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Abstract: Cluster molecular magnets prove their potential for applications in quantum technologies,
encouraging studies of quantum entanglement in spin systems. In the paper we discuss quantum
entanglement properties of pentamer cluster composed of spins S = 1/2 forming a tetrahedron
with additional spin in its center, with geometry reproducing the smallest nonplanar graph. We
model the system with isotropic Heisenberg Hamiltonian including external magnetic field and
use exact diagonalization approach to explore the ground-state phase diagram and thermodynamic
properties within canonical ensemble formalism. We focus the interest on two-spin entanglement
quantified by Wootters concurrence. For ground state, we find two states with total cluster spin
equal to 3/2 exhibiting entanglement, occurring preferably for antiferromagnetic interactions. For
finite temperatures, we predict the presence of magnetic-field-induced entanglement as well as
temperature-induced entanglement.

Keywords: quantum entanglement; Wootters concurrence; Heisenberg model; spin cluster; exact
diagonalization; canonical ensemble

1. Introduction

Molecular magnetism constitutes a flourishing field of study within the theoretical
and experimental condensed matter physics and chemistry [1,2], combining the rich funda-
mental physics of quantum low-dimensional magnets [3,4] with prospective applications
in crucial areas such as magnetocaloric cooling [5,6]. However, another factor stimulating
research in this scope is the high usefulness of molecular magnets for information storage
and processing [7–9], both on classical [10] and quantum level [11–15]. The latter revokes
the phenomenon of quantum entanglement [16–20].

The interest in quantum entanglement brings the localized spin systems of cluster
geometry to the attention of the theoreticians [21–24]. In such context, a variety of geome-
tries can be mentioned, like dimers [25–36], trimers [37–43] or four-site structures [44–52].
Attention is paid to design of cluster structures offering advantageous properties due to
interplay between geometry and spin-spin interactions [53,54]. Moreover, the interest can
be generalized to entanglement in nanochains of various lengths housing itinerant electrons,
with emphasis on both spin and charge degree of freedom [55–58]. In addition, several
experimental works on localized spin systems aimed at capturing the entanglement in
zero-dimensional structures have been reported [59–63], supplemented with works focused
on systems with higher dimensionality [64–66].

Among various shapes of clusters, a pentamer geometry can be highlighted. Such
clusters attracted so far some attention of theorists, but only in the context unrelated
to quantum entanglement, to mention the neutron scattering simulation [67,68], magne-
tocaloric properties [69] or general thermodynamics [70]. The experimental studies of
usual magnetic properties of these structures were conducted as well [71–73]. Within the
group, a pentamer formed by inserting a central ion into a tetrahedron can be singled
out as geometrically interesting due to high symmetry of its structure and the fact that it
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constitutes a smallest non-planar graph. Its triangle-based geometry presages considerable
magnetic frustration linked to the possible presence of degenerate ground states in the case
of competing interactions. Such structures can be found in metal-organic compounds in
which Co ions contribute localized spins [74], with a single Co ion possessing octahedral
coordination environment and four other ions with tetrahedral environment. Let us also
notice that pentanuclear structural units of similar type, tetrahedral in shape and containing
Co or Ni ions, were found to build diamond-like networks [75]. Similar pentamers, called
diamondoids, were also discussed in Fe-based compounds [76]. What is even more impor-
tant, an alike structure was found in Cu ion-based compound, where Cu ions contributed
localized spins S = 1/2 [77]. This particular sort of pentameric structures was subject of
some model theoretical studies limited to determining the eigenenergies [78]. Therefore,
the quantum entanglement properties of these structures remain unexplored.

Motivated by the synthesability of pentamer spin clusters described above in the field
of molecular magnetism and by their non-trivial, highly symmetric geometry, we present a
theoretical study focused on characterization of quantum entanglement in such structure.
In order to capture the maximized quantum effects, we select cluster composed of spins
S = 1/2. We explore the full phase diagram of the system in question and identify its
possible ground states, considering then ground-state and finite-temperature properties
of two-spin entanglement. In the following part of the paper we describe the theoretical
model and its thermodynamic solution. Next, we discuss the analytic and numerical results
concerning the entanglement in the context of system phase diagram.

2. Theoretical Model and Its Thermodynamics

The system of interest is a spin pentamer cluster, composed of spins S = 1/2 forming
a regular tetrahedron with an additional spin placed inside it. The schematic view of the
considered pentamer cluster is shown in Figure 1a, with two exchange integrals, J1 and
J2, denoted with solid and dashed lines, respectively. The interactions between the spins
forming an external tetrahedron (labelled with 2, 3, 4 and 5) are quantified by J2, whereas
the coupling of all the tetrahedron ions with a central spin (labelled with 1) is equal to J1.
An alternative structure with equivalent interactions is shown in Figure 1b, composed of a
planar tetramer with additional spin. Let us mention, however, that in the structure shown
in Figure 1a the distances between the tetramer spins coupled with J2 are equal, which is
not the case for the structure shown in Figure 1b.

Figure 1. Schematic views of the considered spin cluster with exchange integrals of two kinds marked
with different lines: J1 with solid lines and J2 with dashed lines: (a) a tetrahedral structure for spin
tetramer with additional spin in the center; (b) a planar structure for the tetramer with additional
spin interacting with all its members. The numbers from 1 to 5 label the spins.
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An interesting feature of the studied cluster is that it forms a smallest nonplanar
Kuratowski graph, being a complete graph of 5 vertices K5 [79], each vertex containing
a spin and each spin interacting with each one. As a consequence, there are only two
kinds of spin pairs - those connected by J1 or J2 exchange integrals - and all of them are of
nearest-neighbour type. Such non-planarity of the graph representing the spin cluster was
also mentioned in other studies on metal-organic pentamers [80,81].

We model the system with isotropic Heisenberg Hamiltonian:

Ĥ =− J1Ŝ1 ·
(
Ŝ2 + Ŝ3 + Ŝ4 + Ŝ5

)
− J2

(
Ŝ2 · Ŝ3 + Ŝ2 · Ŝ4 + Ŝ2 · Ŝ5 + Ŝ3 · Ŝ4 + Ŝ3 · Ŝ5 + Ŝ4 · Ŝ5

)
− H

(
Ŝz

1 + Ŝz
2 + Ŝz

3 + Ŝz
4 + Ŝz

5
)
. (1)

In the above Hamiltonian, the symbol Ŝi ≡
(

Ŝx
i , Ŝy

i , Ŝz
i

)
is a vector of quantum

operators of spin S = 1/2, localized at site labelled by i, moreover, Ŝi · Ŝj = Ŝx
i Ŝx

j +

Ŝy
i Ŝy

j + Ŝz
i Ŝz

j . Operators for individual spin projections α = x, y, z are given by Ŝα
i = σ̂α

i /2,
where σ̂α denotes appropriate Pauli matrix. The external magnetic field is introduced by a
Zeeman term parametrized with energy H.

It should be noticed that the Hamiltonian (1) commutes with an operator of the square
of total spin Ŝ2

T =
(
Ŝ1 + Ŝ2 + Ŝ3 + Ŝ4 + Ŝ5

)2 as well as the projection of the total spin on
z axis ŜT,z = Ŝz

1 + Ŝz
2 + Ŝz

3 + Ŝz
4 + Ŝz

5. Moreover, it commutes also with an operator of the
square of the total spin of the tetrahedron (excluding the central spin labelled with 1 in
Figure 1) which we denote with ŝ2 =

(
Ŝ2 + Ŝ3 + Ŝ4 + Ŝ5

)2. Therefore, the Hamiltonian
eigenstates can be labelled with the appropriate quantum numbers ST = 1/2, 3/2, 5/2,
ST,z = −ST , ..., ST and s = 0, 1, 2, respectively. As a consequence, the eigenenergies of
the Hamiltonian (1) can be written in the following form (utilizing the vector coupling
method [82]):

EST ,ST,z ,s = −
1
2

J1ST(ST + 1)− 1
2
(J2 − J1)s(s + 1) +

3
8

J1 +
3
2

J2 − HST,z. (2)

However, it must be stated that some of the states labelled with three quantum
numbers ST , ST,z, s are further degenerate.

