A g−1) 89% (2000 cycles) [181]
MnCo-LDH@Ni(OH)2 0.4 928 C g−1 (1 A g−1) 56.3% (30 A g−1) 91% (5000 cycles) [182]

Ni0.76Co0.24-LDH 0.5 1279 C g−1 (1 A g−1) 87.2% (30 A g−1) 70% (20000 cycles) [183]
HCNs@NiCo-LDH 0.5 1095 C g−1 (1 A g−1) 74.9% (20 A g−1) — [184]
NiCo-LDH/rGO 0.45 802 C g−1 (1 A g−1) 76.9% (20 A g−1) 74% (1000 cycles) [185]

NiCo-LDH@CNT/NF 0.4 818 C g− 1(1 A g−1) 65.2% (20 A g−1) — [186]
rGO(25)@CoNiAl-LDH 0.45 839.7 C g−1 (1 A g−1) 72.9% (10 A g−1) 100% (5000 cycles) [187]

LEG/NiCo-LDH 0.45 1099 C g−1 (1 A g−1) 83.5% (50 A g−1) 89% (5000 cycles) [188]
NixCo2x(OH)6x@Ni 0.5 1146 C g−1 (5 A g−1) 68% (100 A g−1) 90% (5000 cycles) [189]

NiCo-LDHs 0.45 780 C g−1 (6 A g−1) 66.1% (30 A g−1) 86% (1000 cycles) [173]
Ni-Co LDH NSs/CTs 0.5 1052 C g−1 (2 A g−1) 57% (20 A g−1) 90% (2000 cycles) [190]

NiMn LDH/rGO 0.5 750 C g−1 (1 A g−1) 45.3% (10 A g−1) 90% (5000 cycles) [191]
CoMn-LDH 0.65 916 C g−1 (1 A g−1) 71.1% (10 A g−1) 93% (3000 cycles) [192]
10NiAl-LDH 0.4 849 C g−1 (0.5 A g−1) 70.7% (20 A g−1) 92% (10,000 cycles) [193]

NiCo2O4@NiCoAl-LDH 0.6 1088 C g−1 (1 A g−1) 61% (20 A g−1) 93% (2000 cycles) [175]
Ni-Co LDH/graphene 0.6 759 C g−1 (1 A g−1) 50% (10 A g−1) 93% (2000 cycles) [165]

NiAl-LDH 0.55 1023.8 C g−1 (2 A g−1) 68.8% (50 A g−1) 86% (5000 cycles) [194]
NiFe-LDH 0.4 1354 C g−1 (5 A g−1) 53.7% (10 A g−1) 43% (500 cycles) [195]

MnCo-LDH 0.45 230 C g−1 (1 A g−1) 69.7% (20 A g−1) 92% (2000 cycles) [196]
GO/NiAl-LDHs 0.4 384 C g−1 (1 A g−1) 67% (10 A g−1) 70% (2000 cycles) [197]

NiAl-LDHs 0.45 277.6 C g−1 (1 A g−1) 73.6% (20 A g−1) 96% (2000 cycles) [198]
Co-Al-LDH 0.45 377 C g−1 (1 A g−1) 80.8% (100 A g−1) 95% (20,000 cycles) [199]

A-NiCo-LDHs 0.5 1224 C g−1 (1 A g−1) 67.1% (20 A g−1) 93% (10,000 cycles) [176]
Ni-Co@Ni-Co LDH 0.5 1207 C g−1 (1 A g−1) 82.1% (20 A g−1) 98% (5000 cycles) [200]
Ni-Mn LDH/carbon 0.5 634 C g−1 (1 A g−1) 78.4% (10 A g−1) 79% (5000 cycles) [201]

2.2. Negative Electrode Materials

The negative electrode material is also crucial in developing high-performance
HSCs with high energy density and excellent rate capability. Since the different
mass ratios will affect the overall capacitance of the HSC device [202,203], to balance
the charges stored on the two electrodes of HSCs, the matching ratio of positive
and negative electrodes should be accurately calculated. Carbon materials, such as
activated carbon (AC), carbon nanotubes (CNTs), and reduced graphene oxide (rGO),
are widely utilized for electrode materials in SCs due to their easy accessibility, good
processing ability, large surface area/porosity, low electrical resistivity, robust surface
chemical environment, physicochemical stability, and low cost [33]. Currently, the
most commonly used electro-active materials in HSC electrodes are AC, CNTs, and
rGO materials.

2.2.1. Activated Carbon Materials

AC is the most commonly used negative electrode material in HSCs because of its
low cost and large surface area. At present, the AC electrodes have been applied to
commercial SCs with high power density. Many recent advances in AC-based HSCs
have been widely reported, as summarized in Table 4. The capacitance of AC is not
linearly related to its surface area and pores sizes, such that the specific capacitance of
micropores is larger than that of mesopores [33,203]. Therefore, controlling the pore
size distribution of AC electrodes is very important. Kierzek et al. [204] prepared
microporous AC with a surface area in the 1900–3200 m2 g−1 range and a pore volume



Molecules 2023, 28, 6432 12 of 36

of 1.05 to 1.61 cm3 g−1. The capacitance values ranging from 200 to 320 F g−1 were
achieved compared with the 240 F g−1 of the commercially available ACs [204,205]. AC
with remarkable performance, similar to SC electrodes, has also been prepared using
other methods. For instance, Zhang et al. [206] prepared AC by the ZnCl2 activation
method, and the material exhibited a high surface area of 1935 m2 g−1 and a total pore
volume of 1.02 cm3 g−1. Moreover, it showed a high specific capacitance of 374 F g−1

(1 mol L−1 H2SO4 electrolyte), excellent capacity retention, and long cycling stability.
In brief, although AC has a long history of usage and production, its structural and
chemical characteristics are experiencing continual evolution to meet the requirements
of more demanding emergent applications [205].

