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Abstract: There are several Amazonian plant species with potential pharmacological validation for
the treatment of acute kidney injury, a condition in which the kidneys are unable to adequately filter
the blood, resulting in the accumulation of toxins and waste in the body. Scientific production on
plant compounds capable of preventing or attenuating acute kidney injury—caused by several factors,
including ischemia, toxins, and inflammation—has shown promising results in animal models of
acute kidney injury and some preliminary studies in humans. Despite the popular use of Amazonian
plant species for kidney disorders, further pharmacological studies are needed to identify active
compounds and subsequently conduct more complex preclinical trials. This article is a brief review
of phytocompounds with potential nephroprotective effects against acute kidney injury (AKI). The
classes of Amazonian plant compounds with significant biological activity most evident in the
consulted literature were alkaloids, flavonoids, tannins, steroids, and terpenoids. An expressive
phytochemical and pharmacological relevance of the studied species was identified, although with
insufficiently explored potential, mainly in the face of AKI, a clinical condition with high morbidity
and mortality.

Keywords: Amazonian traditional medicine; phytotherapy; hypoxia; oxidative stress; nephroprotection;
antioxidant; anti-inflammatory; diuretic

1. Introduction

Natural products have been a source of important biologically active substances, and
this is due to the diversity of chemical compounds that can be found in plants, fungi, and
bacteria, among other organisms [1]. These compounds have a wide variety of structures
and biological activity, which makes them potential candidates for the development of new
drugs [2]. Products derived from plant species, in particular, those from the Amazonian
biodiversity, are a rich source of compounds with promising pharmacological properties,
including nephroprotective, anti-inflammatory, and antioxidant activity [3].

Some of the classes of Amazonian plant compounds have been investigated for their
potential activity in kidney protection, among them, plant species belonging to the al-
kaloid classes, for their nephroprotective effects in experimental models of acute kidney
injury (AKI); flavonoids, due to antioxidant and anti-inflammatory properties with re-
nal protective activity; tannins, due to their antioxidant and anti-inflammatory potential,
with probable prevention or reduction of kidney damage induced by toxins and other
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substances; steroids, with anti-inflammatory and antioxidant activity, which may help to
prevent acute kidney injury induced by oxidative stress; and terpenoids, for their potent
anti-inflammatory, antioxidant, and immunomodulatory activity [4–6].

Therefore, knowing this Amazonian biodiversity allows us to exploit it in the best
way and protect it. This is mainly due to great expectations regarding the environmentally
correct exploitation of natural resources for production and processing and a fair return for
the traditional population [7].

These natural compounds can be isolated and used as models for the development
of new drugs, or they can be chemically modified to improve their pharmacokinetic and
pharmacodynamic properties, resulting in new compounds with potential therapeutic
activity against AKI [8–10]. AKI is a medical condition that can lead to acute renal failure,
with a high risk of morbidity and mortality [11]. AKI is characterized by an abrupt reduction
in renal function, with accumulation of toxic metabolites and electrolytes in the body,
triggering serious complications such as hemodynamic disorders, pulmonary edema,
metabolic disorders, and even death [12].

AKI can affect up to 7% of hospitalized patients and up to 50% of critically ill patients,
being one of the main causes of mortality in this group of patients. The dysfunction
comes from a variety of factors, including the use of nephrotoxic drugs, renal ischemia,
heart failure, hypovolemia, and sepsis, among others [13]. Advanced age, the presence of
comorbidities such as diabetes and hypertension, and the use of invasive procedures such
as cardiac surgery are also associated with a higher risk of developing AKI [12].

This clinical condition generates several social problems, especially in countries with
precarious health systems, resulting in (a) increased health costs, due to the need for
intensive and prolonged treatment, including intensive care, and, in some cases, dialysis;
(b) reduced quality of life, especially in the most serious cases, where recovery can be
slow and complicated, resulting in loss of productivity, inability to work, and the need for
special care; (c) socioeconomic inequalities, disproportionately affecting more vulnerable
populations, including elderly patients, people with low socioeconomic status, or those
with limited access to adequate health care; (d) overload of healthcare systems, especially
in countries with limited resources, due to the requirement for intensive and long-term
care [14].

