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Abstract: Turtle shell (Chinemys reecesii) is a prized traditional Chinese dietary therapy, and the
growth year of turtle shell has a significant impact on its quality attributes. In this study, a hyperspec-
tral imaging (HSI) technique combined with a proposed deep learning (DL) network algorithm was
investigated for the objective determination of the growth year of turtle shells. The acquisition of
hyperspectral images was carried out in the near-infrared range (948.72–2512.97 nm) from samples
spanning five different growth years. To fully exploit the spatial and spectral information while
reducing redundancy in hyperspectral data simultaneously, three modules were developed. First,
the spectral–spatial attention (SSA) module was developed to better protect the spectral correlation
among spectral bands and capture fine-grained spatial information of hyperspectral images. Second,
the 3D convolutional neural network (CNN), more suitable for the extracted 3D feature map, was
employed to facilitate the joint spatial–spectral feature representation. Thirdly, to overcome the con-
straints of convolution kernels as well as better capture long-range correlation between spectral bands,
the transformer encoder (TE) module was further designed. These modules were harmoniously
orchestrated, driven by the need to effectively leverage both spatial and spectral information within
hyperspectral data. They collectively enhance the model’s capacity to extract joint spatial and spectral
features to discern growth years accurately. Experimental studies demonstrated that the proposed
model (named SSA–3DTE) achieved superior classification accuracy, with 98.94% on average for
five-category classification, outperforming traditional machine learning methods using only spectral
information and representative deep learning methods. Also, ablation experiments confirmed the
effectiveness of each module to improve performance. The encouraging results of this study revealed
the potentiality of HSI combined with the DL algorithm as an efficient and non-destructive method
for the quality control of turtle shells.

Keywords: hyperspectral imaging; turtle shell; growth-year identification; spatial–spectral attention;
3D convolutional neural network; transformer

1. Introduction

Turtle shells, also known as “Guijia” in Chinese, are the dorsal and ventral shells
of the tortoise Chinemys reevesii (Gray), a member of the family Tortoiseidae, and have
been used as medicine and dietary therapy in China for 1700 years, making them one
of the most valuable traditional Chinese herbal medicines [1]. Meanwhile, herbalists
believe that it can benefit kidneys, invigorate bone, regulate menstruation, and relieve
metrorrhagia [2]. Regrettably, the drive to minimize expenses and maximize profits has
led to the sale of subpar turtle shells at inflated prices, creating a mixture of qualities that
cannot guarantee safety or effectiveness [3]. Among the factors that affect the efficacy of
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turtle shells, the most critical determinant is the content of active ingredients in turtle shells.
The magnitude of active ingredients is influenced by a myriad of factors, encompassing
variations in growth environments, although preeminent among these determinants is the
growth years. As the growth years of turtle shells increase, the content of amino acids, zinc,
manganese, and copper elements gradually increases, and the healing effect of turtle shells
is better. Consequently, the growth year of turtle shells is an important basis for turtle-shell
quality inspection.

Visual inspection is the traditional method used for detecting and identifying herbal
medicine [4]. The inspector makes an empirical identification of the merits and approx-
imate age of turtle shells based on the color and texture of the turtle shell’s surface and
other characteristics, but it is either subjective in nature or requires extensive experience.
With the advancement of chemical detection technology, there exist identification tech-
niques using component detection to assess quality [5], such as chromatography (e.g., gas
chromatography–mass spectrometry (GC–MS) [6,7], high-performance liquid chromatogra-
phy (HPLC) [8]), the polymerase chain reaction (PCR) technique [9], and the polyacrylamide
gel electrophoresis (SDS–PAGE) technique [10]. Despite their advantages, these sophis-
ticated methods have drawbacks as they are invariably expensive, time-consuming, and
require complicated sample pretreatment and highly skilled technicians. In addition, these
methods are not repeatable as they are performed on representative samples that cannot
guarantee the quality of the entire batch, leading to inaccurate quality assessment [11]. Ac-
cordingly, the existence of non-destructive, rapid, and efficient quality-control methods for
turtle shells would be convenient to ensure their great commercial and nutritional values.

Recently, there has been growing interest in a nondestructive technology, referred
to as hyperspectral imaging (HSI). This technique integrates spectroscopic and imaging
methodologies into a unified system, allowing for the simultaneous capture of spatial
and spectral information. By allowing for rapid, efficient, and non-invasive analysis, this
technique permits the online monitoring of quality and safety control in various fields,
presenting significant advantages. Based on such advantages, this technology, coupled with
chemometrics, has also been utilized for the quality evaluation of herbal medicine [12–16].

For example, Wang et al. [17] applied random forest (RF) for harvesting period dis-
crimination in Dendrobium officinale and obtained 94.44% accuracy. Ru et al. [18] extracted ef-
fective wavelengths from spectral data using the successive projection algorithm (SPA) and
combined them with a textural variable; then, they used partial least-square–discriminant
(PLS–DA) for classifying the geographical origins of Rhizoma Atractylodis Macrocephalae
and achieved an accuracy of 93.2%. Han et al. [19] used the support vector machine (SVM)
discriminant model based on characteristic bands established by principal component anal-
ysis (PCA) to classify glycyrrhiza seeds, and the accuracies of the training set and test set
were more than 93%. Wang et al. [20] introduced a near-infrared hyperspectral wavelength
selection method using one-way analysis of variance (ANOVA), which outperformed PCA
and the genetic algorithm (GA) with an average accuracy of 95.25% on the test set after
10-fold cross-validation. Yao et al. [21] developed a marine predator’s algorithm–least-
squares support vector machine (MPA–LSSVM) model to classify the grades of Panax
notoginseng powder by analyzing its spectral data using a combination of competitive
adaptive reweighted sampling (CARS) and PCA, achieving 96.67% and 95% accuracy rates
for the training and test sets, respectively.