Table 4. Summary of performances of HSCs based on AC as negative electrode.

Device Voltage
(V)

Energy Density
(Wh kg−1)

Power Density
(W kg−1) Cycle Performance Ref.

Zn-Ni-Al-Co oxide//AC 0–1.5 72.4 533 90% (10,000 cycles) [207]
NiO/Ni3S2//AC 0–1.6 52.9 1600 92.9% (5000 cycles) [208]

Ni(OH)2//AC 0–1.3 35.7 490 81% (10,000 cycles) [57]
Ni(OH)2//AC 0–1.6 22 800 85.7% (4000 cycles) [67]

Ni(OH)2-AB//AC 0–1.4 18.7 1971 91% (5000 cycles) [69]
β-Ni(OH)2//AC 0–1.6 36.2 100.6 92% (1000 cycles) [200]

rGONF/Ni(OH)2//AC 0–1.7 44.1 467 77.4% (2000 cycles) [209]
NiS//AC 0–1.8 31 900 100% (1000 cycles) [210]
NiS//AC 0–1.6 33.4 800 87.3% (5000 cycles) [211]

Ni/Co-LDHs//AC 0–1.6 165.5 1530 85% (500 cycles) [212]
ZnCo2O4//AC 0–1.6 29.7 398.5 72.5% (1000 cycles) [213]
ZnCo2O4//AC 0–1.6 33.98 800 93.3% (10,000 cycles) [214]

NiCo2O4/rGO//AC 0–1.5 57 375 90.2% (20,000 cycles) [137]
NiCo2S4/Co9S8//AC 0–1.5 33.5 150 65% (5000 cycles) [144]
CuCo2S4-HNN//AC 0–1.6 44.1 800 94.1% (6000 cycles) [215]

MCS/GNF//AC 0–1.6 54.26 1120 81.9% (4000 cycles) [216]
NiCo2S4//AC 0–1.6 25.5 334 93.4% (1500 cycles) [168]
NiCo2S4//AC 0–1.6 42.7 1583 92% (10,000 cycles) [170]

NiCo2S4 nanopetals//AC 0–1.6 35.6 819.5 94.3% (5000 cycles) [217]
NiCo-LDH//AC 0–1.6 69.7 800 87% (20,000 cycles) [177]
NiCo-LDH//AC 0–1.5 17.5 10500 91.2% (10,000 cycles) [167]

MnCo-LDH@Ni(OH)2//AC 0–1.5 47.9 750.7 90.9% (5000 cycles) [182]
NiCo-LDH//AC 0–0.8 15.9 400 82.7% (20,000 cycles) [183]

NiCo2O4@NiCoAl-LDH//AC 0–1.6 74.6 800 93% (2000 cycles) [175]
NiCo-LDH/graphene//AC 0–1.7 68 594.9 94.2% (2500 cycles) [165]

NiFe-LDH//AC 0–1.6 50.2 800 65% (2000 cycles) [195]
NiMoO4//AC 0–1.7 60.9 850 85.7% (10,000 cycles) [218]
NiCo-10//AC 0–1.6 51.5 825 89.5% (6000 cycles) [219]

NiSe2//AC 0–1.6 44.8 969.7 87.4% (20,000 cycles) [220]

2.2.2. Carbon Nanotube Materials

CNTs have been widely studied for SCs owing to their porous structure, high
surface area, good electrical conductivity, and low density [221–223]. Owing to their
unique tubular structures and the high density of mesopores, they exhibit much higher
specific capacitance than ACs [224]. Compared to multiwalled CNTs, single-walled
CNTs exhibit better electrochemical properties because of their large specific surface
area (~1600 m2 g−1), high aspect ratio, fast charge transport, and large accessibility of
electrolyte ions [225–227]. Recently, Wang et al. [227] reported hierarchically porous
CNTs by a simple carbonization treatment, which displayed a high specific surface
area of 1419 m2 g−1 and hierarchical micro-/meso-/macroporosity. This unique porous
architecture delivered an ultrahigh specific capacitance of 286 F g−1 at 0.1 A g−1, and ex-
cellent rate capability (~71% capacity retention from 0.1 to 50 A g−1) [227]. To increase
the energy and power density of devices, other strategies have also been -employed,
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such as atomic doping and combining CNTs with other materials (e.g., metal oxides,
ACs, and graphehe) [228–231]. For example, Kim et al. [230] recently reported a poly-
imide/MWCNT composite electrode with a high specific capacitance of 333.4 F g−1 at
1 A g−1. Jin et al. [231] reported a polyaniline/carbon nanotubes/graphene/polyester
hybrid electrode with a high areal capacitance of 791 mF cm−2 at a current density of
1.5 mA cm−2. Although various types of research have been carried out on CNTs for
HSCs, most of the reported electrodes are often in powdered form or have a disordered
texture with poor interconnectivity among micro-/mesoporous structures, which leads
to a low specific capacitance and high internal resistance, thus resulting in a much
lower energy and power density for devices [232–234]. Therefore, it is still a great
challenge to further improve its performance.