AKI involves a series of complex mechanisms, including hemodynamic disturbances,
in which there is a reduction in renal perfusion, with consequent hypoxia and ischemia,
resulting in cell damage and inflammation [12]. AKI is often accompanied by kidney
inflammation, which can contribute to cell damage and tubular dysfunction. This reduction
in kidney function with damage to the epithelial cells of the renal tubules, releases toxic
metabolites and electrolytes into the body, resulting in serious complications. In addition
to tubular dysfunction, it can reduce the ability to reabsorb water and electrolytes as well
as the ability to excrete toxic metabolites [13].

Based on its pathophysiology, it is classified into three types: pre-renal, due to a
reduction in renal perfusion due to hypovolemia, heart failure, or hypotension, resulting
in hypoxia and cell damage; intrinsic, due to direct damage to the kidneys, including
nephrotoxicity from medications, exposure to toxic chemicals, infections, or autoimmune
diseases; postrenal, caused by kidney stones, tumors, or other obstructions to the flow of
urine, resulting in accumulation of urine in the kidneys and subsequent damage [15].

Therefore, AKI can be potentially fatal if not treated properly, and conventional treat-
ments often have significant side effects [12]. In this context, the Amazonian population
uses several plant species with bioactive compounds to treat diseases of the renal and uri-
nary system [16]. Traditional Amazonian medicine has contributed to the discovery of new
bioactive products [1]. Therefore, developing drugs from plant species from the Amazon
against AKI can help combat resistance to existing drugs. This can also minimize significant
side effects, including damage to the liver and other organs; improve effectiveness; and
provide new treatment options for AKI.
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2. Method

This study constitutes, methodologically, an analytical bibliographic review related to
the mapping of secondary metabolites found in Amazonian plant species with potential to
treat AKI, belonging to the classes of alkaloid compounds, flavonoids, tannins, terpenoids,
and steroids. Among the species highlighted are Banisteriopsis caapi (Spruce ex Griseb.)
Morton, Peganum harmala L., Passiflora edulis Sims, Annona muricata L., Uncaria tomentosa
(Willd.) DC., Hymenaea courbaril L., Echinodorus macrophyllus (Kunth) Micheli, Acmella oleracea
(L.) R. K. Jansen, and Rosmarinus officinalis L., in addition to studies on potential nephro-
protective effects. Data collection was carried out from September 2022 to February 2023,
using the following databases: CAPES journals, PubMed, Science Direct from Elsevier, Wiley
Online Library, Springer-Nature, Taylor and Francis, BMC, Hindawi, Scielo, ACS—American
Chemical Society, and Google Scholar, as well as databases of scientific articles and patents
“The LENS” and “ORBIT Intelligence”.

The inclusion criteria for this work included original articles exclusive to the genus
and species studied, with full text available in Portuguese, English, and other languages.
Exclusion criteria included abstracts, online sites without scientific sources, incomplete
texts, and unrelated and repeated articles.

As for the search strategy, the descriptive words used in this work were as follows:
species Banisteriopsis caapi (Spruce ex Griseb.) Morton, Peganum harmala L., Passiflora edulis
Sims, Annona muricata L., Uncaria tomentosa (Willd.) DC., Hymenaea courbaril L., Echinodorus
macrophyllus (Kunth) Micheli, Acmella oleracea (L.) R. K. Jansen, and Rosmarinus officinalis L.,
correlated with secondary metabolites and their nephroprotective potential. The articles
were selected by reading the titles and abstracts of the publications, associated with the
Boolean descriptor “AND”, in order to refine the samples.

The review is based primarily on articles published after 2010. However, some older
articles were also mentioned to provide relevant background or when providing well-
documented information. The study shows the expressive phytochemical and pharmaco-
logical relevance of the studied species, although many of them with insufficiently explored
potential, mainly in the face of AKI.

3. Secondary Metabolites and Nephroprotective Potential in Amazonian Plant Species
3.1. Classes of Compounds Present in Amazonian Plant Species
3.1.1. Alkaloids

Alkaloids are a class of nitrogenous organic compounds that occur naturally in plant
species [17]. Such constituents are a class of chemical compounds with alkaline properties
that contain at least one nitrogen atom in their structure, being produced by plants as a
form of defense against herbivores and pathogens [18].