The presence of numerous redundant and highly correlated spectral data in hyperspec-
tral images can lead to the Hughes phenomenon, which poses a challenge for classification
tasks. For the abovementioned traditional machine learning (ML) algorithms [18–21],
appropriate feature spectral selection is necessary, which has a considerable impact on
classification performance. In practice, there are many feature selection/extraction meth-
ods that can be referenced [14,22], and usually, the optimal results are reported through
a cumbersome trial-and-error process in the literature, which heavily relies on experts’
domain knowledge and results in inconvenience [23]. Recently, deep learning (DL), partic-
ularly the convolutional neural network (CNN), has emerged as a promising candidate for
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developing a general and automated approach due to its ability to represent complex data
without extensive manual feature engineering [23].

In the last few years, DL has been increasingly applied in the hyperspectral-based
quality control of herbal medicine and achieved appealing classification performance.
For instance, Yan et al. [24] used visible/near-infrared (Vis/NIR) and near-infrared (NIR)
HSI to identify Radix glycyrrhizae in four different geographical origins. This study con-
structed DL models (recurrent neural network (RNN) and CNN) from one-dimensional
spectra, comparing them with logistic regression (LR) and SVM models. The results high-
lighted CNN’s proficiency with Vis/NIR spectra and RNN’s superiority with NIR spectra.
Kabir et al. [25] employed HSI integrated with CNN to differentiate twelve Fritillaria vari-
eties, achieving superior accuracy compared to PLS–DA and SVM models, with training
and test set accuracies of 98.88% and 88.89%, respectively. Dong et al. [26] integrated two-
dimensional–correlation spectroscopy (2D–COS) of NIR hyperspectral images with CNN to
discriminate the origin of wolfberries. By utilizing the optimized fusion dataset, the CNN
model showed exceptional results, with 100% accuracy in the calibration set and 97.71%
in the prediction set. Mu et al. [27] presented a novel new hybrid convolutional neural
network (new hybrid CNN) approach that utilizes the spectral–spatial joint information of
HSI for categorizing four different origins of wolfberry. The findings indicate that the new
hybrid CNN is more effective than the SVM that focuses only on spectral features.

Motivated by this success, the current study aims to explore the viability and effective-
ness of utilizing the NIR hyperspectral reflectance imaging technique as a non-invasive, fast,
and efficient method for turtle-shell growth-year identification. Importantly to accomplish
this, we propose a model that combines the spectral–spatial attention mechanism, 3DCNN,
and a self-attention-based transformer to effectively extract discriminative spectral–spatial
joint information from the hyperspectral data. Several noteworthy contributions arise from
our study, which can be summarized as follows:

• First, inspired by the study in [28], a spectral–spatial attention mechanism module is
developed to selectively extract the low-level features of the neighborhood pixel blocks
and reduce spectral redundant information in raw 3D HSI data. Generally, extracting
only spectral data from a region of interest (ROI) as a one-dimension vector could
lead to the loss of external spatial information, or spectral and image information
of HSI data could be considered separately [29]. Also, this wealth of spatial and
spectral information of 3D hyperspectral images unequally contributes to the final
classification, particularly considering the correlation and redundancy within the
spectral spectrum. To deal with the aforementioned challenges, the proposed model
utilizes a sequential stacking of the spectral–spatial attention (SSA) module to refine
the learned joint spectral–spatial features.

• Second, regarding the extracted 3D feature map, three-dimensional convolution and
the transformer are employed to effectively capture the local and global information
for optimizing the classification process. Joint spatial–spectral feature representation is
facilitated by 3D convolution. Moreover, taking into account that HSI can be perceived
as sequence data, the convolution operation is confined by its receptive field, hence it
cannot maintain a balance between model performance and depth [30]. To overcome
these limitations and enhance the efficacy of spectral–spatial feature extraction, a novel
approach was adopted. This approach integrated a transformer encoder block with
multi-head self-attention (MSA) mechanisms, called the TE block, which can effectively
address the long-distance dependencies inherent in the spectral band information of
the hyperspectral image data.

Validated on collected datasets, experimental studies demonstrate that the proposed
method achieved superior classification accuracy compared with representative algorithms.
In addition, ablation experiments were conducted and confirmed that the modules intro-
duced could provide consistent performance gain.

The remaining content of this article is outlined as follows. Experimental studies and
a discussion of results are presented in Section 2. Section 3 presents hyperspectral image
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data acquisition and the necessary preprocessing process. Section 4 illustrates the details of
the proposed deep learning model, as well as the principles of each module. Finally, the
conclusions are given in Section 5.

2. Results and Discussion

In this section, we first illustrated the spectral profile of turtle shells from different
growth years, and then the hyperparameters that influence the performance of the proposed
model were investigated and selected. After that, ablation experiments were conducted to
investigate the influence of different modules on the proposed model. Finally, we proceeded
to compare the performances of various models utilizing full spectral information, followed
by an extended comparative analysis involving the proposed model and several deep
learning architectures, thereby discussing the obtained comparative outcomes.