2.2.3. Reduced Graphene Oxide Materials and Their Hybrids

Another promising negative electrode material for HSCs is graphene. Graphene, a
two-dimensional carbon sheet with monoatomic layer thickness, has been widely explored
as an ideal electrode material for SCs due to its unique properties, including its high theo-
retical surface area (2630 m2 g−1) and high in-plane electrical conductivity [235,236]. It has
brought a sensational revolution in the field of energy storage and conversion. To date, var-
ious routes have been developed to fabricate graphene sheets, such as blade-coating, spray-
coating, layer-by-layer assembly, interfacial self-assembly, and filtration assembly [237–242].
In principle, a supercapacitor based on graphene is capable of achieving a theoretical elec-
trochemical double layer capacitance as high as 550 F g−1 [243,244]. However, the practical
performance of graphene is far below the ideal one due to various reasons. One of the main
reasons is that the 2D layered graphene sheets can easily restack to form dense lamellar
microstructures, which greatly decreases the specific surface area of the original graphene
sheets, causes inferior ion transport capabilities, and renders a substantial number of active
sites inaccessible to reactants [245–248]. Therefore, a number of strategies have been devel-
oped to prevent aggregation of graphene sheets so as to increase surface area and promote
the transport of electrolyte ions, including fabricating 3D porous nanostructures [249,250],
nitrogen doping [251–253], and surface modification using molecular modifiers [254,255].
For example, Li et al. [249] fabricated electrochemically active graphene fiber fabrics (GFFs)
with a hierarchical morphology by using a hydrothermal activation strategy (Figure 5a–e).
In such a process, crumpling of the graphene sheets within graphene fibers made for
efficient activation on GFFs with a largely increased specific surface area [249]. Recently,
Liu et al. [250] reported a novel strategy for the synthesis of pseudocapacitive oxygen
clusters in graphene frameworks with “paddy land” structures through low-temperature
thermal annealing of graphene oxide (Figure 5f–h). The SEM image (Figure 5i) clearly
shows the typical flakelike morphology, with the lateral size ranging from 500 nm to
a few micrometers. Moreover, the TEM image (Figure 5j) indicates the smooth surface
of the GO-160-8D with layer stacking structure. Moreover, a high-magnification TEM
image clearly demonstrates that sp3 carbon domains consisting of oxygen clusters are
well distributed in the continuous sp2 carbon network. The as-prepared functionalized
graphene shows ultrahigh specific capacitance of 436 F g−1 at 0.5 A g−1, excellent rate
performance (261 F g−1 at 50 A g−1) and long cycling stability (94% of capacitance retention
after 10,000 cycles) [250]. Shao et al. [256] reported a 3D porous rGO film with a high con-
ductivity (1905 S m−1) and good tensile strength. The open surfaces of the 3D porous rGO
films can be easily accessed by electrolyte ions without a diffusion limit, which guarantees
a large capacitance at high current density/scan rate [256].



Molecules 2023, 28, 6432 14 of 36

Figure 5. (a) Schematic diagram showing the structural evolution of graphene fibers during the
hydrothermal activation process. Crosssectional SEM images of graphene fibers in the corresponding
stages: (b) as-spun GO fiber, (c) swelled GO gel fiber at the beginning of hydrothermal treatment,
(d) rGO gel fiber at the end of hydrothermal treatment, and (e) the resulted hierarchical rGO fiber after
air-drying [249] (Copyright 2017 American Chemical Society). (f) SEM image of the GO-160-8D sam-
ple. (g) TEM image of the GO-160-8D sample. (h) high-magnification TEM image [250] (Copyright
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). (i,j) Specific capacitances of GO-160-8D un-
der mass loadings of 2 and 10 mg cm−2, and that of commercial activated carbon (YP-50) under a mass
loading of 10 mg cm−2 [256] (Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

Nitrogen doping is considered as an effective strategy to enhance the electrochemical
performance of graphene. Doping not only affects the electronic structure and properties
of graphene, but it also reduces the degree of aggregation and results in a morphology
that allows easy access to electrolyte ions [257]. Some researchers have demonstrated that
N-doping could greatly improve the specific capacitance of graphene. In 2013, Lu et al. [258]
developed a solvothermal method to prepare N-doped graphene and achieved a specific
capacitance of 301 F g−1. In 2015, Qin et al. [241] reported a thermal treatment method to
prepare robust 3D N-doped graphene (R-3DNG) and achieved a specific capacitance of
509 F g−1, which is approaching the theoretical capacitance of graphene (550 F g−1). In
2016, Wang et al. [242] prepared N-doped graphene by treating polypyrrole-modified GO
with plasmas, and observed a specific capacitance of 312 F g−1. In 2017, Hang et al. [251]
reported an N-superdoped 3D graphene network structure (3D GF-NG) by immersing
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highly conductive GF with a 3D interconnected network structure into an aqueous solution
of GO sheets (Figure 6a). The N-doped GO aerogels closely connected with the GF skeleton,
forming an interconnected GF-NG network structure (Figure 6b,c), and demonstrating a
large specific surface area of 583 m2 g−1, through which electrolyte ions could easily access
to the surface of graphene to form electric double layers [251]. The fabricated 3D N-doped
rGO electrode delivered a high specific capacitance of 312 F g−1 at 5 mV s−1 [251]. In 2018,
Zhang et al. [259] reported an advanced N-doped graphene electrode with an ultrahigh
specific capacitance of 481 F g−1 at 1 A g−1, and with superior cycling stability of 98.9%
capacitance retention after 8000 cycles. Figure 6d shows the SEM image of the N-doped
graphene nanosheets, revealing many densely stacked gibbous bubbles with one dimension
of about 10 nm on the surface of undulated graphene nanosheets [259]. The TEM image of
the N-doped graphene in Figure 6e illustrates its unique wrinkled structure. This unique
structure improves the access of ions between the electrolyte and electrode surface and
thereby enhances the transport rates toward the interface of the electrode [259]. The as-
produced N-P-O co-doped 3D hierarchical porous graphene by Zhao et al. [260] exhibited
many nanopores (Figure 6f), facilitating the high volumetric density of the product. As
shown in Figure 6g, the density functional theory (DFT) calculations were performed
to investigate the co-doping effect of N-P-O in the pristine graphene. All atoms in the
models were free to fully relax [260]. The unique 3D hierarchical porous graphene electrode
delivered an ultrahigh specific capacitance of 426 F g−1.