Alkaloids are characterized by having a heterocyclic ring structure with at least one
nitrogen atom, unlike aliphatic nitrogen compounds, which are non-cyclic [19]. These
substances can occur as homoligomeric or heteroligomeric monomers, dimers, trimers,
or tetramers. There are two main groups of alkaloids: those with a heterocyclic or non-
heterocyclic chemical structure, and those of biological or natural origin, which come from
specific sources [20].

Alkaloids can be divided into different classes or groups based on their chemical
structures and properties: indole (serotonin, melatonin, and tryptamine), isoquinoline
(morphine, codeine, and papaverine), terpenic (atropine, scopolamine, and ephedrine), and
pyrrolizidine (senecionin and retronecin) [21].

Many alkaloids have pharmacological properties such as analgesics [22], hallucino-
gens [23], anesthetics [24], antidiabetic [25], and anticancer [18]. Some studies suggest
that plants that produce harmine, harmaline, and tetrahydroharmine alkaloids may have
nephroprotective biological activity; that is, they may protect the kidneys against
damage [26].

However, it is worth mentioning the toxicity of certain metabolites belonging to the
class of alkaloids, for example, saponins. According to Fang et al. [27], in an acute toxicity
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test, with crude extracts of Albizia coriaria (used by the traditional population of Uganda),
with a significant percentage of saponins in phytochemical screening, extracts of the species
possibly produced acute renal toxicity, based on histopathological identification of tissue
with severe acute multifocal nephritis, characterized by infiltration of inflammatory cells at
various sites in the renal interstitium. In addition, the animal models used clinically had
excessive urination, with a probable link to toxicity.

3.1.2. Flavonoids

Flavonoids are a class of organic compounds widely distributed in nature, charac-
terized by their flavone chemical structure, which includes two aromatic rings joined by
a three-carbon bridge. They have been the subject of studies due to the wide range of
biological properties derived from their bioactive compounds [28]. Based on their chem-
ical structures and biological properties, flavonoids are divided into several subclasses,
such as flavones (a hydroxyl group at the 4 position of the B ring: luteolin and apigenin),
flavonols (a hydroxyl group at the 3 position of the C ring: quercetin and kaempferol),
flavanones (without a hydroxyl group at position 3 of the C ring: hesperidin and naringin),
flavanols (a hydroxyl group at position 3 and a hydroxyl group at position 4 of the C ring:
catechin and epicatechin), anthocyanins (water-soluble pigments responsible for the red,
purple, and blue colors of many fruits and vegetables), and isoflavones (found primarily in
legumes) [29].

Several preclinical and clinical studies have documented the pharmacological activity
of flavonoids, mainly their antioxidant properties [30,31], antidiabetics [32], antiobesity [33],
antihyperlipidemic [34], anti-inflammatory [35], anti-osteoporotic effects [36], antiallergic,
and antithrombotic [37], in addition to being hepatoprotective [38], neuroprotective [39],
nephroprotectors [40–42], chemopreventives, and anticancers [43], as well as having antibac-
terial, antifungal, and antiviral activity [44]. Flavonoids can inhibit in vitro proliferation
of several cancer cell lines and reduce tumor growth in animal models [43]. They are
recognized as antioxidants and have properties that eliminate free radicals. Thus, they act
as divalent cation chelators and have free radical scavenging properties, inhibiting lipid
peroxidation, capillary permeability, and platelet aggregation and fragility [45].

These compounds are able to increase the activity of endogenous free radical me-
tabolizing enzymes, including catalase (CAT), superoxide dismutase (SOD), glutathione
peroxidase, and glutathione (GSH), which are crucial for the elimination of ROS and conse-
quently the increase of antioxidant activity. Several studies have shown that pretreatment
with flavonoids can play a key role in ischemia and reperfusion injury [46].

In a study carried out in a renal model of AKI in Wistar rats, pretreatment with rutin
significantly reduced renal failure, in addition to inhibiting the production of malondialde-
hyde (MDA) and restoring depleted levels of GSH and superoxide dis-mutase activity [47].
The compound apigenin increased SOD and glutathione peroxidase activity, as well as
being able to reduce MDA in a rat model of AKI through activation of the JAK2/STAT3
signaling pathway [48].