2.1. Spectral Profile

Figure 1 presents the spectral profiles of collected turtle shells from five different
growth years. By observing Figure 1a, we found the pseudo-RGB image of different turtle
shells to be very similar, indicating that identifying the growth year of turtle shells through
their morphology and texture using the naked eye is difficult. Regarding Figure 1b, it was
evident that all the spectral curves follow similar trends, but the reflectance intensities
vary mainly in the 950–2000 nm range, showing the unique spectral characteristics of
each sample. By further inspecting the average spectral curves, as shown in Figure 1c,
it was found that there are spectral peaks at approximately 1097 nm, 1268 nm, 1647 nm,
and 1844 nm, and spectral valleys at approximately 988 nm, 1191 nm, 1465 nm, 1735 nm,
and 1923 nm. Furthermore, the reflectance values of these spectral features varied distinctly
across different growth years of turtle shells. Generally, the observed peaks and valleys in
the reflectance spectra are attributed to the periodic stretching vibrations of the C-H, O-H,
and N-H bonds present in the proteins and amino acids [13], which form the fundamental
chemical bonds of organic compounds. Therefore, the dissimilarity in the spectral features
indicates that HSI has the capability to discriminate between different growth years of
turtle shells.
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Figure 1. The spectral profiles of turtle shells from five different growth years: (a) Pseudo-RGB image
of turtle shells, (b) Spectra of all samples in the whole dataset, with each sample’s spectrum exhibit
distinct colors (Note that the vertical coordinate of each category is moved up by 1 successively),
(c) Average spectral for each growth year.

2.2. Parameter Analysis

In the parameter analysis, an in-depth investigation was conducted into the effect of
several crucial parameters that impact the training process and classification performance.
These parameters include the number of principal components, learning rate, number of
3D convolution kernels, and number of heads in the MSA. Other essential parameters such
as optimizer, batch size, and number of epochs were set as described in Section 4.5.

We ran each experiment five times, and the experimental comparison results are
shown in Figure 2.
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(1) Principal component analysis: PCA was utilized to process the HSI data in order to
mitigate the computational burden and spectral dimensionality. Here, the principal
component numbers were evaluated as 20, 30, 40, 50, 60, 70, 80, 90, and 100. It
can be seen from Figure 2a that the principal component numbers have an impact
on the classification performance. Among them, the worst classification accuracy
is 94.73% when the number of principal components is 20, and the highest is with
60 components. The main reason is that regarding the principal component number, if
the setting is too small, most of the valid features will be rejected, and if the setting is
too large, it may contain some redundant spectral information, also with an increased
computational burden. Also, the model with 60 principal components maintains a
smaller variance, which means that it obtains a relatively stable performance. For the
subsequent trials, the principal component numbers are set to 60.

(2) Learning rate: To ensure effective training, selecting an appropriate learning rate is
essential as it greatly affects the gradient descent rate of the model and influences
the convergence performance and speed of the model. In this study, an analysis of
various learning rates was conducted, including 0.0005, 0.001, 0.003, 0.005, 0.01, and
0.03. Figure 2b shows that an appropriate increase in the learning rate has a positive
effect on the model performance, and the effect reaches an optimal value for accuracy
with a learning rate of 0.005, but a further increase will cause a significant decrease in
accuracy. Based on the abovementioned results, the learning rate is set to 0.005 in the
following experiments.

(3) Number of heads in transformer block: The number of heads in the TE block is varied,
with the head cardinality set to 2, 4, 8, and 16. Generally, an appropriate increase in the
number of SA heads should enable the model to learn richer and more robust features.
As the number of SA heads increases, the classification accuracy increases, but this
increase comes at the cost of an increase in total network parameters, which can
make network training more difficult and ultimately reduce its classification accuracy.
Figure 2c shows that when the number of SA heads is equal to 4, the classification
accuracy reaches the maximum value.

(4) Number of 3D convolution kernels: The influences of the numbers of 3D convolution
kernels on the accuracy are illustrated in Figure 2d. The results show that the classifi-
cation increased first and then decreased with more 3D kernels, and it peaks at 16 3D
kernels. Overall, Figure 2d suggests that the classification accuracy is not significantly
affected by the number of convolution kernels, indicating the stability of the model’s
performance. Among them, the model with 16 kernels achieved the best performance.
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According to the above hyperparameter experiments, the associated network architec-
ture is properly determined. Finally, the parameters of optimal network architecture are
listed in Table 1.

Table 1. The network configuration of SSA–3DTE architecture.

Layer (Type) Kernel Stride Padding Input Size Output Size

SeAM 1× 1 1 - 60× 64× 64 60× 64× 64
SaAM 7× 7 1 3 60× 64× 64 60× 64× 64

Rearrange - - - 60× 64× 64 1× 60× 64× 64
Conv3d-1 3× 3× 3 1 same 1× 60× 64× 64 16× 60× 64× 64

BN1 + ReLU - - - 16× 60× 64× 64 16× 60× 64× 64
Conv3d-2 3× 3× 3 1 same 16× 60× 64× 64 16× 60× 64× 64

BN2 + ReLU - - - 16× 60× 64× 64 16× 60× 64× 64
Linear

Embedding - - - 16× 60× 64× 64 513× 64

TE block - - - 513× 64 64
Linear - - - 64 5

2.3. Ablation Experiments

To fully demonstrate the effectiveness of the proposed method, an analysis of the
impact of different components on the overall model was conducted, focusing on their
contribution to classification accuracy. Specifically, the whole model was divided into
four components—SeAM, SaAM, 3D convolution module, and TE module. In total, eight
combinations were considered, and the experimental results are summarized in Table 2.