The symbolic or numerically exact diagonalization of the Hamiltonian matrix provides
a set of eigenvectors |ψn〉 and eigenenergies En (where n = 1, . . . , Ns and Ns = 25 = 32).
The complete set of Hamiltonian eigenvalues and eigenstates is given in the Appendix A in
Tables A1 and A2. We label the states as

∣∣∣ψST ,ST,z ,s

〉
and use additional superscript if the

state is degenerate, which is quite often the case for the studied system.
In the description of system states in our work, the single-spin states with spin up

(down) are marked with |↑〉 (|↓〉), respectively. For multispin states, the order of the arrows
corresponds to increasing order of site labels from 1 to 5. This convention is used in
Table A1. In order to facilitate interpretation of multispin states, we decompose them also
into linear combinations of products of state of a single spin (labelled with 1) and a states
of two spin dimers (one of them including spins 2 and 3 and another one composed of
spins 4 and 5—see Figure 1). These dimer states are, if convenient, expressed by so called
Bell states [83] possessing the following form:

∣∣φ±〉 = |↑↑〉 ± |↓↓〉√
2∣∣ψ±〉 = |↑↓〉 ± |↓↑〉√
2

. (3)

Out of Bell states, the state |ψ−〉 is a singlet state with dimer spin equal to 0, whereas
the remaining three states constitute members of a triplet and correspond to dimer spin of 1.
Let us notice that the tetrahedron composed of spins 2, 3, 4 and 5 can be decomposed into
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two dimers in numerous manners, so that our choice is non-unique and arbitrary. However,
all the dimer selections are fully equivalent due to high symmetry of interactions within
the tetrahedron. The described convention is used to present the eigenstates in Table A2.

The output of Hamitonian diagonalization can be directly used for analysis of the
ground state of the system (at temperature T = 0) in the full Hamiltonian parameter space
spanned by J1, J2 and H. The thermodynamic description of the system is constructed
following the rules of canonical ensemble of statistical physics. Let us put emphasis on
the fact that the external magnetic field is directly included in the Hamiltonian (1), so that
we deal with a field ensemble [84,85] and the thermodynamic average of the Hamiltonian
yields enthalpy, not internal energy.

For T > 0, the statistical sum can be calculated as:

Z = Tr e−Ĥ/(kBT) =
Ns

∑
n=1

e−En/(kBT), (4)

where kB denotes Boltzmann constant. The quantum thermal state of the whole cluster is
then given by the density matrix:

ρ̂ = e−Ĥ/(kBT)/Z . (5)

From the viewpoint of the purpose of the study, the quantum states of spin pairs are
of particular interest. The density matrix describing the state of a pair of spins labelled by
ij can be obtained by taking a partial trace from ρ̂ over remaining spins, i.e.,

ρ̂ij = Trklm ρ̂, (6)

with k, l, m 6= i, j and i, j, k, l, m ∈ {1, 2, 3, 4, 5}.
In order to quantify quantum entanglement for pairs of spins ij, Wootters concurrence

C is recalled [86,87]. For separable states C = 0, whereas 0 < C ≤ 1 corresponds to
entangled state. This quantity is calculated for a general mixed state on the basis of the
following formula:

C = max
(

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4

)
, (7)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the eigenvalues of the matrix ρ̂ijρ̂
′
ij. The auxiliary matrix ρ̂′ij

corresponds to spin flip of the state and is given by:

ρ̂′ij = (σ̂y ⊗ σ̂y)ρ̂∗ij(σ̂
y ⊗ σ̂y), (8)

where σ̂y is appropriate Pauli matrix.
For the studied system, due to its high symmetry, only two inequivalent values of

concurrence can be found, corresponding either to type 1 spin pairs coupled with an
exchange integral J1 and containing the central spin (termed C(1)) or to type 2 spin pairs
coupled with an exchange integral J2 containing only the spins from the tetrahedron
(termed C(2)).

3. Results and Discussion

The results of analytic or numerically exact calculations based on the formalism
sketched above will be discussed in this section. In particular, the ground-state phase
diagram will be a starting point for analysis of ground-state entanglement and further
investigation of the influence of finite temperature on the system properties.

3.1. Ground-State Phase Diagram

Let us commence the study of the cluster from the discussion of the ground-state
magnetic phase diagram, for T → 0. Such diagrams are shown in Figure 2, separately for
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the case of ferromagnetic interaction J1 > 0 (Figure 2a) and antiferromagnetic interaction
J1 < 0 (Figure 2b). In all further discussion, the dimensionless quantities will be used,
with |J1| as an unit of energy. Therefore, the cases of J1 > 0 and J1 < 0 will be discussed
separately and J1 6= 0 is assumed (i.e., the limit of spin tetrahedron without coupling to the
central spin is not discussed, as corresponding to two completely uncoupled systems).

Figure 2. Ground-state magnetic phase diagram of considered spin cluster in the plane
J2/|J1| − H/|J1|, for (a) ferromagnetic J1 and (b) antiferromagnetic J1 exchange integral. The (linear)
phase boundaries are marked with lines and their equations are listed in the inset. The filled circles
denote the triple/quadruple points. The pure ground state is denoted by vector |ψST ,s〉, whereas the
mixed (degenerate) ground state is denoted by density matrix ρ̂ST ,s.

It should be emphasized that we deal with a finite spin cluster, therefore, no actual
phase transitions are expected and no symmetry breaking phenomenon occurs, contrary to
infinite systems in thermodynamic limit. Instead, the diagrams termed as phase diagrams
illustrate various ground states of the system and these ground states are not phases
in rigorous thermodynamic meaning. However, the term ’phase diagram’ is commonly
accepted in this generalized meaning.

Let us notice that due to possible degeneracy of the Hamiltonian eigenstates for the
cluster, the ground states for some parameter ranges can be expected to be mixed quantum
states (i.e., probabilistic mixtures of degenerate eigenstates with equal probabilities) rather
than pure states. Therefore, if we deal with d states of the same energy,

∣∣∣ψ(q)
〉

, q = 1, ..., d,
the ground state when T → 0 is

ρ̂ =
1
d

d

∑
q=1

∣∣∣ψ(q)
〉〈

ψ(q)
∣∣∣. (9)

If the case of H > 0 away from phase boundary is considered, all the states involved
must have the same values of all quantum numbers ST , ST,z and s. The remark about
mixed ground state also applies to the case of the phase boundary (i.e., line along which
two ground states have the same energy) or a triple/quadruple point (where three/four
ground states indicate the same energy) when the degeneracy appears necessarily, even if
the neighbouring ground states are pure ones. In both such cases the state of the system
is a mixed quantum state being a probabilistic mixture of all the involved Hamiltonian
eigenstates sharing the same energy along specific line or at point (this time with different
values of the quantum numbers). In the absence of the external magnetic field, for H = 0,
the additional degeneracy with respect to the value of ST,z emerges [see Equation (2)] and
all the states with the same values of ST and s share the same energy.
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If the ground state for a given range of parameters is non-degenerate, it is marked
in Figure 2 for brevity with a ket

∣∣ψST ,s
〉

(labelled with the quantum numbers ST for total
spin of the cluster and s for spin of tetrahedron). In the presence of the external magnetic
field H > 0 (even arbitrarily weak), the ground state always contains the Hamiltonian
eigenstates for which ST,z = ST . Therefore, it is sufficient to label the ground states in
Figure 2 with just ST and s. On the contrary, in the case of a mixed state, it is described by a
density matrix ρ̂ST ,s (labelled with the same numbers, as the states degenerate in energy
share the same ST and s).

In both panels of Figure 2, the boundaries at which the energies corresponding to
two different ground states are equal are marked with lines. The equations describing these
lines (phase boundaries) are given in the inset. Moreover, the triple or quadruple points,
at which the energies of three or four different ground states are equal are marked with
bold circles. Let us remark that we discuss a finite spin cluster, so that the existence of
quadruple point does not violate Gibbs phase rule, as we do not deal with phase transitions.
Such points can be found in ground-state phase diagrams of spin clusters, see for example
Refs. [70,88].

3.1.1. Ferromagnetic J1 > 0

The ground-state phase diagram for ferromagnetic J1 > 0 is shown in Figure 2a. In the
whole range of magnetic fields for J2/|J1| > −1/4 and just for H > − 1

2 J1 − 2J2 otherwise,
the system takes the saturated ferromagnetic pure state with ST = ST,z = 5/2 and s = 2,
i.e.,

∣∣ψ5/2,+5/2,2
〉

(see Tables A1 and A2), having the energy of

E = −J1 −
3
2

J2 −
5
2

H. (10)

For 1
2 J1 − J2 < H < − 1

2 J1 − 2J2 the ground state is a mixed state ρ̂3/2,1, being a statisti-
cal mixture given by Equation (9) involving d = 3 states

∣∣ψ3/2,+3/2,1
〉

with ST = ST,z = 3/2
and s = 1, listed in Tables A1 and A2, all sharing the same energy,

E = −1
2

J1 +
1
2

J2 −
3
2

H. (11)

In this state, the central spin inside the tetrahedron (labelled with 1) takes the pure
state |↑〉.