Figure 6. (a) Schematic drawing of the procedure for fabricating 3D GF-NG network macrostructure.
(b) Low-magnification and (c) high-magnification cross-sectional FESEM images of GF-NG. The sections
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marked by dots circles are the skeletons of GF [251] (Copyright 2017 WILEY-VCH Verlag GmbH
& Co. KGaA, Weinheim). SEM (d) and TEM (e) images of N-doped graphene (Copyright 2017
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [259]. (f) SEM image of 3D hierarchical porous
graphene. (g) Lowest Unoccupied Molecular Orbital of N-P-O co-doped graphene [260] (Copyright
2016 Elsevier Ltd., All rights reserved).

Modifying the surface structure of electrode materials could improve their compatibil-
ity with electrolytes, enrich redox sites, and enhance the surface conductivity, leading to
good electrochemical performance [33]. Recently, oxygen- and nitrogen-containing groups
have been well studied to modify the graphene surface. For example, Song et al. [254] re-
cently reported different functionalized graphene networks by using amine molecules and
a facile two-step hydrothermal method. The as-fabricated graphene composite exhibited
an improved capacitance and fast ionic diffusion features in aqueous and organic elec-
trolytes, with less than 10% capacitance decay during 10,000 charge/discharge cycles [254].
Li et al. [257] reported chemical compounds of GO and amine molecules as spacers by
one-step hydrothermal reactions. The as-prepared graphene composite electrode exhibited
excellent performance with a high specific capacitance of 597 F g−1 [255]. In conclusion,
heteroatoms in doped graphene materials play a key role in electron transfer and energy
conversion processes. The incorporation of nitrogen or molecular modifiers can provide
the work electrodes with high-density active sites to enhance the capacitance performance.
Moreover, it can also reduce the agglomeration level of graphene and create few-layer
graphene sheets with interconnected open pores, which provide an effective pathway for
charge transport.

3. Design Structures of Hybrid Supercapacitors

A HSC device usually contains positive and negative electrodes, an electrolyte, a
separator (to prevent short circuits between electrodes), and current collectors. Besides the
electrodes, electrolytes also play an important role in HSC performance. The electrolytes of
HSCs could be organic (LiPF6, LiBF4, LiClO4, NaClO4, NaPF6, etc.), ionic liquid (BMIMBF4),
gel-polymer (PVA-H3PO4, PVA-LiCl, etc.), or aqueous of acidic (H2SO4, CH3SO3H), alka-
line (KOH, NaOH), and neutral (Na2SO4, Li2SO4) [13]. Aqueous electrolytes usually have
the advantages of high ionic conductivity, low cost, non-flammability, safety, and conve-
nient assembly in air [261]. But its potential window is limited to 1.2 V, which is far lower
than that of organic electrolytes (3.5–4 V). A high-potential window is a large merit for
organic electrolytes, which could significantly contribute to high energy density. However,
it is less conductive, expensive, usually flammable, and more toxic [13,261]. Ionic liquids as
nonvolatile, highly stable electrolytes are considered as the most promising electrolytes
compared to organic ones for HSC applications [13]. The gel-polymer electrolyte is usually
used for designing and fabricating flexible/stretchable or even smart HSCs due to its merits
of avoiding electrolyte leakage or without using an additional separator [262,263]. In this
section, four main types of HSCs (Figure 7) are summarized and discussed in detail.