Table 2. Ablation analysis of the SSA–3DTE model.

Case
Component

Accuracy (%)
SeAM SaAM 3D Conv TE

1 5 5 X 5 96.09 ± 1.01
2 5 5 5 X 96.29 ± 1.04
3 5 5 X X 97.78 ± 0.64
4 5 X X X 98.16 ± 0.47
5 X 5 X X 98.44 ± 0.24
6 X X 5 X 97.07 ± 0.69
7 X X X 5 96.75 ± 0.88
8 X X X X 98.94 ± 0.29

First, for Case 1, the 3D convolution module yielded the lowest classification accuracy,
but still a reasonable performance (96.09%). These results demonstrate that the 3D convolu-
tion kernel operation could learn the spectral–spatial joint information of the HSI data cube
effectively. In comparison with the TE module, Case 2 exhibited better accuracy (96.29%).
The improvement obtained illustrated that the transformer could extract spectral–spatial
features of data more efficiently. The reason is that in comparison with limited receptive
fields in convolution, the transformer has the capacity to model long-term dependencies.
Case 3, which combined both 3D convolution and TE modules, obtained an accuracy of
97.78%—a more satisfying result than for Case 2. This result indicates that overall, the
transformer has better advantages. It also implies that there is a long-range correlation
between hyperspectral bands. With these three cases, the effectiveness of jointly extracting
spatial and spectral information from raw 3D HSI data is demonstrated.

Second, regarding the attention module, for Case 4 and Case 5, both the SeAM and
SaAM modules contribute to performance improvement. This confirms the effectiveness
of attention mechanisms and also indicates that these two modules provide complemen-
tary information. In particular, the SeAM module experiences a larger performance gain
(98.44% vs. 98.16%), indicating that spectral information is more useful in identifying
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differences. For Cases 6 and 7, when both attention mechanisms exist, the TE module again
has a great influence on the classification.

Building on the previous analysis, it can be concluded that all proposed modules affect
the classification performance to some extent, and among them, the spectral attention and
transformer modules are more important. Overall, combining all modules exhibits the best
recognition results.

2.4. Comparative Performance of Various Methods

In pursuit of a more comprehensive evaluation of the efficacy of the presented model,
this subsection investigates representative models commonly utilized in hyperspectral
imaging scenarios on both original full-spectrum and hyperspectral images to classify turtle
shells of varying growth years.

2.4.1. Discrimination Results of Representative Models Using Only Spectral Information

Four representative models (SVM, PLS–DA, linear discriminant analysis (LDA), and
the 1DCNN deep learning model) using only spectral information associated with classic
wavelength selection algorithms (SPA [31], uninformative variable elimination (UVE) [32],
and CARS [33]) were established and investigated. Regarding the SVM, the linear kernel
function was employed for the purpose of classification. A grid search procedure was
utilized to ascertain the optimal values of the regularization parameter and kernel function
parameter that yielded the highest accuracy. For PLS–DA, training was performed with
different component counts, followed by cross-validation to evaluate their respective
performances and determine the optimal performance. LDA utilized default parameters,
while the 1DCNN comprised three convolutional layers interleaved with two max-pooling
layers and batch normalization, followed by three fully connected layers. The quantitative
metric comparisons of different methods, including precision, specificity, sensitivity, and
accuracy, can be found in Table 3.

Table 3. Classification results of representative models employing only spectrum information.

Model Extraction
Method

Number
of Bands

Accuracy
(%)

Precision
(%) Recall (%) F1score

(%)

SVM

None 288 92.62 92.61 92.71 92.66
SPA 46 85.63 85.60 85.48 85.54
UVE 48 85.83 85.98 85.91 85.94

CARS 31 91.26 91.54 91.20 91.37

LDA

None 288 94.56 94.64 94.64 94.64
SPA 46 86.64 87.60 86.84 87.22
UVE 48 89.78 89.90 89.90 89.90

CARS 31 91.75 92.57 91.69 92.13

PLS–DA

None 288 94.56 94.66 94.62 94.64
SPA 46 87.23 87.53 87.13 87.33
UVE 48 90.37 90.90 90.22 90.56

CARS 31 92.53 92.59 92.61 92.60

1DCNN

None 288 94.73 94.89 94.76 94.82
SPA 46 90.82 91.53 90.66 91.09
UVE 48 92.92 93.25 92.74 92.99

CARS 31 93.16 93.56 93.00 93.28

For full-spectra models, as shown in Table 3, the classification results of each model
were all acceptable, with an accuracy higher than 90%. The SVM model had the worst
performance with 92.62% accuracy, while the LDA model and PLS–DA model obtained
close and better results with 94.56% accuracy. In comparison, 1DCNN showed slightly
more precise prediction than PLS–DA and LDA models, with an accuracy of 94.73%. Thus,
the results illustrated the feasibility of using only spectral information in the hyperspectral
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imaging data for the growth-year identification of turtle shells. Also, it further verified that
hyperspectral imaging is able to capture growth year-related differences in the chemical
compositions of turtle shells.