For H < 1
2 J1 − J2 (possible only for J2/|J1| < −1/2), the ground state is a mixed

state ρ̂1/2,0 of the form given by Equation (9), composed of d = 2 states
∣∣ψ1/2,+1/2,0

〉
with

ST = ST,z = 1/2 and s = 0, as listed in Tables A1 and A2, having the energy equal to:

E =
3
2

J2 −
1
2

H. (12)

Also in this state, the central spin inside the tetrahedron (labelled with 1) takes the
pure state |↑〉.

Let us separately mention the form of the ground states exactly at H = 0, as under
this condition the system symmetry is higher and more degeneracies appear because the
state energy is ST,z-independent.

If J2/|J1| > −1/4, the quantum states
∣∣∣ψ5/2,ST,z ,2

〉
with ST = 5/2 and all possible

ST,z = ±5/2,±3/2,±1/2 share the same energy of E = −J1− 3
2 J2 and correspond to s = 2.

The ground state is a mixed state expressed by Equation (9) with d = 6 and the appropriate
states are listed in Tables A1 and A2.

If the coupling fulfils the condition −1/2 < J2/|J1| < −1/4, the ground state is
composed of d = 12 eigenstates

∣∣∣ψ3/2,ST,z ,1

〉
sharing the energy equal to E = − 1

2 J1 +
1
2 J2,

having ST = 3/2 and ST,z = ±1/2,±3/2 as well as s = 1, possessing the form given by
Equation (9) with the relevant states from Tables A1 and A2.
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Some of the above states, corresponding to ST,z = +3/2, contribute to the ground
state ρ̂3/2,1 for H > 0.

Finally, if J2/|J1| < −1/2, the mixed ground state has energy equal to E = 3
2 J2 and it

takes the form predicted by Equation (9) with d = 4 states
∣∣∣ψ1/2,ST,z ,0

〉
having ST = 1/2,

ST,z = ±1/2 and s = 0, given in Tables A1 and A2 (note that the states for ST,z = +1/2
contribute to the state ρ̂1/2,0 for H > 0.).

3.1.2. Antiferromagnetic J1 < 0

The ground-state phase diagram for antiferromagnetic J1 < 0 is depicted in Figure 2b.
If J2/|J1| < −1, the same states as those found for J1 > 0 are present in the diagram.
If J2/|J1| > −1, two more quantum states can emerge as ground states. In this range, if the
magnetic field exceeds H/|J1| = 5/2, the saturated ferromagnetic state occurs. However,
below this field, but for H > 1

2 J1 − 2J2, a pure state with ST = ST,z = 3/2 and s = 2,∣∣ψ3/2,+3/2,2
〉
, is a ground state of the system (see Tables A1 and A2); it has energy equal to

E =
3
2

J1 −
3
2

J2 −
3
2

H. (13)

In this state, the central spin inside a tetrahedron, labelled with 1, is in mixed state of
the form 1

5 |↑〉〈↑|+
4
5 |↓〉〈↓|.

If H < 1
2 J1 − 2J2 (only for J2/|J1| < −1/4), the ground state is mixed state ρ̂1/2,1

[see Equation (9)] composed of d = 3 states with ST = ST,z = 1/2 and s = 1, listed in
Tables A1 and A2 as

∣∣ψ1/2,+1/2,1
〉
, sharing the energy of

E =
1
2

J1 +
1
2

J2 −
1
2

H. (14)

In this state, the spin labelled with 1 is in mixed state of the form 1
3 |↑〉〈↑|+

2
3 |↓〉〈↓|.

Again, for H = 0 the degeneracy of the Hamiltonian eigenvalues increases significantly
and the ground states are discussed separately.

If J2/|J1| > −1/4, the ground state is a mixed state [Equation (9)] containing d = 4
eigenstates

∣∣∣ψ3/2,ST,z ,2

〉
of energy E = 3

2 J1 − 1
2 J2, with ST = 3/2, ST,z = ±3/2,±1/2 and

s = 2, taking the form indicated in Tables A1 and A2.
In the case of −1 < J2/|J1| < −1/4, the ground state [Equation (9)] is formed out of

d = 6 eigenstates
∣∣∣ψ1/2,ST,z ,1

〉
with energy E = J1 +

1
2 J2 and ST = 1/2, ST,z = ±1/2 and

s = 1, which are expressed in Tables A1 and A2.
Finally, if J2/|J1| < −1, the quantum state is a mixed state discussed already for

ferromagnetic J1 > 0, possessing the energy of E = 3
2 J2 (it is notable that the energy is inde-

pendent on J1) and taking the form predicted by Equation (9) with d = 4 states
∣∣∣ψ1/2,ST,z ,0

〉
having ST = 1/2, ST,z = ±1/2 and s = 0, of the form expressed in Tables A1 and A2.

After analysis of the ground-state phase diagram it can be concluded that relatively
large area is filled with states showing degeneracy, due to high symmetry of the studied cluster.

3.2. Ground-State Entanglement

The system ground states can exhibit entanglement for the case of ferromagnetic J1
(Figure 3a) and of antiferromagnetic J1 (Figure 3b); both cases are analysed in the further
part of the paper.

In the context of the ground state being a mixed state given by Equation (9) for the
case of degeneracy, it should be mentioned that the creation of probabilistic mixture of
entangled states may lead to entangled or to separable state. Therefore, even if the member
states

∣∣∣ψ(q)
〉

in Equation (9) are entangled, the state ρ̂ is not necessarily entangled. This
is an important observation for the case of cluster systems with degeneracy of ground
states. Some results regarding this phenomenon were, for example, discussed in Ref. [89],
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for the case of probabilistic mixture of two pure states. The results discussed in Ref. [89]
show the overall complicacy of the relation of the entanglement of pure states and their
probabilistic mixture.

Figure 3. Ground-state phase diagram showing the values of Wootters concurrences
(

C(1), C(2)

)
for

spin pairs interacting with J1 and J2 exchange integral, respectively (see Figure 1), for (a) ferromagnetic
J1 and (b) antiferromagnetic J1 exchange integral. The color lines mark the phase boundaries as
in Figure 2. The values of concurrences exactly along the phase boundaries or at the triple point
are shown with arrows. If no arrow points to the phase boundary or a point, both concurrences
vanish there.

The values of the Wootters concurrence for the ground state, at T = 0, are shown in
Figure 3 in a form of pairs

(
C(1), C(2)

)
, indicating the concurrence of inequivalent spin

pairs of both types, as discussed previously. Apart from the values valid for given phase,
the values of concurrence are also assigned to the boundaries between the phases and to
triple point, as shown by the arrows. Let us notice here that at the phase boundary or triple
point all the Hamiltonian eigenstates corresponding to two or three phases take the same
energy, so that the quantum state is a probabilistic mixture of all that states. Moreover, also
the concurrence value at H = 0 for some range of interactions is indicated with an arrow,
as the ground state degeneracy in the absence of the magnetic field is increased and the
concurrence value may be different than that achieved for H > 0.

It is visible that three ground states are separable: the ferromagnetic saturated spin-
5/2 one (given by

∣∣ψ5/2,2
〉

(see Table A1 or Table A2) and two states with spin-1/2, given
by ρ̂1/2,0 and ρ̂1/2,1. As a consequence, only two ground states with spin-3/2 exhibit
quantum entanglement.

For the cluster state described by ρ̂3/2,1, only the spin pairs belonging to the outer
tetrahedron are entangled and the concurrence value is 1/6. The form of pair state is:

ρ̂ =
1
2
|↑↑〉〈↑↑|+ 1

4
(|↑↓〉〈↑↓|+ |↓↑〉〈↓↑|)− 1

12
(|↓↑〉〈↑↓|+ |↑↓〉〈↓↑|) (15)

or

ρ̂ =
1
4
(∣∣φ+

〉〈
φ+
∣∣+ ∣∣φ−〉〈φ−∣∣+ ∣∣φ+

〉〈
φ−
∣∣+ ∣∣φ−〉〈φ+

∣∣)+ 1
6

∣∣ψ+
〉〈

ψ+
∣∣+ 1

3

∣∣ψ−〉〈ψ−∣∣. (16)

It can be mentioned that the state (15) is an example of probabilistic mixture of
all four Bell (maximally entangled) states with additional admixture of non-diagonal
states. It is visible that the concurrence value is significantly decreased with respect to the
component states (as shown, for example, in Ref. [89] for the specific case of two states in
probabilistic mixture).
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Moreover, exactly at the boundary of this state with saturated ferromagnetic state,
weaker entanglement demonstrated by concurrence equal to 1/8 is present. Due to the
topology of the phase diagram for the ferromagnetic J1 > 0, the entanglement is present
only for a finite range of magnetic fields for J2 strong enough and of antiferromagnetic sign,
as this is the only spin-3/2 state found for J1 > 0 (see Figure 3a). The same spin-3/2 state
is also present in the phase diagram for J1 < 0 (Figure 3b), but its presence is limited to
J2/|J1| < −1. For J2/|J1| > −1 it is replaced with a pure spin-3/2 state