3.1. The Traditional Planar HSC Devices

The traditional HSC devices are constructed from two different types of planar elec-
trodes, one membrane charge separator, and an electrolyte sandwiched together. They
have demonstrated great potential in hybrid electric vehicles (electric buses and trains), the
aerospace industry, and portable electronic devices [264,265]. To date, remarkable progress
has been made in the development of high-performance HSCs. For example, Zhao et al. [50]
reported a high-performance HSC device based on Ni-Co-Mn-OH/rGO as the positive
electrode and PPD/rGO as the negative electrode (Figure 8a). The rate capability of the
HSC device was evaluated by cyclic voltammetry at different scan rates. The shapes of CV
curves were well maintained with the increase in scan rate from 5 to 100 mV s−1, revealing
the high-rate capability of the HSC device. Moreover, the as-fabricated device exhibited an
energy density of 74.7 W h kg−1 at a power density of 1.68 kW kg−1, while maintaining
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a capacity retention of 91% after 10,000 cycles at a charge-discharge current density of
20 A g−1. In addition, they also fabricated a high-performance HSC device based on
CoxNi1−x(OH)2@rGO composite as a battery-type faradaic electrode and a p-p henylene-
diamine (PPD)-modified rGO composite as a capacitive electrode (Figure 8b) [153]. The
shapes of CV curves were well reserved as the scan rate was increased from 5 to 100 mV s−1,
indicating reasonably high-rate capability of the hybrid supercapacitor, as a result of the
electrochemical properties of both the positive and negative electrodes [153]. Moreover,
the as-fabricated HSC device also demonstrated a high energy density of 72 Wh kg−2 and
excellent cycling life [153]. Recently, we also designed a HSC device, constructing it from
NiS-Ni3S2-Ni3S4/rGO (NixSy/rGO) as a battery-type faradaic electrode and graphene
as a capacitive electrode (Figure 8c), which exhibited a similar electrochemical behavior
in a voltage range of 0–1.6 V, a high energy density of 46 Wh kg−1 at a power density
of 1.8 kW kg−1, and good cycling stability [12]. Furthermore, we also fabricated a novel
HSC device based on C@ZnNiCo-CHs as the positive electrode and N,S-codoped rGOs
as the negative electrode (Figure 8d), which delivered an excellent electrochemical behav-
ior in a voltage range of 0–1.6 V, a high energy density of 70.9 Wh kg−1, and excellent
cycling stability [266]. These findings not only provide a promising electrode material for
high-performance HSCs, but also open a new avenue toward knowledge-based design
of efficient electrode materials for other energy storage applications [50]. In brief, the
traditional planar HSCs are beneficial for achieving a high ratio of energy delivery at high
charge-discharge rates, but they are usually large in size, heavy in weight, and mechanically
inflexible [7]. Therefore, an important goal for HSC is to develop the small-sized, portable,
and flexible devices.

Figure 7. The hybrid supercapacitors with four representative structure types, namely, (a) traditional
planar HSCs, (b) flexible HSCs, (c) twisted-type HSCs, and (d) cable-type HSCs.
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Figure 8. (a) Schematic illustration of the HSC device using Ni-Co-Mn-OH/rGO as positive electrode
and PPD/rGO as negative electrode [50] (Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim). (b) Schematic illustration of the hybrid supercapacitor device with a CoxNi1−x(OH)2@rGO
composite as a battery-type faradaic electrode and a p-phenylenediamine (PPD)-modified rGO com-
posite as a capacitive electrode [153] (Copyright 2016 Elsevier B.V.). (c) Schematic illustration of the
NiS-Ni3S2-Ni3S4/rGO//graphene hybrid supercapacitor device [12] (Copyright 2017 Elsevier Ltd.,
All rights reserved). (d) Schematic illustration of the C@ZnNiCo-CHs//N,S-codoped rGOs hybrid
supercapacitor device [266] (Copyright 2018, published by Elsevier B.V.).

3.2. The Flexible HSC Devices

Owing to the rapid growth of portable and wearable consumer electronics, such
as wearable displays, on-body sensors, artificial electronic skin, and distributed sensors,
enormous effort has been devoted to flexible, wearable, and integratable electronics to
meet the demands of modern society [267–269]. In recent years, some research has been
done to fabricate stretchable HSC devices, mostly by using carbon fibers (CFs), nickel foam,
or conductive polymers as substrates to achieve stretchability [270–274]. For example,
Kim et al. [270] recently developed a flexible electrode based on binder-free nickel cobalt
layered double hydroxide nanosheets adhered to nickel cobalt layered double hydroxide
nanoflake arrays on nickel fabric (NC LDH NFAs@NSs/Ni fabric) using facile and eco-
friendly synthesis methods (Figure 9a–d). The fabricated HSC device, constructed from the
NC LDH NFAs@NSs/Ni fabric positive electrode and MnO2/3D-Ni negative electrode,
exhibited excellent electrochemical durability and flexibility. Zhang et al. [271] fabricated
the HSC device based on the Ni-Co-S/graphene foam (GF) as the positive electrode and
polypyrrple (PPy)/GF as the negative electrode (Figure 9e), which demonstrated robust
flexibility under different bending angles. Recently, carbon-based fibers have also been
widely used in flexible energy storage electrodes due to their unique features involving
the high flexibility, good mechanical properties, and its unchanged sheet resistance even
in a very high bending state [9]. For example, Huang et al. [272] designed and fabricated
hierarchical core-branch Al-doped cobalt sulfide nanosheets anchored on Ni nanotube
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arrays combined with carbon cloth (denoted as CC/H-Ni@Al-Co-S) (Figure 9f), which
exhibited high specific capacity (1217 C g−1 at 1 A g−1). Moreover, the as-fabricated
CC/H-Ni@Al-Co-S//graphene/CNT HSC device not only demonstrated high flexibility,
but also delivered a high energy density of 65.7 Wh kg−1. Nagaraju et al. [275] reported the
progress toward a high-performance HSC device based on a 3D Ni-electrode (Figure 9g),
which delivered an excellent energy density of 75 Wh kg−1 and a high-power density of
5.3 kW kg−1. Furthermore, the device also demonstrated excellent flexibility and a potential
application for wearable energy management.