Regarding wavelength selection, it was observed that the overall classification accuracy
employing the selected optimal band was inferior to the corresponding full-spectrum
models. These phenomena were also observed in some studies using hyperspectral imaging,
such as wavelength selection algorithms employed for the discrimination of Chrysanthemum
varieties [34]. This might be due to the fact that, as the number of wavelengths was
reduced by more than 85% after optimal wavelength selection, it may eliminate some
useful information relating to the small differences in the chemical properties of turtle
shells. Moreover, it was noticed that different feature-band selection algorithms also have
a great impact on subsequent classification performance, especially for the traditional
machine learning methods: SVM, PLS–DA, and LDA. Among the characteristic wavelength
selection algorithms, CARS performed the best, still with a decrease of 1–3% compared to
that using full spectral information. Consistent with the results based on full wavelengths,
the 1DCNN model still obtained the best result with an accuracy of 93.16%, which was
also relatively insensitive to various types of wavelength selection algorithms. This again
proved that the deep spectral features learned by 1DCNN are more distinguishable.

In all, these results indicate that deep learning combined with only spectral informa-
tion is effective and also has the advantage of being able to learn deep spectral features
automatically, compared to traditional machine learning algorithms. Even without any
optimal wavelength extraction, 1DCNN based on full wavelengths could be a reasonably
good model for the growth-year identification of turtle shells.

2.4.2. Comparing with Representative Deep Learning-Based Methods

To further evaluate the performance, the proposed SSA–3DTE model was compared with
five representative classical deep learning-based methods: 2DCNN [35], 3DCNN [36], hybrid
spectral CNN (HybridSN) (2DCNN + 3DCNN) [37], residual network (ResNet18) [38], and
SE–ResNet18 [39]. For each network architecture parameter, please refer to the corresponding
literature. For a fair comparison, we used the same optimizer settings and loss functions,
and the classification results are summarized in Table 4.

Table 4. Comparison of classification performance with different classification models.

Class 2DCNN 3DCNN HybridSN ResNet18 SE–ResNet18 SSA–3DTE

1 91.15 ± 3.15 93.08 ± 1.58 95.57 ± 1.09 95.39 ± 2.84 95.38 ± 2.08 97.89 ± 1.58
2 91.43 ± 1.85 96.33 ± 1.16 96.94 ± 1.25 95.31 ± 3.02 95.51 ± 1.85 98.98 ± 0.72
3 88.94 ± 4.23 92.13 ± 3.41 93.19 ± 1.21 94.26 ± 3.33 94.26 ± 2.45 98.72 ± 1.75
4 97.84 ± 1.02 98.20 ± 1.42 98.38 ± 1.17 98.38 ± 0.75 99.82 ± 0.41 99.82 ± 0.40
5 93.14 ± 1.83 96.57 ± 2.29 95.23 ± 2.78 94.67 ± 1.86 97.14 ± 1.65 99.24 ± 0.89

Accuracy (%) 92.66 ± 1.25 95.35 ± 1.33 95.93 ± 0.98 95.67 ± 0.93 96.52 ± 0.76 98.94 ± 0.29
Precision (%) 92.79 ± 1.23 95.39 ± 1.28 95.99 ± 1.03 95.72 ± 0.87 96.56 ± 0.79 98.92 ± 0.31

Recall (%) 92.50 ± 1.30 95.26 ± 1.35 95.86 ± 0.97 95.60 ± 0.99 96.42 ± 0.79 98.93 ± 0.32
F1score (%) 92.64 ± 1.27 95.32 ± 1.32 95.92 ± 1.00 95.66 ± 0.93 96.49 ± 0.79 98.93 ± 0.31

First, as shown, the 2DCNN model had the lowest performance, which is because
the 2D convolution kernels are not suitable for 3D hyperspectral cube data. That is, 2D
convolution convolved in spatial dimensions and then summed in the spectral dimension,
which leads to spectral feature information loss. The unsatisfactory results also imply
the importance of spectral information. However, we note that for the deeper ResNet18
network, it also obtains better performance. Despite the limitations of convolving receptive
fields, stacking multiple layers also helps to learn good representation. Also, residual
structure effectively solves related problems such as gradient dispersion and difficulty of
training as the depth of the network increases. In contrast, the shallow 3DCNN (two layers)
that jointly extracts the feature information of the spatial and spectral dimensions can
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also significantly improve the accuracy. The HybridSN model, which combined 2DCNN
and 3DCNN, had an accuracy of 95.93%, proving that 3D convolution is more suitable
considering the 3D nature of the HSI data. It is worth mentioning that, compared with the
accuracy of 3DCNN, the performance gain obtained by HybridSN is not significant.

Second, in comparison to ResNet18, the SE–ResNet18 model’s accuracy was further
enhanced to 96.52% with the addition of the squeeze-and-excitation module. With the
help of attention modules, the network pays different attention to different activation
mappings, thus leading to a more discriminant feature learning and enhancing performance.
This result also confirms the importance and effectiveness of the attention mechanism.
Nevertheless, SE–ResNet18 (2DCNN model + attention) managed to achieve relatively
good performance, but compared to our proposed model, these evaluation indicators
were still around 2.4% lower. This illustrates that there exists a performance bottleneck in
extracting features relying solely on two-dimensional convolution.

Third, considering the multi-band nature and the data redundancy of the hyperspec-
tral data, 3DCNN also suffers from limitations in fully utilizing the spatial and spectral
information. In contrast, the proposed model leverages the spatial–spectrum attention
module to redistribute the weights of spatial and spectral information, leading to more
powerful classification results. In conclusion, the proposed model outperforms all other
methods on all four evaluation metrics, demonstrating its superiority in achieving the best
classification accuracy.