∣∣ψ3/2,2
〉
, for which

both kinds of spin pairs are entangled. The pairs involving the central spin indicate quite
noticeable concurrence of 2/5 and their state takes the form of:

ρ̂ =
3
20
|↑↑〉〈↑↑|+ 1

20
|↑↓〉〈↑↓|+ 4

5
|↓↑〉〈↓↑| − 1

5
(|↓↑〉〈↑↓|+ |↑↓〉〈↓↑|) (17)

or

ρ̂ =
3

40
(∣∣φ+

〉〈
φ+
∣∣+ ∣∣φ−〉〈φ−∣∣+ ∣∣φ+

〉〈
φ−
∣∣+ ∣∣φ−〉〈φ+

∣∣)
+

9
40

∣∣ψ+
〉〈

ψ+
∣∣+ 5

8

∣∣ψ−〉〈ψ−∣∣− 3
8
(∣∣ψ+

〉〈
ψ−
∣∣+ ∣∣ψ−〉〈ψ+

∣∣). (18)

The pairs built of tetrahedron (outer) spins are less entangled, with concurrence value
of 1/10 and quantum state:

ρ̂ =
9

10
|↑↑〉〈↑↑|+ 1

20
(|↑↓〉〈↑↓|+ |↓↑〉〈↓↑|) + 1

20
(|↓↑〉〈↑↓|+ |↑↓〉〈↓↑|) (19)

or
ρ̂ =

9
20
(∣∣φ+

〉〈
φ+
∣∣+ ∣∣φ−〉〈φ−∣∣+ ∣∣φ+

〉〈
φ−
∣∣+ ∣∣φ−〉〈φ+

∣∣)+ 1
10

∣∣ψ+
〉〈

ψ+
∣∣. (20)

Let us note that also the boundary of both spin-3/2 states shows the presence of
entanglement, as well as the triple point at which two spin-3/2 states and spin-5/2 state
have the same energy. Also the boundary between spin-3/2 and saturated ferromagnetic
state corresponds to non-vanishing entanglement of both kinds of spin pairs. On the other
hand, at the boundary between the pure spin-3/2 state and spin-1/2 state ρ̂1/2,1 only the

first kind pairs are weakly entangled, with concurrence value of
(

14−
√

130
)

/40 ' 0.065.
For completeness, we also mention that for J2/|J1| > −1/4 exactly at H = 0, the spin pairs
from the tetrahedron exhibit concurrence value of 1/4 and their state is:

ρ̂ =
1
8
(|↑↑〉〈↑↑|+ |↓↓〉〈↓↓|) + 3

8
(|↑↓〉〈↑↓|+ |↓↑〉〈↓↑|)− 1

4
(|↓↑〉〈↑↓|+ |↑↓〉〈↓↑|) (21)

or
ρ̂ =

1
8
(∣∣φ+

〉〈
φ+
∣∣+ ∣∣φ−〉〈φ−∣∣)+ 1

8

∣∣ψ+
〉〈

ψ+
∣∣+ 5

8

∣∣ψ−〉〈ψ−∣∣. (22)

3.3. Finite Temperature Entanglement

The effect of the finite temperature T > 0 on the quantum entanglement generally
consists in creation of a thermal mixture of all available system states [Equation (5)]. In the
regions of phase diagram where the ground state is entangled, this thermal admixture of
separable states may tend to reduce the concurrence (and in the limit of T → ∞ the thermal
state is always separable). Let us notice that the robustness of entanglement in thermal
states focused some general attention [90–92] and even for the case of two qubits (spins)
the thermal behaviour of entanglement can be rich [93]; noticeably, the separability of the
ground state does not imply absence of entanglement at finite temperatures (so that a sort
of temperature-induced entanglement can emerge, as observed for example in Ref. [25]).
Again, it recalls the problem of entanglement of a probabilistic mixture of pure Hamiltonian
states according to Equation (5) in canonical ensemble.
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The discussion of the finite-temperature properties will first involve the case of J1 > 0
(when only the spin pairs of second kind can be entangled) and then the case of J1 < 0
(when both kinds of spin pairs can exhibit entanglement).

3.3.1. Ferromagnetic J1 > 0

The effect of finite temperature on the concurrence values for J1 > 0 can be first
tracked in Figure 4a, for spin pairs of second kind, at the normalized temperature of
kBT/|J1| = 0.2 (compare the ground-state phase diagram in Figure 3a). It is visible that
close to the boundaries between the states the entanglement is most effectively reduced (as
visible for weakly antiferromagnetic J2). This is due to the fact that close to the boundary
between the entangled and separable ground state their energy difference is small, so
that the coefficients describing the amount of both states in a thermal mixture become
comparable. On the other hand, a range of weak entanglement appears for J2/|J1| < −1/2
for the span of stronger magnetic fields without upper critical magnetic field (above which
the ground-state would be separable).

Figure 4. Contour plot of C(2) concurrence value for J1 > 0: (a) at the finite normalized temperature
of kBT/|J1| = 0.2, in the plane J2/|J1| − H/|J1|; (b) for J2/|J1| = −1, in the plane kBT/|J1| − H/|J1|.
Color bar right to each panel shows the concurrence values for each contour. The white range
corresponds to separable states.

The effect of variable temperature and magnetic field on the concurrence in the case of
J1 > 0 can be followed in Figure 4b, in a contour plot prepared for constant J2/|J1| = −1.
The influence of the temperature comprises reduction of concurrence and also shifting the
critical magnetic field between separable and entangled states to higher values. At finite
temperatures, the entanglement is present above the critical magnetic field, exceeding
always the value of H/|J1| = 1/2. This sort of boundary dividing the quantum thermal
states to separable and entangled ones can be plotted separately in normalized temperature-
normalized magnetic field plane for various values of J2/|J1, as it is done in Figure 5. For the
values of J2/|J1| > −1/2, the critical magnetic field increases very fast with the temperature,
with the value of critical field equal to 0 at T = 0. For couplings J2/|J1| < −1/2 the
nonzero critical magnetic field for the onset of entanglement occurs; it increases with rising
temperature and also with antiferromagnetic coupling J2 magnitude.

The cross-sections of Figure 4b are shown in Figure 6a for various selections of constant
magnetic field and variable temperature and Figure 6b for various selections of constant
temperature and variable magnetic field. In Figure 6a, for lower magnetic fields, the con-
currence decreases monotonically with temperature from the initial, ground-state value
of 1/6 characteristic of the state ρ̂3/2,1. Exactly at H/|J1| = 3/2 the initial value switches
to 1/8 when the state ρ̂3/2,1 gains statistical admixture of separable saturated ferromag-
netic state

∣∣ψ5/2,2
〉
, but the overall behaviour as a function of temperature is unchanged.
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On the contrary, for the higher fields, the temperature is a factor causing the emergence of
entanglement, which is absent in the ground state ρ̂1/2,0. For this regime, a maximum of
concurrence is formed when T increases (due to the thermal admixture of spin-3/2 states),
but its height is reduced when the magnetic field rises (which is the factor favouring ener-
getically the saturated spin-5/2 separable state). The effect of the increasing magnetic field
can be tracked in Figure 6b. In all studied temperatures the state is separable below certain
critical magnetic field, which switches on the entanglement (due to transition to the state
with significant participation of the entangled state ρ̂3/2,1 at finite T) and a maximum is
formed (with values up to 1/6 for the lowest temperatures, as in ρ̂3/2,1 state). At higher
fields the concurrence tends to vanish gradually as the separable state with spin 5/2 dom-
inates. This is an example of competing influence of temperature and magnetic field on
the entanglement. For lower magnetic fields, the magnetic field increases the amount of
entangled ρ̂3/2,1 state in the thermal state, boosting the concurrence, whereas the thermal
fluctuations at elevated temperature restore the higher amount of separable ground state
ρ̂1/2,0 lowering the concurrence value. At higher fields the situation is opposite: further
increase of the field enriches the thermal state with saturated ferromagnetic separable state
reducing the concurrence, whereas the thermal fluctuations at elevated temperature restore
the higher amount of entangled state ρ̂3/2,1 boosting the concurrence value.

Figure 5. The boundary between the entangled and the separable state of type 2 spin pairs in the
plane kBT/|J1| − H/|J1|, for J1 > 0 and for various values of J2/|J1|.