Figure 9. The fabrication and morphology of the mesoporous 3D-Ni current collector. (a) Schematic
illustration of the fabrication procedure of the mesoporous 3D-Ni/Ni film (inset images are pho-
tographs and SEM images of the Ni(OH)2/Ni film and the 3D-Ni/Ni film). (b) Photograph of the
synthesized 3D-Ni/Ni film (the inset is a magnified SEM image). (c) Photograph of the 3D Ni/Ni
film with flexible (d) and rollable properties [270] (Copyright 2017 Elsevier Ltd., All rights reserved).
(e) Schematic illustration of the synthesis of the petal-like Ni-Co-S and the construction of HSC
devices [271] (Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). (f) Schematic il-
lustration of the fabrication of a hierarchical core-branch CC/H-Ni@Al-Co-S nanosheet electrode [272]
(Copyright 2018 American Chemical Society). (g) Schematic illustration of the fabrication process
of NC LDH NFAs@NSs/Ni fabric using a wearable polyester shirt [275] (Copyright 2017 American
Chemical Society).

Up to date, various studies have been carried out on flexible planar HSC devices,
but the cycling stability of HSCs still needs to be improved. The phase transformation,
structural collapse, and volumetric expansion may be the most key factors that causing
the reduction of capacity during long-term charging-discharging cycles [273]. The incorpo-
ration of metal cations into hybrid electrode materials can effectively prevent the phase
transitions in active materials, which can improve their long-term cyclability [275]. Another
effective method is to fabricate the nanostructured composites with graphene [275], which
can effectively prevent the nanostructure from collapsing and avoid the corrosion of energy
storage capacity.
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3.3. The Twisted-Type HSC Devices

Unlike conventional rigid planar HSCs, the twisted-type HSCs can be directly used
as flexible power sources in wearable, self-powered electronic devices [275]. They can be
either co-woven/knitted into existing fabrics/textiles or they can be woven/knitted by
themselves [276]. Recently, many advanced fiber-shaped HSC devices have been widely
reported in the literature [276–280]. For instance, Sun et al. [280] reported a twisted-type
HSC device assembled by twisting a molybdenum-nickel-cobalt ternary oxide/carbon nan-
otube fiber (MNCO/CNTF) positive electrode and thin carbon-coated vanadium nitride
(VN) nanowire arrays on a CNTF negative electrode (Figure 10a), which delivered a high
specific capacitance of 490.7 F cm−3 (1840 mF cm−2) at a current density of 1 mA cm−2

and outstanding flexibility and stability with capacitance retention maintained at 90.2%
after bending 3500 times. Jin et al. [281] reported a twisted-type HSC with PANI-coated
carbon fiber thread as the positive electrode and functionalized carbon fiber thread as
the negative electrode (Figure 10b), which also demonstrated high flexibility and sta-
bility. Liu et al. [282] recently reported a novel flexible twisted-type HSC with coax-
ial human hair/Ni/Graphene/MnO2 fiber as the positive electrode and coaxial human
hair/Ni/Graphene fiber as the negative electrode, which first reveals that human hair
could also be used to fabricate flexible HSCs. The as-fabricated HSC exhibited excellent rate
capability (up to 20 V s−1), high volumetric energy density (1.81 mWh cm−3), and excellent
flexibility [282]. Senthilkumar et al. [283] fabricated the twisted-type HSC assembled by
copper hexacyanoferrate coated carbon fibers (CuHCF@CFs) and porous carbon coated
carbon fibers (PC@CFs) electrodes (Figure 10e), which also demonstrated outstanding
flexibility (Figure 10f) and a high energy density of 10.6 Wh kg−1. In general, the flexible
twisted-type HSCs are attractive as power sources for miniaturized electronic devices,
because they have small volumes and could be easily integrated into variously shaped
structures [284]. However, these HSCs still suffer from relatively low capacitance and a
high production cost, which cannot meet the ever-increasing demand for flexible devices. In
addition, some technical challenges still limit the development of strong, flexible, and wear-
able HSC devices with high performance. Therefore, more efforts are needed in searching
for new structured active materials with high electron conductivity, high electrochemical
sites, and novel fiber current collectors with strong mechanical stability and ultra-high
flexibility to develop fiber-shaped flexible HSC devices with high performances.

Figure 10. (a) Detailed schematic illustration of the fabrication process for the twisted-type HSC
device [280] (Copyright 2017: The Royal Society of Chemistry). (b) Schematic illustration of the
fabrication of the twisted-type HSC device [281] (Copyright 2015 Elsevier Ltd. All rights reserved).
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(c) Photograph of human hair, and (d) schematic diagram of the HSC devices constructed by twisting
the human hair/Ni/rGO/MnO2 fiber and human hair/Ni/rGO fiber together [282] (Copyright 2017
Elsevier Ltd. All rights reserved). (e) Schematic illustration of the fabrication of twisted-type HSC
device. (f) CV curves (at 15 mV s−1) under different bending conditions [283] (Copyright 2016 The
Royal Society of Chemistry).