Flavonoids modulate oxidative stress through the pathway of nuclear factor 2 related
to erythroid 2 (Nrf2), a transcription factor that regulates the expression of several cyto-
protective and antioxidant genes [49]; inhibit the production of peroxynitrite, suppressing
the iNOS activity and NO production; and are essential mediators of the pathological and
physiological processes of AKI [50].

In addition to promoting an inflammatory response in the biological processes of AKI,
they inhibit the tumor necrosis factor-α (TNF-α), which initiates the inflammatory cascade
and the positive regulation of chemokines and cytokines such as IL-6 and IL-1β, which can
damage renal cells directly [51]. In addition, in toll-like receptor 4 (TLR4) signaling, they
are an important modulator of chemokines and pro-inflammatory cytokines, migration
and infiltration of leukocytes, and apoptosis of renal tubular epithelial cells [52].

In addition, flavonoids regulate biological systems through the inhibition of several
enzymes, including hydrolase, lipase, α-glucosidase, aldose reductase, cyclooxygenase,
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xanthine oxidase, hyaluronidase, alkaline phosphatase, arylsulfatase, lipoxygenase, Ca+2-
ATPase, cAMP phosphodiesterase, and various kinases [53].

3.1.3. Tannins

Tannins are the most abundant secondary metabolites produced by plants [54]. Tannins
are widespread in the plant kingdom and occur in different concentrations in all parts
of plant material, be it bark, fruit, wood, or roots [55]. Vegetable tannins are generally
classified into two groups: pyrogallol tannins or hydrolysable tannins and catechol tannins
or condensable tannins. Those of the hydrolysable type, in turn, are subdivided into two
groups: gallotannins, which produce gallic acid and glucose, and ellagitannins, which
provide ellagic acid and glucose. Condensable tannins are not prone to hydrolysis but
are amenable to oxidation and polymerization to form insoluble products known as red
tannins/phlobaphenes [56].

Tannins have been the subject of several studies due to their potential pharmacological
effects. They are known to have antioxidant activity, protecting the body’s cells against
oxidative damage caused by free radicals [57]. They promote anti-inflammatory action [58]
and are also able to kill or inhibit the growth of bacteria, fungi, and viruses, thus exhibiting
antimicrobial activity [59]. Tannins have been studied for their potential antitumor effect by
inhibiting the growth and proliferation of tumor cells [60]. They also have hypoglycemic
effects in vivo [61] and are excellent promoters of hepatoprotection, against damage caused
by toxins and other harmful substances [62]. Among the cardiovascular effects, some
studies suggest that tannins can help reduce the risk of cardiovascular diseases, including
atherosclerosis and hypertension [63].

In terms of nephroprotection, the tannins obtained from the methanolic extract of the
Jatropha tanjorensis leaf improved the serum levels of the renal metabolites urea, uric acid,
and creatinine in animals exposed to renal damage by sodium benzoate; treatment with
the extract reversed significantly changes these important markers of kidney damage in a
dose-dependent manner [64].

In Brazil, tea from the plant Phyllanthus niruri known as ‘stone breaker’ is commonly
used in cases of kidney stones. The species does not present acute or chronic toxicity; it
has a uricosuric effect and increases glomerular filtration, which suggests its potential use
not only as a lytic and/or preventive effect on the formation of urinary calculi but also as
a possible use in hyperuricemic patients (by the uricosuric effect) and patients with renal
failure [65]. According to the Brazilian Pharmacopoeia [66], the plant drug is derived from
the dried aerial parts of Phyllanthus niruri L. [syn. Phyllanthus niruri ssp. niruri L. and
Phyllanthus niruri ssp. lathyroides (Kunth) G.L.Webster] containing at least 6.5% of total
tannins and 0.15% of gallic acid (C7H6O5, 170.12) for herbal marketing.

3.1.4. Steroids

Steroids are organic compounds that occur naturally in plants; they have a characteris-
tic sterol ring molecular structure [67]. Each type of steroid has a specific function, playing
important roles in the physiology and biochemistry of those plant species in which they
are found. For example, phytosterols play an important role in regulating cell membrane
permeability while brassinosteroids act as growth and development hormones [68]. Al-
though natural products are often associated with deleterious health effects, plant steroids
have many medicinal applications, and research continues to explore these secondary
metabolites as potential leaders in drug design and discovery [69].