3.3.2. Antiferromagnetic J1 < 0

For antiferromagnetic J1, both types of spin pairs can exhibit entanglement. A finite
temperature (kBT/|J1| = 0.2) contour plot of concurrence is shown in the J2/|J1|-H/|J1|
plane in Figure 7, for type 1 (Figure 7a) and type 2 (Figure 7b) spin pairs. Again, it resembles
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a thermally diffused version of the relevant ground-state phase diagram shown in Figure 3b.
For spin pairs connected with J1, the most pronounced entanglement is present for the
parameters range corresponding to

∣∣ψ3/2,2
〉

ground state in Figure 2b, with values reduced
close to the boundaries of this range due to thermal admixture of separable states. On the
other hand, the thermal state for J2 > 0 and considerably high magnetic field acquires
some residual entanglement due to thermal effects (as opposed to separable saturated
ferromagnetic ground state). A similar qualitative picture can be tracked in Figure 7b for
concurrence in type 2 spin pairs. Both entangled ranges of the phase diagram (Figure 3b)
corresponding to ground states with ST = 3/2 reduce their entanglement and become
separated when the temperature is elevated, whereas the saturated ferromagnetic state
acquires residual concurrence by admixture of other states.

Figure 6. Dependence of the concurrence values C(2) (a) on the normalized temperature, for various
values of normalized magnetic field and (b) on the normalized magnetic field, for various values of
normalized temperature, for J1 > 0 and J2/|J1| = -1.

Figure 7. Contour plot of (a) C(1) and (b) C(2) concurrence value at the finite normalized temperature
of kBT/|J1| = 0.2, in the plane J2/|J1| − H/|J1|, for J1 < 0. Color bar right to each panel shows the
concurrence values for each contour. The white range corresponds to separable states.

The influence of the temperature and magnetic field on the entanglement for both types
of spin pairs can be followed in contour plots in Figure 8, prepared for J2/|J1| = 1. For type
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1 pairs (Figure 8a), the maximum concurrence is achieved for a finite magnetic field which
does not shift significantly when the temperature is elevated (and there is no minimum
field necessary to trigger the entanglement). Moreover, the boundary dividing the phase
diagram into separable and entangled states corresponds to relatively high temperature
and is relatively insensitive to the field. For type 2 pairs (Figure 8b), the magnetic field at
which the concurrence peaks shifts to higher values when the temperature rises and the
entanglement is absent below certain critical field. Contrary to the case of type 1 pairs,
the boundary separating the entangled and separable states is linear at lower temperatures
and its slope increases for higher values of temperature.

The mentioned boundary lines dividing entangled and separable states can be plotted
complementarily in temperature-magnetic field plane in Figure 9 for various selected values
of J2/|J1|. For type-1 pairs (Figure 9a), the boundary for J2 > 0 is rather weakly dependent
on the applied field and the non-zero critical temperature above which the concurrence
vanishes decreases when J2 coupling tends to 0. Exactly for J2 = 0 (i.e., spins belonging to
the tetrahedron uncoupled to each other) the boundary commences at T = 0 and the critical
temperature rises when stronger field is applied. For antiferromagnetic J2 < 0 this tendency
remains, but the entanglement is present only above certain critical field which is increased
when J2 becomes stronger. For type-2 pairs (Figure 9b), for ferromagnetic or weakly
antiferromagnetic J2, the entanglement is present only at finite magnetic fields and this
minimum field increases when the temperature is elevated; in addition also reducing the
coupling J2 results in increase of the field. For J2/|J1| > −1/4 all the boundaries commence
at T = 0 and H = 0. If the coupling J2 is more antiferromagnetic, the critical magnetic field
necessary to trigger the entanglement is non-zero even for T = 0 and it is increased when
the temperature rises (the overall temperature range for which concurrence is positive gets
reduced when the antiferromagnetic coupling J2 becomes stronger). For even stronger
antiferromagnetic J2, the temperature dependence of the critical field tends to flatten.

Figure 8. Contour plot of (a) C(1) and (b) C(2) concurrence value for J2/|J1| = 1 and J1 < 0, in the
plane kBT/|J1| − H/|J1|. Color bar right to each panel shows the concurrence values for each contour.
The white range corresponds to separable states.
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Figure 9. The boundary between the entangled and the separable state of type 1 spin pairs (a) and
type 2 spin pairs (b) in the plane kBT/|J1| − H/|J1|, for J1 < 0 and for various values of J2/|J1|.

The detailed temperature dependence of concurrence for both considered spin pairs for
selected magnetic fields can be tracked in Figure 10. The case of ferromagnetic J2/|J1| = 1
is depicted in Figure 10a for type 1 pairs and Figure 10b for type 2 pairs. For type 1 pairs,
in the absence of the field C(1) takes the ground state value of 1/4 at T = 0 (characteristic of

probabilistic mixture of states
∣∣∣ψ3/2,ST,z ,2

〉
with all allowed values of ST,z) and monotonically

decreases to 0 with increasing slope when the temperature rises (with a long plateau at
the lowest temperatures). For H > 0, the initial ground-state value of concurrence is equal
to 2/5 (as the ground state is

∣∣ψ3/2,2
〉
), but C(1) first drops down fast to approximately

1/4 (because for weak field the states
∣∣∣ψ3/2,ST,z ,2

〉
with all allowed values of ST,z lie close

in energy and form probabilistic mixture as thermal fluctuations arise) and then further
decreases when T is elevated. For stronger fields the temperature dependence of C(1)
becomes more regular. Exactly for H/|J1| = 5/2 the initial value of concurrence is 1/5 (as
the mixture of states with spin-3/2 and spin-5/2 is created) with further monotonic decrease.
At stronger fields the behaviour changes qualitatively, as the entanglement vanishes at
T = 0 (as the ground state is saturated ferromagnetic one) and a local maximum builds up
when the temperature increases (so that we deal with thermally induced entanglement).
For the strongest field the maximum height becomes reduced and its position is shifted
to higher temperatures. The behaviour of C(2) is shown in Figure 10b. For this kind of
spin pairs the initial value of concurrence for low temperatures is 1/10 for zero field or
low fields (characteristic of ground state

∣∣ψ3/2,2
〉
), with monotonic behaviour as a function

of the temperature. The same sort of behaviour is seen for H/|J1| = 5/2 but with the
initial value of 1/20 (as the ground state involves entangled state with spin 3/2 and
separable ferromagnetic one with spin 5/2). For stronger fields a temperature-induced
local maximum of concurrence is formed, like in the case of type 1 spin pair.

When the coupling J2 is antiferromagnetic, the situation is qualitatively different.
For type 1 pairs (as shown in Figure 10c) at weak magnetic field the entanglement is only
induced by finite temperature, with a local maximum (as the ground state is separable ρ̂1/2,1
and only the thermal admixture of spin-3/2 state induces the entanglement). When the
field increases, the ground-state entanglement emerges (either due to ground state being∣∣ψ3/2,2

〉
or owing to its admixture to other states at phase boundaries) and the temperature

dependence takes the form of monotonic decrease (with varying initial values in concert
with the diagram in Figure 3b). For even stronger fields the picture switches back to the
scenario with temperature-induced local maximum of concurrence (as the ground state
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becomes saturated separable ferromagnetic state). In the case of type 2 pairs (Figure 10d),
the monotonic decrease from the initial value of 1/10 (characteristic of entangled ground
state

∣∣ψ3/2,2
〉
) is noticeable for weaker fields, whereas for stronger ones a local maximum

of temperature-induced concurrence is present (and the entanglement is thermally induced
by admixing spin-3/2 states to saturated ferromagnetic ground state).

Figure 10. Dependence of the concurrence values C(1) [for (a,c)] and C(2) [for (b,d)] on the normalized
temperature, for various values of normalized magnetic field, for J1 < 0 and for J2/|J1| = 1 [(a,b)] or
for J2/|J1| = −0.5 [(c,d)].