Figure 3 visualizes the overall accuracy and loss curves of the proposed model, SSA–
3DTE, compared to other competitor models. It is evident that the SSA–3DTE model
achieves the fastest convergence and the highest convergence accuracy. The accuracy of all
models continuously improves as the number of training steps increases. Notably, 2DCNN
shows the lowest initial accuracy and the slowest convergence speed, while SE–ResNet18
demonstrates high accuracy and the fastest convergence speed among the competitor
models. The proposed model converges well in 20 epochs on the dataset. Overall, the
accuracy and convergence of the curve are consistent with Table 4, and again the proposed
SSA–3DTE model shows the best classification and robustness.
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2.5. Confusion Matrix of Proposed Model

The classification confusion matrix of the SSA–3DTE model on the prediction set is
shown in Figure 4. The diagonal of each matrix indicates correctly classified instances and
true-positive rates, while the grid outside the diagonal represents incorrectly classified
instances and false-negative rates. The confusion matrix offers a clear overview of the
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classification accuracy for each dataset category and allows for a better understanding of
which categories are more likely to be misclassified by each measurement model. As can
be seen from the figure, only a few samples are misclassified.
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3. Materials and Preprocessing
3.1. Samples Preparation

The turtle shell samples were produced by the Shengchang turtle breeding farm in
Jingshan City, Hubei Province, China. In total, 20 shell samples from turtles born in 2008,
2010, 2015, 2016, and 2017 were collected in 2021. Thus, the growth years of the turtle shell
samples were 4, 5, 6, 11 and 13 years, respectively. These samples were authenticated by
authoritative experts from the China Academy of Chinese Medical Sciences, and the results
indicated that the samples possess uniform quality and variety.

3.2. Hyperspectral Imaging System and Image Acquisition

A laboratory-based push-broom HySpex series HSI spectrometer (Norsk Elektro
Optikk AS, Oslo, Norway) was employed to obtain the hyperspectral image. The HSI
spectrometer was made up of an N3124 SWIP lens (H-S16, Norsk Elektro Optikk, Oslo,
Norway), a mobile platform, a computer with built-in software, and two 150 W tung-
sten halogen lamps used to illuminate the sample stage. The camera lens was set at a
distance of 20–30 cm from the sample and collected images over a wavelength range of
948.72–2512.97 nm with 5.43 nm spectral resolution, for a total of 288 bands. Line-by-line
images were acquired using a conveyor unit that covered the spatial shape of the samples
and moved at a scanning speed of 1.5 mm/s. The original spectrometer employed in
HSI features a spatial resolution of 2771 × 384 pixels (height × width). Hyperspectral
image acquisition was performed for the front and back of each sample. All samples were
securely placed onto the conveyor unit utilized for the acquisition of HSI data, ensuring
that minimal bias was caused by surface tilt.

3.3. Hyperspectral Image Calibration

To mitigate the impact of uneven light-source intensity distribution and camera dark
current noise on the acquired sample data, the raw intensity image was subjected to
calibration using white and dark references. The white reference image was obtained by
using a standard whiteboard with Lambertian features exhibiting nearly 100% reflectance,
while the dark reference image was acquired by covering the lens with an opaque cap with
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nearly zero reflectance. The final corrected hyperspectral image, denoted as Rcal , can be
automatically calculated by the following formula [40]:

Rcal=
Rraw − Rdark

Rwhite − Rdark
,

where Rraw is the raw hyperspectral image, Rdark is the dark reference image, and Rwhite is
the white reference image. Subsequent image processing and analysis were performed on
the Rcal .

3.4. ROI Selection and Dimension Reduction

The turtle shells, considered the regions of interest (ROIs), were segmented from the
black background using ENVI 5.3 software, allowing for the extraction of all spectral and
spatial information within each ROI. The extracted turtle shell samples displayed a uniform
width of 384 pixels and manifested height discrepancies ranging from 610 to 810 pixels,
attributable to the variations in morphological dimensions.

Each pixel in a hyperspectral image is associated with a continuous spectral curve
that comprises tens to hundreds of narrow bands. However, the vast amount of data and
redundant information lead to the curse of dimensionality, also known as the Hughes
effect [41]. In addition, more data increase the computational complexity. As a powerful
technique for dimensionality reduction, principal component analysis (PCA) is widely
utilized to extract valuable features from hyperspectral images. Hence, before further
model development, PCA was initially conducted to reduce redundant information by
consolidating the majority of spectrum information.

4. Methods

This section presents the proposed SSA–3DTE model for the classification of turtle
shell years. Figure 5 illustrates the overall architecture of the SSA–3DTE model, which is
composed of three parts—the SSA block, the 3D convolution layers, and the TE module.
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4.1. Spectral–Spatial Attention Block

The proposed model adopts the SSA module to adaptively recalibrate spectral bands
and selectively refine spatial information, thereby enhancing the learned spectral–spatial
features. This approach can effectively improve the feature extraction capability of the
network.

Given a hyperspectral cube map v ∈ RH×W×C, generating a 1D spectral attention
map Mse ∈ R1×1×C and a 2D spatial attention map Msa ∈ RH×W×1, where C represents
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the spectral dimension, while H and W represent the spatial height and width, respectively.
The overall SSA module computation can be summarized as

v′ = Mse(v) ⊗ v
V = Msa(v′) ⊗ v′

(1)

where ⊗ denotes the elementwise multiplication. Details on the computation of the two
attentions are provided below.