Several natural steroids have been extensively studied for pharmacological efficacy
as antihormones [70], contraceptive drugs [71], anticancer agents [72], cardiovascular
agents [73], osteoporosis medications [74], antibiotics, anesthetics, anti-inflammatories and
antiasthmatics [75].

Important roles for steroids have been evaluated, in diuresis and renal protection, from
secondary metabolites of plant species traditionally used by the Amazonian population [76].
Studies in animal models of nephrotoxicity have shown nephroprotective activity [77],
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reduction of lipid peroxidation and renal fibrosis, and improvement of renal function in
models of acute kidney injury [78].

3.1.5. Terpenoids

Terpenoids constitute the largest class of secondary metabolites and generally do
not contain nitrogen or sulfur in their structures. As a consequence, many terpenoids
have pronounced pharmacological activity and are therefore interesting for medicine and
biotechnology [79].

Terpenoids are classified by the number of five-carbon (isoprene) units they contain.
Thus, the smallest terpenes contain a single isoprene, called hemiterpene, monoterpenoids
(with two isoprene units), sesquiterpenoids (three units), diterpenoids (four units), triter-
penoids (six units), tetraterpenoids (eight units), and polyterpenoids (more than eight
units). Each group of terpenoids has distinct physical and chemical properties, which
influence their biological and pharmacological activity [80].

Several in vitro, preclinical, and clinical studies have confirmed that this class of
compounds exhibits a wide range of very important pharmacological properties: analgesic,
anti-inflammatory, anticancer, anticonvulsant, antibacterial, antiparasitic, and nutraceutical
activity [81,82].

Hence, the diverse collection of terpenoid structures and functions triggers increased
interest in their commercial use, resulting in some with well-established medical applica-
tions being registered as drugs on the market [81].

3.2. Nefroprotective Potential of Compounds from Amazonian Plant Species

Ischemic injury is a complex process of severe vasoconstriction and hypoxia, mainly
in the renal cortex, with impairment of cellular integrity. The pathogenesis of ischemia and
reperfusion injury involves multiple cellular and extracellular mechanisms [83].

Certain classes of plant compounds present in the Amazon, such as alkaloids, flavonoids,
tannins, steroids, and terpenoids, have been investigated for their promising nephroprotec-
tive activity, including the modulation of different cellular mechanisms, thus promoting
antioxidant activity, as well as anti-inflammatory activity [3].

The renal inflammatory process is characterized by an increase in chemotactic factors,
including the chemokine protein chemotaxic protein-1 for monocytes (MCP-1) [84] and
granulocyte and macrophage colony-stimulating factors (GM-CSF) [85]. Endothelial dam-
age favors the formation of intercellular adhesion molecules (ICAM-1), adhesion molecules
(VCAM), and P and E selectins, which promote leukocyte-endothelium interaction, platelet
adhesion, and mechanical obstruction of the renal microvasculature. Monocytes cross
the vascular endothelium and migrate to the damaged tissue, generating macrophages
that produce inflammatory mediators, including transforming growth factor beta (TGF-β),
tumor necrosis factor alpha (TNF-α), and interleukins 1, 6, and 12, Figure 1 [86].

CXC motif chemokine ligand 1 (CXCL1) is a cytokine belonging to the CXC subfamily
of chemokines whose main receptor is CXC motif chemokine 2 (CXCR2), causing the
migration and infiltration of neutrophils to sites of high expression [87]. CXCL1 plays a role
in many adverse conditions associated with inflammation and neutrophil accumulation.
Neutrophils phagocytose using reactive oxygen species (ROS), reactive nitrogen species
(RNS), and other reactive small molecule compounds in affected tissues [88].