Tracking of the detailed magnetic field dependence of concurrence for various tem-
peratures is possible in Figure 11. For type 1 spin pairs and ferromagnetic J2/|J1| = 1
(Figure 11a), at lower temperatures the concurrence takes in the absence of the field the
value of 1/4 (characteristic of mixed state involving

∣∣∣ψ3/2,ST,z ,2

〉
with all allowed values of

ST,z, see Figure 3b) and fast jumps to 2/5 (stemming from
∣∣ψ3/2,2

〉
ground state), reaching

a plateau persisting up to certain critical magnetic field. The increasing temperature first
tends to reduce the value at the plateau (as the thermal state acquires contribution from
saturated ferromagnetic state) and then also diminishes the initial concurrence value at
H = 0. At the same time the range of entangled states is extended to higher magnetic fields,
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as the thermal admixture of entangled spin-3/2 state builds up entanglement in the range
where the ground state has spin 5/2. For type 2 pairs (Figure 11b), the entanglement is
induced by the finite field H. At the lowest temperatures its field dependence reaches
the highest plateau with the value of 1/10 (emerging for

∣∣ψ3/2,2
〉

ground state), and the
increasing temperature smears this maximum, increases a threshold magnetic field for the
onset of entanglement and makes the entanglement more robust in the range of higher
fields. This behaviour exemplifies again the competing effect of temperature and magnetic
field on the entanglement, as discussed in the context of Figure 6b. The magnetic field
influence on the concurrence of type 1 spin pairs for antiferromagnetic J2/|J1| = −0.5
(Figure 11c) is somehow similar as in the previous case (the entanglement is field-induced);
however, the maximum corresponds to the values reaching 2/5. The situation illustrated in
Figure 11d for type 2 pairs resembles even more the scenario for ferromagnetic J2.

Figure 11. Dependence of the concurrence values C(1) [for (a,c)] and C(2) [for (b,d)] on the normalized
magnetic field, for various values of normalized temperature, for J1 < 0 and for J2/|J1| = 1 [(a,b)] or
for J2/|J1| = −0.5 [(c,d)].



Molecules 2023, 28, 6418 17 of 23

4. Conclusions

In the paper we have reported computational study of a pentamer spin cluster (with
single spin located in the center of spin tetrahedron) composed of spins S = 1/2 and
described with isotropic Heisenberg model with external magnetic field and two exchange
integrals: one for spin pairs belonging to tetrahedron and another one quantifying the
coupling between tetrahedron spins and a central spin. The cluster has non-trivial geometry
characterized by high symmetry (being the smallest non-planar Kuratowski graph K5).
The selected geometry offers the possibility of influencing the ratio of exchange integrals by
chemical composition and of creating networks of weakly interacting clusters [75]. The in-
terest of our study was focused on the quantum two-spin entanglement properties. Both
ground-state properties and the effect of finite temperature on the system behaviour were
discussed, preceded by the analysis of the ground-state phase diagram as a function of
exchange integrals and external magnetic field. A specific feature of the selected cluster
is relatively frequent occurrence of ground state degeneracy due to high system symme-
try. We found the presence of two-spin entanglement for two ground states (a pure one
and a mixed one), both with total cluster spin number equal to ST = 3/2. The studied
cluster exhibits the entanglement preferably for all-antiferromagnetic couplings, which
is an usual pattern in the case of magnetic materials [94]. For the case of finite tempera-
ture, the phenomenon of temperature-induced and magnetic field-induced entanglement
were predicted. The behaviour of the Wootters concurrence was extensively discussed,
developing the interest in thermal entanglement and magnetic entanglement, as called
in pioneering work, Ref. [25] exposing the interplay of the temperature and magnetic
field when influencing the entanglement of naturally occurring thermal quantum states in
magnetic nanoclusters.

The system in question was inspired by synthesis of Cu-based cluster molecular
magnets containing spins 1/2 [77] and Co-based structures [74] built of higher spins.
Our selection of cluster containing localized spins S = 1/2 (equivalent to qubits) was
additionally justified by expectation of most pronounced quantum behaviour for the
lowest possible spin. However, the extension of the study to higher spins would further
augment the parameter space, leading to enriched phase diagram and possibility to explore
entanglement for more general qudit case. Another direction of extending the study would
involve incorporation of intercluster couplings to correlate the model better to cluster
molecular magnets in which such couplings occur (see a general model study [95] or
particular examples of coupled dimers [96,97]).
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Appendix A. Complete Set of the Eigenvalues and Eigenstates of the
Cluster Hamiltonian

The appendix contains the complete set of eigenstates of cluster Hamiltonian given
by Equation (1) with relevant eigenenergies and sets of quantum numbers ST , ST,z and s
[related to the eigenenergies by Equation (2)]. The states are listed in two forms: Table A1
contains the eigenstates written in the basis using only spin-up and spin-down states for
single spins, whereas Table A2 manifestly emphasizes division of the system to central spin
and two dimers using Bell states for spin pairs if possible.
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Table A1. Eigenenergies and eigenstates of the Hamiltonian [Equation (1)] with quantum numbers.

ST , ST ,z, s Eigenenergy Eigenstate

5
2 ,+ 5

2 , 2 −J1 − 3
2 J2 − 5

2 H
∣∣∣ψ 5

2 ,+ 5
2 ,2

〉
= |↑↑↑↑↑〉

5
2 ,+ 3

2 , 2 −J1 − 3
2 J2 − 3

2 H
∣∣∣ψ 5

2 ,+ 3
2 ,2

〉
= 1√

5
(|↑↑↑↑↓〉+ |↑↑↑↓↑〉+ |↑↑↓↑↑〉+ |↑↓↑↑↑〉+ |↓↑↑↑↑〉)

5
2 ,− 1

2 , 2 −J1 − 3
2 J2 − 1

2 H
∣∣∣ψ 5

2 ,+ 1
2 ,2

〉
= 1√

10
(|↑↑↑↓↓〉+ |↑↑↓↑↓〉+ |↑↓↑↑↓〉+ |↓↑↑↑↓〉+ |↑↑↓↓↑〉+ |↑↓↑↓↑〉
+|↓↑↑↓↑〉+ |↑↓↓↑↑〉+ |↓↑↓↑↑〉+ |↓↓↑↑↑〉)

5
2 ,− 1

2 , 2 −J1 − 3
2 J2 +

1
2 H

∣∣∣ψ 5
2 ,− 1

2 ,2

〉
= 1√

10
(|↓↓↓↑↑〉+ |↓↓↑↓↑〉+ |↓↑↓↓↑〉+ |↑↓↓↓↑〉+ |↓↓↑↑↓〉+ |↓↑↓↑↓〉
+|↑↓↓↑↓〉+ |↓↑↑↓↓〉+ |↑↓↑↓↓〉+ |↑↑↓↓↓〉)

5
2 ,− 3

2 , 2 −J1 − 3
2 J2 +

3
2 H

∣∣∣ψ 5
2 ,− 3

2 ,2

〉
= 1√

5
(|↓↓↓↓↑〉+ |↓↓↓↑↓〉+ |↓↓↑↓↓〉+ |↓↑↓↓↓〉+ |↑↓↓↓↓〉)

5
2 ,− 5

2 , 2 −J1 − 3
2 J2 +

5
2 H

∣∣∣ψ 5
2 ,− 5

2 ,2

〉
= |↓↓↓↓↓〉

3
2 ,+ 3

2 , 2 3
2 J1 − 3

2 J2 − 3
2 H

∣∣∣ψ 3
2 ,+ 3

2 ,2

〉
= 1

2
√

5
(|↑↑↑↑↓〉+ |↑↑↑↓↑〉+ |↑↑↓↑↑〉+ |↑↓↑↑↑〉 − 4|↓↑↑↑↑〉)

3
2 ,+ 1

2 , 2 3
2 J1 − 3

2 J2 − 1
2 H

∣∣∣ψ 3
2 ,+ 1

2 ,2

〉
= 1

2
√

15
(2|↑↑↑↓↓〉+ 2|↑↑↓↑↓〉+ 2|↑↑↓↓↑〉+ 2|↑↓↑↑↓〉+ 2|↑↓↑↓↑〉+ 2|↑↓↓↑↑〉
−3|↓↑↑↑↓〉 − 3|↓↑↑↓↑〉 − 3|↓↑↓↑↑〉 − 3|↓↓↑↑↑〉)

3
2 ,− 1

2 , 2 3
2 J1 − 3

2 J2 +
1
2 H

∣∣∣ψ 3
2 ,− 1

2 ,2

〉
= 1

2
√

15
(2|↓↓↓↑↑〉+ 2|↓↓↑↓↑〉+ 2|↓↓↑↑↓〉+ 2|↓↑↓↓↑〉+ 2|↓↑↓↑↓〉+ 2|↓↑↑↓↓〉
−3|↑↓↓↓↑〉 − 3|↑↓↓↑↓〉 − 3|↑↓↑↓↓〉 − 3|↑↑↓↓↓〉)

3
2 ,− 3

2 , 2 3
2 J1 − 3

2 J2 +
3
2 H

∣∣∣ψ 3
2 ,− 3

2 ,2

〉
= 1

2
√

5
(|↓↓↓↓↑〉+ |↓↓↓↑↓〉+ |↓↓↑↓↓〉+ |↓↑↓↓↓〉 − 4|↑↓↓↓↓〉)