4.1.1. Spectral Attention Module

To adaptively recalibrate the spectral information, the spectral attention module
(SeAM) allocates varying weights to individual spectral channels. These weights are
determined by their contribution to feature representation and classification, enabling the
network to emphasize informative spectral bands and acquire more relevant features for
enhanced performance. The SeAM is computed as:

M′se(v) = W1

(
δ
(

W0

(
vavg

se

)))
+ W1(δ(W0(vmax

se )))

M′se(v) = σ(M′se(v))
(2)

where vavg
se and vmax

se are 1× 1× C vectors produced by applying global average pooling
and global max-pooling operations, respectively. The first fully connected (FC) layer, pa-
rameterized by W0 with reduction ratio r, serves as a dimensionality-reduction layer, while
the second is used to increase the dimensionality of date by parameter W1. W0 ∈ R C

r ×C,
W1 ∈ RC× C

r , Mse ∈ RC×1×1, W0 and W1 are shared weights. δ presents the ReLU
activation function, δ denotes the sigmoid function. The SeAM generates the final output
v′ by multiplying the input v with the computed spectral weight vector Mse.

The spectral attention module, depicted in Figure 6, leverages global average and
global max pooling to extract the spectral features from the hyperspectral image. The
resulting features are then processed by two FC layers with nonlinear activation functions
to generate two pooling-channel representations. The module further correlates the two
channels to derive spectral weights that emphasize informative features and attenuate noisy
ones. Finally, the spectral weights are applied to the input feature map via element-wise
multiplication, enabling the extraction of more discriminative and informative features.
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4.1.2. Spatial Attention Module

The spatial attention module (SaAM) module leverages the inherent inter-spatial
relationships of features to identify informative regions in the hyperspectral image, high-
lighting the “where” aspect of feature learning. The spatial attention map calculation
process is formulated as

M′sa(v′) =
[
vavg

sa , vmax
sa

]
∗ W2

M′sa(v′) = σ(M′sa(v′))
(3)

where vavg
sa , vmax

sa ∈ RH×W×1, each represents average-pooled features and max-pooled
features across the channel. ∗ is the convolution operation with a 7× 7 filter. These two
features are concatenated horizontally and fed as input to a new convolutional layer, which
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is activated by a sigmoid function. Finally, the spatial attention map Msa is multiplied with
the input feature spectrawise to produce the final output V.

The spatial attention module, as illustrated in Figure 7, first concatenates the features
generated by global average pooling and max pooling along the channel axis to generate
an efficient feature descriptor. This approach is effective in highlighting informative
regions [42]. Next, the concatenated feature descriptor is convolved to capture the inner-
spatial relationship between features, indicating where to emphasize or suppress. Finally,
the spatial-wise input is multiplied element-wise with the spatial feature map to obtain the
output feature map.
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4.2. 3D Convolution Block

The output of the SSA mechanism maintains the 3D cube format, which presents
an opportunity to leverage 3D spatial filtering for efficiently extracting both spectral and
spatial features simultaneously [43]. In this regard, 3D convolution is employed to extract
spectral–spatial features of each sample patch. Specifically, the jth feature cube at position
(x, y, z) in the ith layer is calculated by:

Vxyz
ij = Φ

(
∑
m

Hi−1

∑
h=0

Wi−1

∑
w=0

Ri−1

∑
r=0

ωhwr
ijk V(x+h)(y+w)(z+r)

(i−1)k + bij

)
(4)

where m denotes the feature map in layer i− 1 that is connected to the current jth feature
map. The height and width of the spatial convolution kernel are represented by Hi and Wi,
respectively. Ri is the depth of the convolution kernel in spectral dimension, ωhwr

ijk is the
weight at position (h, w, r) connected to the mth feature map, and bij is the bias and Φ(·)
is the activation function.

This module utilizes two convolution layers, each with a 3× 3× 3 convolution kernel,
no pooling, stride 1, and the same padding operation. Batch normalization and an ReLU
activation function follow each convolution layer.

4.3. Transformer Encoder Block

Despite its advantage, the CNN model has limitations due to its kernel size and
number of layers, which can prevent them from capturing the long-range dependencies
in the input data and potentially ignoring some important sequence information. To
overcome these constraints, a TE block is employed, which offers a self-attention (SA)
variant to further extract image features [30].

Since the encoder model of the transformer is used instead of the decoder model, the
position information of each vector is incorporated by transforming the sequence into a
linear embedding sequence. This process involves segmenting the input data, which are
the feature maps generated by the 3D convolution block, into patches and flattening them
into a sequence of vectors. Additionally, a learnable embedding vector Vclass is added for
classification purposes, followed by the addition of position encoding Epos for each vector.
The process is represented as

Vin =
[
Vclass; V1

p E; V1
p E; . . . ; VN

p E
]
+ Epos (5)

where E represents the linear transformation layer.
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The encoder block consists of several components, including two normalization layers
(LN), an MSA, and a multilayer perceptron (MLP) layer. The residual connection is imple-
mented before MSA and MLP, and the specific structure is shown in Figure 8. The MSA
mechanism, which is based on the SA mechanism, captures correlations among feature
sequences effectively. Three learnable weight matrices, WQ, WK, and WV , are defined in ad-
vance to linearly map transform the input matrix into three 3D invariant matrices—queries
Q, keys K, and values V. In summary, the SA is formulated as follows:

SA = Attention(Q, K, V) = so f tmax
(

QKT
√

dK

)
V (6)

where dK is the dimension of K.
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In order to better capture the interdependencies among feature sequences, multiple
SA mechanisms are used to calculate multiple head-attention values. The results from
each head attention are then concatenated together. This process can be mathematically
represented as

MSA(Q, K, V) = Concat(SA1, SA1, . . . , SAh )W (7)

where W is the weight matrix and h represents the number of attention heads.
Subsequently, the learned weight matrix from the previous step is fed into the MLP

layer, which consists of two layers with a Gaussian error linear unit (GELU) activation
function. This activation function incorporates the concept of random regularization,
allowing the network to converge more efficiently and enhancing the model’s generalization
capabilities [44].

4.4. Overview of the Proposed Model

The turtle shell sample data are obtained with shape (n, s, s, d), where n denotes the
number of samples, d is the number of spectral bands after PCA dimension reduction, and
s is the sample width and height, respectively. The sample data are first fed into the SSA
module, which redistributes the weight of both spectral and spatial information. Notably,
this process retains the original shape of the input feature map, resulting in an output
sample data shape of (n, s, s, d). Following this, the 3D convolution layers are used to
obtain feature cubes, each sized (m, m, k).

In the next step, each feature cube with shape (m, m, k) is segmented into an m×m
p×p

sequence of flattened 2D patches with shape (p, p, k), where p is set to 8. However, the
transformer model expects a 2D matrix of size N × D as an input (removing the Batch_size
dimension), where N = m×m

p×p is the length of the sequence and D = p × p × k is each
vector of the sequence dimension. Therefore, the m×m

p×p 2D patch is reshaped into a matrix

of shape
(

m×m
p×p , k× p× p

)
and undergoes linear transformation to create the 2D matrix

with a shape of (N, D). Afterward, the embedding vector Vclass and the position code Epos
are introduced and a size matrix (Batch_size, N + 1, D) is created (adding the Batch_size
dimension), which serves as the input to the encoder block, and the encoder module
continues extracting image features. Finally, the classification results are output through
the linear layer and softmax function.
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4.5. Experimental Settings

Evaluation Indicators: To analyze the proposed method, four quantitative indexes are
employed, including accuracy, precision, recall, and F1score, which are denoted as follows,
respectively.

Accuracy(%) = TP+TN
TP+FP+FN+TN × 100

Precision(%) = TP
TP+FP × 100

Recall(%) = TP
TP+FN × 100

F1score(%) = 2×Precision×Recall
Precision+Recall × 100

(8)

where TP denotes true positives, TN is true negatives, FP represents false positives, and
FN indicates false negatives. A higher value for each metric indicates better classification
performance. For fairness, the training was repeated five times for each trial on the samples,
and their average was taken as the final result.

Software and Experimental Configuration: The proposed model and the subsequent
comparison methods were all implemented using the PyTorch environment with a Geforce
RTX 3070 12-GB GPU server (NVIDIA, Santa Clara, CA, USA). The Adam optimizer was
selected as the initial optimizer with a β1 of 0.9 and a β2 of 0.99, and the size of each
minibatch was set to 32 for batch training. The initial weight matrix was obtained using
Xavier standard normal distribution. The proposed DL model was trained for 100 epochs,
using the cross-entropy function as the loss function.

Commonly, DL models require a significant amount of data for training to achieve
better results, and yet the number of obtained turtle shell samples is rather limited. To
alleviate the issue, each hyperspectral image of turtle shell was segmented without overlap
into images of size 64× 64. Finally, 2574 samples were obtained, of which the number
of samples for five different years was 522, 492, 474, 552, and 534, respectively, and the
samples were randomly split into training and test sets using an 8:2 ratio.

5. Conclusions

The identification of growth year is important for the quality inspection of turtle
shells. In this study, for the first time, the feasibility of using the NIR hyperspectral model
combined with a DL model to identify turtle-shell growth years was successfully investi-
gated. To fully exploit the spatial and spectral information while reducing redundancy in
hyperspectral data, three modules were developed. First, the SSA module was introduced
to distinguish the different levels of importance of spectral and spatial information. Second,
regarding the extracted 3D feature map, three-dimensional convolution and transformer
modules were employed to effectively extract the local and global information for more
efficient classification.

Our proposed model was compared to representative models (SVM, PLS–DA, LDA,
and 1DCNN) using only spectral information and representative deep learning-based
models (2DCNN, 3DCNN, HybridSN, ResNet18, and SE–ResNet18). Overall, using only
spectral information, 1DCNN with full wavelengths obtained reasonable results (94.73%),
outperforming conventional machine learning models (accuracies varied between 85.63
and 94.56%). This observation demonstrates its ability to learn deep spectral features
automatically. In comparison, the average accuracy of the proposed model was as high as
98.94%, underscoring the necessity and effectiveness of incorporating spatial information.
In addition, the ablation experiment also fully confirmed the important influence of each
module on the final classification. In conclusion, this study introduces a novel approach
by being the first to synergistically integrate HSI and DL techniques for the purpose of
accurately determining the growth year of turtle shells. It may find practical applications
in the herbal-medicine quality-control field, serving as an easy, efficient, and novel tool for
turtle-shell growth-year identification.
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