3.4. The Cable-Type HSC Devices

Among various flexible energy storage devices, the cable-type HSCs have attracted in-
creasing attention due to their merits of low weight, tiny volume, high flexibility, and wear-
ability [285,286]. So far, many advanced cable-type SC devices have been widely reported
in the literature [287–290]. For instance, Zhang et al. [287] recently reported a facile and cost-
effective method to directly grow three-dimensionally well-aligned zinc-nickel-cobalt oxide
(ZNCO)@Ni(OH)2 nanowire arrays on a carbon nanotube fiber (Figure 11a) with an ultra-
high specific capacitance of 2847.5 F cm−3 (10.678 F cm−2) at a current density of 1 mA cm−2.
Moreover, they also fabricated a novel cable-type HSC device based on ZNCO@Ni(OH)2
NWAs/CNTF as the positive electrode and a thin layer of carbon-coated vanadium nitride
nanowire arrays on a carbon nanotube strip as the negative electrode, which demonstrated
excellent flexibility and stability. Li et al. [288] developed a novel flexible cable-type HSC
device based on Cu//CuO@LDH as the positive electrode and Cu//AC as the negative
electrode (Figure 11b), which also presented great flexibility and excellent cycling stability.
Nagaraju et al. [289] recently also fabricated a cable-type HSC device based on nickel oxide
nanosheet grafted carbon nanotube coupled copper oxide nanowire arrays (NiO NSs@CNTs@CuO
NWAs/Cu fibers) as the positive electrode and AC as the negative electrode (Figure 11c), which
demonstrated excellent flexibility and stability. Gao et al. [290] reported a flexible cable-type HSC
(Figure 11d) based on the Ni-Co DHs and pen ink electrodes on metallized CF. Moreover, the
as-fabricated device also delivered good cycling stability and high energy [290]. This low-cost
and high-performance flexible cable-type HSC provides an alternative strategy toward efficient
flexible energy storage devices and wearable energy equipment.

Figure 11. (a) Schematic fabrication process of the ZNCO@Ni(OH)2 NWAs on a carbon nanotube
fiber [287] (Copyright 2017 American Chemical Society). (b) Schematic representation of the flexible
cable-type HSC device based on CuO@CoFeLDH and active carbon electrodes [288] (Copyright 2016
Elsevier Ltd., all rights reserved). (c) Schematic diagram showing the fabrication process of the HSC
device [289] (Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). (d) Schematic diagram
of the fabrication procedure of the HSC device [290] (Copyright 2017 American Chemical Society).
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4. The Charge-Storage Mechanism of Hybrid Supercapacitors

For a better understanding of the operative mechanisms of the combination of Faradaic
and capacitive electrodes in hybrid supercapacitors, some basic theoretical aspects will
be discussed in this section. Moreover, how to distinguish between a capacitor-like and a
battery-like electrode materials will also be presented in the next paragraphs. Figure 12
depicts the characteristic behavior of these conventional energy storage materials. The
capacity of the batteries relies predominantly on the Faradaic reaction that is made possible
by the intercalation/de-intercalation of charge-compensating ions (H+, Li+, or Na+) within
the crystalline structure of electrode materials [27]. However, the capacitance of the super-
capacitors mainly depends on the electrochemical adsorption/desorption of cations and
anions at the electrode/electrolyte interface (double-layer capacitive) or surface faradaic
redox reactions (pseudocapacitive) at the surface of electrode materials [7,27]. Some re-
searchers may ask how to determine whether a now material that it should be classified as
a battery-type or a capacitor-type material. As we all know, the electrochemical behaviors
of the batteries and supercapacitors are both characterized by the cyclic voltammetry (CV)
and galvanostatic charge/discharge (GCD) tests. A related analysis of the energy storage
mechanisms can be performed from the CV curves. The kinetic information obtained from
the peak current (i) response can be summarized using the following equation [4,27]:

i = avb (1)

where the measured current i at a fixed potential obeys a power law relationship with
the potential sweep rate v [27]. The b-value is determined by the slope of the log(v)–log(i)
plots. In general, the b value of 0.5 represents a semi-infinite diffusion behavior, whereas
1.0 indicates a capacitive process [50,267]. The peak current (i) response of battery-type
materials exhibits classic semi-infinite diffusion because of phase transformations, thus
resulting in low Coulombic efficiency and poor rate performance. The CV curves of
the corresponding electrodes show prominent and widely separated peaks associated
with the reduction and oxidation, and the discharge curves exhibit obvious plateaus
(Figure 12a) [7]. However, the current (i) response of capacitor-type materials is not
controlled by the diffusion process, and it exhibits a linear current response dependency
on the scan rate [7]. The CV curves of the corresponding electrodes show a rectangular or
approximate rectangular shape, and the discharge curves exhibit a linear voltage response
during constant current charge-discharge (Figure 12b). Hence, the capacitor-type electrode
materials exhibit high power density but poor energy density, whereas the battery-type
materials show high energy density but poor power density.

As a patent for an energy-storage device that combined a double-layer capacitor elec-
trode with a positive nickel battery was reported by Varakin et al. in the mid-1990s [291].
In during the past few years, similar energy-storage devices have been widely reported
in numerous publications. Unfortunately, the concept of such energy storage devices
is very confusing in many publications. As suggested by Brousse et al. [7], the term of
hybrid supercapacitors should be used when pairing two electrodes with various charge
storage behaviors (i.e., one faradaic and one capacitive). The concept of an asymmetric
supercapacitor covers a wider range of electrode combinations because it can be used for
supercapacitors using two electrodes of the same nature but with various mass loadings,
or two electrodes using various materials [7]. It should be emphasized that a relatively
complex charge-storage mechanism occurs in the hybrid supercapacitor devices and some
hybrid nanocomposite electrodes, and the corresponding electrochemical characteristics
are neither purely capacitor-type nor purely battery-type. As a new type of hybrid charge
storage mechanism, the current (i) response to the sweep rate (v) will depend on the electro-
chemical reaction associated with diffusion-controlled and surface-controlled (capacitive)
reaction. Therefore, the current response (i) at a fixed sweep rate (v) can be summarized
according to the following equation [50,267]:

i(v) = k1v1/2 + k2v (2)
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By determining both k1 and k2, we can distinguish the fraction of the current arising
from cation intercalation (k1v1/2) and that from capacitive (k2v) processes at each poten-
tial [267]. The total energy stored in the hybrid supercapacitors is the sum of the energy
stored in the battery-type electrode and that of the capacitor-type electrode (Figure 12c).
The battery-type electrode is used to improve the energy densities compared to those of
typical double-layer capacitors and pseudocapacitors. On the other hand, the capacitor-
type electrode is used to improve the power densities of the cells compared to the typical
batteries. The main reason is that the capacitor component can improve the electron transfer
to the battery component in the hybrid system, causing a better charge transfer reaction at
high rates. Hence, the hybrid supercapacitors can usually exhibit high power densities.

Figure 12. Schematic of charge storage mechanisms, cyclic voltammograms, and corresponding
galvanostatic discharge curves for batteries (a), capacitors (b), hybrid supercapacitors (c).

Obviously, the total energy storage capacity and rate capability of the hybrid superca-
pacitors can be optimized by expanding the operating potential window and designing
porous hybrid nanostructured composite materials. The operating potential window of
the hybrid supercapacitors can be extended to ~1.5 V or even higher (Figure 12). The
hybrid nanostructured electrodes, which combine battery components (transition metal
oxides/sulfides) with capacitor components (carbon-based), usually exhibit higher electro-
chemical performance, especially high-rate performance and cycle life. The charge storage
of this hybrid electrode will be due to both battery and capacitor components: firstly, the
capacitor component is charged via electrostatic forces until the electrode potential reaches
the redox reaction potential of the battery component [292]. Then, the battery component is
charged through the Faradiac reaction until the faradaic component reaches its full-charge
state [293]. It should be emphasized that calculating the capacitance of such electrodes by
using the equation derived for capacitors will lead to greatly overestimated capacitance
values that can be found in many publications. As suggested by Brousse et al. [7], the
specific capacity (C) instead of the capacitance of such electrodes should be calculated
according to the following equations:

Q = im∆t (3)
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where im = I/m (A g−1) is the current density, m is the mass of the active electrode material,
I is the current, and ∆t is the discharge time [12,50]. Regarding the detailed information,
Brousse et al. have given an excellent comment in their publication [7].

With the development of renewable energy and electrified transportation, it can be ex-
pected that the energy conversion and energy storage devices will become more and more
important in our daily lives. In the future, energy storage systems will mainly focus on hy-
brid devices combining the best features of battery-type Faradaic electrodes and capacitive
electrodes. Understanding of the synergistic effect among different active components on
the electron transportation and surface reactions is very challenging and significant. For
the negative electrode, the challenge is still increasing the capacitance, which is critical for
charge/weight/volume balance with the positive electrode to maximize the energy density
of the device. Non-planar hybrid electrode architectures will play an important role in
future energy storage systems. Conventional electrodes cannot satisfy the development
of flexible and lightweight devices in modern electronics; it is still a challenge to develop
a highly flexible and portable integrated energy package. The integration of HSCs with
other multifunctions such as electrochromism, shape memory, photo self-charging, thermal
self-protective, and self-healing will be significant and require further study.

5. Conclusions

In this review, we summarized the development of recent advances in HSCs, in-
cluding the electrode materials, such as transition metal oxides/sulfides/hydroxides and
carbon-based materials (activated carbon and graphene), the working principles/mechanisms,
and purposeful design/optimization. In general, the HSCs have been developed as attractive
high-energy storage devices combining a typical battery-type electrode with a large posi-
tive cutoff potential and a capacitive electrode with a high overpotential in the negative
potential range, rendering a significant increase in the overall cell operating voltage.

The traditional planar architectures are very limited in the thickness of the Faradaic
electrode due to the low electrical and ionic conductivities, which retard the overall device
kinetics. Nanostructuring, especially 3D hybrid architectures, reducing the mass-transfer
resistances and ion diffusion pathways, and increasing the electrical conductivity and
stability, are good strategies to solve this issue. In addition, it can also can promote
rapid electron and ion accessibility to electrochemically active sites and ease the electron
hopping between neighboring nanoparticles. Nanostructured composite materials are
considered as the most promising candidates for fabricating high-performance HSC devices.
However, complex preparation methods and fabrication processes hinder their wider
practical application. The challenge is to explore novel electrode materials or architectures
to fabricate high-performance HSCs using a cost-effective technology.

Recently, enormous efforts have been devoted to the significant advancement in flexi-
ble electrode design and device construction for high-performance HSCs. The development
of flexible, portable, and wearable energy storage devices has paved the way for the further
applications of renewable energy to power electric cars and enable the internet of things.
However, there are still some challenging issues for promoting the practical commercial
application of HSCs. For example, the morphology and structure of nanomaterials are
sometimes difficult to maintain during the long cycles because of their poor mechanical
and chemical properties. In addition, the structural evolution and degradation information
of electrode materials is difficult to uncover during the long cycling process, and advanced
tools are to be developed to reveal the mechanisms of some complex phenomena. Therefore,
future efforts should be focused on providing comprehensive insight into the fundamental
understanding of the relationship between the electrochemical properties and the structure.
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