3
2 ,+ 3

2 , 1 − 1
2 J1 +

1
2 J2 − 3

2 H
∣∣∣∣ψ(1)

3
2 ,+ 3

2 ,1

〉
= 1

2 (|↑↑↑↑↓〉 − |↑↑↑↓↑〉+ |↑↑↓↑↑〉 − |↑↓↑↑↑〉)∣∣∣∣ψ(2)
3
2 ,+ 3

2 ,1

〉
= 1

2 (|↑↑↑↑↓〉 − |↑↑↑↓↑〉 − |↑↑↓↑↑〉+ |↑↓↑↑↑〉)∣∣∣∣ψ(3)
3
2 ,+ 3

2 ,1

〉
= 1

2 (|↑↑↑↑↓〉+ |↑↑↑↓↑〉 − |↑↑↓↑↑〉 − |↑↓↑↑↑〉)

3
2 ,+ 1

2 , 1 − 1
2 J1 +

1
2 J2 − 1

2 H
∣∣∣∣ψ(1)

3
2 ,+ 1

2 ,1

〉
= 1

2
√

3
(|↓↓↑↑↑〉+ |↓↑↓↑↑〉 − |↓↑↑↓↑〉 − |↓↑↑↑↓〉+ 2|↑↓↓↑↑〉 − 2|↑↑↑↓↓〉)∣∣∣∣ψ(2)

3
2 ,+ 1

2 ,1

〉
= 1

2
√

3
(|↓↓↑↑↑〉 − |↓↑↓↑↑〉 − |↓↑↑↓↑〉+ |↓↑↑↑↓〉+ 2|↑↓↑↑↓〉 − 2|↑↑↓↓↑〉)∣∣∣∣ψ(3)

3
2 ,+ 1

2 ,1

〉
= 1

2
√

3
(|↓↓↑↑↑〉 − |↓↑↓↑↑〉+ |↓↑↑↓↑〉 − |↓↑↑↑↓〉 − 2|↑↑↓↑↓〉+ 2|↑↓↑↓↑〉)

3
2 ,− 1

2 , 1 − 1
2 J1 +

1
2 J2 +

1
2 H

∣∣∣∣ψ(3)
3
2 ,− 1

2 ,1

〉
= 1

2
√

3
(|↑↑↓↓↓〉 − |↑↓↑↓↓〉+ |↑↓↓↑↓〉 − |↑↓↓↓↑〉 − 2|↓↓↑↓↑〉+ 2|↓↑↓↑↓〉)∣∣∣∣ψ(2)

3
2 ,− 1

2 ,1

〉
= 1

2
√

3
(|↑↑↓↓↓〉 − |↑↓↑↓↓〉 − |↑↓↓↑↓〉+ |↑↓↓↓↑〉+ 2|↓↑↓↓↑〉 − 2|↓↓↑↑↓〉)∣∣∣∣ψ(1)

3
2 ,− 1

2 ,1

〉
= 1

2
√

3
(|↑↑↓↓↓〉+ |↑↓↑↓↓〉 − |↑↓↓↑↓〉 − |↑↓↓↓↑〉+ 2|↓↑↑↓↓〉 − 2|↓↓↓↑↑〉)

3
2 ,− 3

2 , 1 − 1
2 J1 +

1
2 J2 +

3
2 H

∣∣∣∣ψ(3)
3
2 ,− 3

2 ,1

〉
= 1

2 (|↓↓↓↓↑〉+ |↓↓↓↑↓〉 − |↓↓↑↓↓〉 − |↓↑↓↓↓〉)∣∣∣∣ψ(2)
3
2 ,− 3

2 ,1

〉
= 1

2 (|↓↓↓↓↑〉 − |↓↓↓↑↓〉 − |↓↓↑↓↓〉+ |↓↑↓↓↓〉)∣∣∣∣ψ(1)
3
2 ,− 3

2 ,1

〉
= 1

2 (|↓↓↓↓↑〉 − |↓↓↓↑↓〉+ |↓↓↑↓↓〉 − |↓↑↓↓↓〉)

1
2 ,+ 1

2 , 1 J1 +
1
2 J2 − 1

2 H
∣∣∣∣ψ(1)

1
2 ,+ 1

2 ,1

〉
= 1√

6
(|↓↓↑↑↑〉 − |↓↑↓↑↑〉+ |↓↑↑↓↑〉 − |↓↑↑↑↓〉 − |↑↓↑↓↑〉+ |↑↑↓↑↓〉)∣∣∣∣ψ(2)

1
2 ,+ 1

2 ,1

〉
= 1√

6
(|↓↓↑↑↑〉+ |↓↑↓↑↑〉 − |↓↑↑↓↑〉+ |↓↑↑↑↓〉 − |↑↓↓↑↑〉+ |↑↑↑↓↓〉)∣∣∣∣ψ(3)

1
2 ,+ 1

2 ,1

〉
= 1√

6
(|↓↓↑↑↑〉 − |↓↑↓↑↑〉 − |↓↑↑↓↑〉+ |↓↑↑↑↓〉 − |↑↓↑↑↓〉+ |↑↑↓↓↑〉)

1
2 ,− 1

2 , 1 J1 +
1
2 J2 +

1
2 H

∣∣∣∣ψ(3)
1
2 ,− 1

2 ,1

〉
= 1√

6
(|↑↑↓↓↓〉 − |↑↓↑↓↓〉 − |↑↓↓↑↓〉+ |↑↓↓↓↑〉 − |↓↑↓↓↑〉+ |↓↓↑↑↓〉)∣∣∣∣ψ(2)

1
2 ,− 1

2 ,1

〉
= 1√

6
(|↑↑↓↓↓〉+ |↑↓↑↓↓〉 − |↑↓↓↑↓〉+ |↑↓↓↓↑〉 − |↓↑↑↓↓〉+ |↓↓↓↑↑〉)∣∣∣∣ψ(1)

1
2 ,− 1

2 ,1

〉
= 1√

6
(|↑↑↓↓↓〉 − |↑↓↑↓↓〉+ |↑↓↓↑↓〉 − |↑↓↓↓↑〉 − |↓↑↓↑↓〉+ |↓↓↑↓↑〉)

1
2 ,+ 1

2 , 0 3
2 J2 − 1

2 H
∣∣∣∣ψ(1)

1
2 ,+ 1

2 ,0

〉
= 1

2 (|↑↑↓↑↓〉 − |↑↑↓↓↑〉+ |↑↓↑↓↑〉 − |↑↓↑↑↓〉)∣∣∣∣ψ(2)
1
2 ,+ 1

2 ,0

〉
= 1

2
√

3
(2|↑↑↑↓↓〉 − |↑↑↓↑↓〉 − |↑↑↓↓↑〉 − |↑↓↑↑↓〉 − |↑↓↑↓↑〉+ 2|↑↓↓↑↑〉)

1
2 ,− 1

2 , 0 3
2 J2 +

1
2 H

∣∣∣∣ψ(2)
1
2 ,− 1

2 ,0

〉
= 1

2
√

3
(2|↓↓↓↑↑〉 − |↓↓↑↓↑〉 − |↓↓↑↑↓〉 − |↓↑↓↓↑〉 − |↓↑↓↑↓〉+ 2|↓↑↑↓↓〉)∣∣∣∣ψ(1)

1
2 ,− 1

2 ,0

〉
= 1

2 (|↓↓↑↓↑〉 − |↓↓↑↑↓〉+ |↓↑↓↑↓〉 − |↓↑↓↓↑〉)
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Table A2. Eigenenergies and eigenstates of the Hamiltonian [Equation (1)] with quantum numbers,
expressed in a basis emphasizing the system division into central spin and two dimers.

ST , ST ,z, s Eigenenergy Eigenstate

5
2 ,+ 5

2 , 2 −J1 − 3
2 J2 − 5

2 H
∣∣∣ψ 5

2 ,+ 5
2 ,2

〉
= |↑〉|↑↑〉|↑↑〉

5
2 ,+ 3

2 , 2 −J1 − 3
2 J2 − 3

2 H
∣∣∣ψ 5

2 ,+ 3
2 ,2

〉
=
√

2
5 |↑〉(|↑↑〉|ψ+〉+ |ψ+〉|↑↑〉) + 1√

5
|↓〉|↑↑〉|↑↑〉

5
2 ,+ 1

2 , 2 −J1 − 3
2 J2 − 1

2 H
∣∣∣ψ 5

2 ,+ 1
2 ,2

〉
= 1√

10
|↑〉(|φ+〉|φ+〉 − |φ−〉|φ−〉+ 2|ψ+〉|ψ+〉) + 1√

5
|↓〉(|↑↑〉|ψ+〉+ |ψ+〉|↑↑〉)

5
2 ,− 1

2 , 2 −J1 − 3
2 J2 +

1
2 H

∣∣∣ψ 5
2 ,− 1

2 ,2

〉
= 1√

10
|↓〉(|φ+〉|φ+〉 − |φ−〉|φ−〉+ 2|ψ+〉|ψ+〉) + 1√

5
|↑〉(|↓↓〉|ψ+〉+ |ψ+〉|↓↓〉)

5
2 ,− 3

2 , 2 −J1 − 3
2 J2 +

3
2 H

∣∣∣ψ 5
2 ,− 3

2 ,2

〉
=
√

2
5 |↓〉(|↓↓〉|ψ+〉+ |ψ+〉|↓↓〉) + 1√

5
|↑〉|↓↓〉|↓↓〉

5
2 ,− 5

2 , 2 −J1 − 3
2 J2 +

5
2 H

∣∣∣ψ 5
2 ,− 5

2 ,2

〉
= |↓〉|↓↓〉|↓↓〉

3
2 ,+ 3

2 , 2 3
2 J1 − 3

2 J2 − 3
2 H

∣∣∣ψ 3
2 ,+ 3

2 ,2

〉
= 1√

10
|↑〉(|↑↑〉|ψ+〉+ |ψ+〉|↑↑〉)− 2√

5
|↓〉|↑↑〉|↑↑〉

3
2 ,+ 1

2 , 2 3
2 J1 − 3

2 J2 − 1
2 H

∣∣∣ψ 3
2 ,+ 1

2 ,2

〉
= 1√

15
|↑〉(|φ+〉|φ+〉 − |φ−〉|φ−〉+ 2|ψ+〉|ψ+〉)− 3√

30
|↓〉(|↑↑〉|ψ+〉+ |ψ+〉|↑↑〉)

3
2 ,− 1

2 , 2 3
2 J1 − 3

2 J2 +
1
2 H

∣∣∣ψ 3
2 ,− 1

2 ,2

〉
= 1√

15
|↓〉(|φ+〉|φ+〉 − |φ−〉|φ−〉+ 2|ψ+〉|ψ+〉)− 3√

30
|↑〉(|↓↓〉|ψ+〉+ |ψ+〉|↓↓〉)

3
2 ,− 3

2 , 2 3
2 J1 − 3

2 J2 +
3
2 H

∣∣∣ψ 3
2 ,− 3

2 ,2

〉
= 1√

10
|↓〉(|↓↓〉|ψ+〉+ |ψ+〉|↓↓〉)− 2√

5
|↑〉|↓↓〉|↓↓〉

3
2 ,+ 3

2 , 1 − 1
2 J1 +

1
2 J2 − 3

2 H
∣∣∣∣ψ(1)

3
2 ,+ 3

2 ,1

〉
= 1√

2
|↑〉(|↑↑〉|ψ−〉+ |ψ−〉|↑↑〉)∣∣∣∣ψ(2)

3
2 ,+ 3

2 ,1

〉
= 1√

2
|↑〉(|↑↑〉|ψ−〉 − |ψ−〉|↑↑〉)∣∣∣∣ψ(3)

3
2 ,+ 3

2 ,1

〉
= 1√

2
|↑〉(|↑↑〉|ψ+〉 − |ψ+〉|↑↑〉)

3
2 ,+ 1

2 , 1 − 1
2 J1 +

1
2 J2 − 1

2 H
∣∣∣∣ψ(1)

3
2 ,+ 1

2 ,1

〉
= 1√

6
|↓〉(|ψ+〉|↑↑〉 − |↑↑〉|ψ+〉)− 1√

3
|↑〉(|φ−〉|φ+〉 − |φ+〉|φ−〉)∣∣∣∣ψ(2)

3
2 ,+ 1

2 ,1

〉
= 1√

6
|↓〉(|ψ−〉|↑↑〉 − |↑↑〉|ψ−〉) + 1√

3
|↑〉(|ψ−〉|ψ+〉 − |ψ+〉|ψ−〉)∣∣∣∣ψ(3)

3
2 ,+ 1

2 ,1

〉
= 1√

6
|↓〉(|ψ−〉|↑↑〉+ |↑↑〉|ψ−〉) + 1√

3
|↑〉(|ψ−〉|ψ+〉+ |ψ+〉|ψ−〉)

3
2 ,− 1

2 , 1 − 1
2 J1 +

1
2 J2 +

1
2 H

∣∣∣∣ψ(3)
3
2 ,− 1

2 ,1

〉
= 1√

6
|↑〉(|ψ−〉|↓↓〉+ |↓↓〉|ψ−〉) + 1√

3
|↓〉(|ψ−〉|ψ+〉+ |ψ+〉|ψ−〉)∣∣∣∣ψ(2)

3
2 ,− 1

2 ,1

〉
= 1√

6
|↑〉(|ψ−〉|↓↓〉 − |↓↓〉|ψ−〉) + 1√

3
|↓〉(|ψ−〉|ψ+〉 − |ψ+〉|ψ−〉)∣∣∣∣ψ(1)

3
2 ,− 1

2 ,1

〉
= 1√

6
|↑〉(|ψ+〉|↓↓〉 − |↓↓〉|ψ+〉) + 1√

3
|↓〉(|φ−〉|φ+〉 − |φ+〉|φ−〉)

3
2 ,− 3

2 , 1 − 1
2 J1 +

1
2 J2 +

3
2 H

∣∣∣∣ψ(3)
3
2 ,− 3

2 ,1

〉
= 1√

2
|↓〉(|↓↓〉|ψ+〉 − |ψ+〉|↓↓〉)∣∣∣∣ψ(2)

3
2 ,− 3

2 ,1

〉
= 1√

2
|↓〉(|↓↓〉|ψ−〉 − |ψ−〉|↓↓〉)∣∣∣∣ψ(1)

3
2 ,− 3

2 ,1

〉
= 1√

2
|↓〉(|↓↓〉|ψ−〉+ |ψ−〉|↓↓〉)

1
2 ,+ 1

2 , 1 J1 +
1
2 J2 − 1

2 H
∣∣∣∣ψ(1)

1
2 ,+ 1

2 ,1

〉
= 1√

6
|↑〉(|ψ+〉|ψ−〉+ |ψ−〉|ψ+〉)− 1√

3
|↓〉(|↑↑〉|ψ−〉+ |ψ−〉|↑↑〉)∣∣∣∣ψ(2)

1
2 ,+ 1

2 ,1

〉
= 1√

6
|↑〉(|ψ+〉|ψ−〉+ |ψ−〉|ψ+〉) + 1√

3
|↓〉(|↑↑〉|ψ−〉 − |ψ−〉|↑↑〉)∣∣∣∣ψ(3)

1
2 ,+ 1

2 ,1

〉
= 1√

6
|↑〉(|ψ+〉|ψ−〉+ |ψ−〉|ψ+〉)− 1√

3
|↓〉(|↑↑〉|ψ+〉 − |ψ+〉|↑↑〉)

1
2 ,− 1

2 , 1 J1 +
1
2 J2 +

1
2 H

∣∣∣∣ψ(3)
1
2 ,− 1

2 ,1

〉
= 1√

6
|↓〉(|ψ+〉|ψ−〉+ |ψ−〉|ψ+〉) + 1√

3
|↑〉(|↓↓〉|ψ+〉 − |ψ+〉|↓↓〉)∣∣∣∣ψ(2)

1
2 ,− 1

2 ,1

〉
= 1√

6
|↓〉(|ψ+〉|ψ−〉+ |ψ−〉|ψ+〉) + 1√

3
|↑〉(|↓↓〉|ψ−〉 − |ψ−〉|↓↓〉)∣∣∣∣ψ(1)

1
2 ,− 1

2 ,1

〉
= 1√

6
|↓〉(|ψ+〉|ψ−〉+ |ψ−〉|ψ+〉)− 1√

3
|↑〉(|↑↑〉|ψ−〉+ |ψ−〉|↑↑〉)

1
2 ,+ 1

2 , 0 3
2 J2 − 1

2 H
∣∣∣∣ψ(1)

1
2 ,+ 1

2 ,0

〉
= |↑〉|ψ−〉|ψ−〉∣∣∣∣ψ(2)

1
2 ,+ 1

2 ,0

〉
= 1√

3
|↑〉(|φ+〉|φ+〉 − |φ−〉|φ−〉 − |ψ+〉|ψ+〉)

1
2 ,− 1

2 , 0 3
2 J2 +

1
2 H

∣∣∣∣ψ(2)
1
2 ,− 1

2 ,0

〉
= 1√

3
|↓〉(|φ+〉|φ+〉 − |φ−〉|φ−〉 − |ψ+〉|ψ+〉)∣∣∣∣ψ(1)

1
2 ,− 1

2 ,0

〉
= |↓〉|ψ−〉|ψ−〉
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