Factors such as pro-inflammatory cytokines, including interleukin-1β (IL-1β) and
tumor necrosis factor α (TNF-α), act to increase the expression of CXCL1; these cytokines
activate the nuclear factor κB (NF-κB), which also attenuated the increase of its expres-
sion [89]. The most significant CXCL1 receptor is CXCR2, a G protein-coupled receptor
that acts in signal transduction by activating several signaling pathways such as extracel-
lular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), and focal
adhesion kinase (FAK) [90].
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Figure 1. Amazonian phytocompounds against acute kidney injury. The proposed mechanism
applies mainly to the kidneys. Classes of Amazonian plant compounds such as alkaloids, flavonoids,
tannins, steroids, and terpenoids have significant biological activity especially for the treatment of
acute kidney injury (AKI). Endothelial injury in induced AKI favors the formation of intercellular
adhesion molecules (ICAM-1), adhesion molecules (VCAM), chemokine chemotaxic protein-1 for
monocytes (MCP-1), transforming growth factor β-1 (TGF-β 1), and P and E selectins, which pro-
mote leukocyte–endothelium interaction, platelet adhesion, and mechanical obstruction of the renal
microvasculature; however, active biological substances can act in the expressive reduction of these
chemokines. CXC motif chemokine ligand 1 (CXCL1) is a cytokine belonging to the CXC subfamily of
chemokines, whose main receptor is CXC motif chemokine 2 (CXCR2), a G protein-coupled receptor
that causes neutrophil migration and infiltration. Activation of CXCR2 results in signal transduction
through multiple pathways. Flavonoids and tannins act to reduce this expression; pro-inflammatory
cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α), activate the nuclear
factor κB (NF-κB), which increases the expression of the CXCL1 gene. CXCL1/CXCR2 mediates
the activation of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and C-β phospholipase
(PLC-β). PI3K induces activation of protein kinase B (PKB)/Akt, and signals pathways including
extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), and focal
adhesion kinase (FAK). Toll-like receptor 4 (TLR4) is responsible for initiating the production of
inflammatory cytokines; its inhibition results in decreased inflammation and renal dysfunction dur-
ing nephrotoxicity. The NLRP3 receptor regulates post-transcriptional processes, which lead to the
formation of inflammasome, responsible for the maturation of the inactive forms pro-IL-1β and pro-
IL-18; the decrease of its expression leads to the inactivation of macrophages and lymphocytes. The
activation of NF-κB promotes the transcription of specific genes that encode inflammatory mediators;
however, the exogenous induction of active compounds decreases the expression of inflammatory
mediators such as interferon-γ (IFN-γ), which leads to a reduction in the expression of renal injury
molecule 1 (KIM-1), tumor necrosis factor-α (TNF-α) in renal tubular cells, and consequently the
inactivation of a large network of pro-inflammatory cytokines, such as interleukin-1, 4, 6 (IL-1β,
IL-4, IL-6, IL-18), macrophage inflammatory protein 2 (MIP-2) chemokines, among others. It also
induces a decrease in the expression of the inflammatory enzyme cyclooxygenase (COX-2) and oxide
nitric synthase (iNOS), in the renal medulla, in the glomerular mesangial cells, and in the endothelial
cells of the renal vasculature, thereby reducing the tubular stress marker lipocalin associated with
neutrophil gelatinase (NGAL). The signaling system of mitogen-activated protein kinases (MAPKs)
is induced by cellular stress, by inflammatory responses. MAPK activation leads to the degradation
of Iκβ (NF-κβ inhibitor), consequently promoting NF-κβ activation and migration to the nucleus.
Flavonoids, tannins, steroids, and terpenoids also regulate many pathways such as MAPK, extracellu-
lar signal-regulated kinase (ERK), phosphoinositide 3 kinase (PI3K)/Akt, and related protein kinase
pathways to reduce oxidative stress and inflammation, and they may have nephroprotective effects.
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These compounds also induce transcription factors such as Nrf2, an antioxidant responsive element
(ARE), which mediates the expression of antioxidant proteins. Nrf2 suppresses MCP-1 and VCAM-1
expression and thus decreases monocyte adhesion and transmigration to endothelial cells, which
reduces MAPK expression. These mechanisms enhance the activity of endogenous antioxidants
such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione
S-transferase (GST), which act together to provide a line of defense against oxidative damage.

Toll-like receptors (TLR)—especially subtype 4 (TLR4) and the protein cluster of
differentiation 14 (CD14) existing on the surface of monocytes, macrophages, dendritic
cells, and neutrophils—act in the immunomodulatory activity [91]. TLR4 is responsible
for initiating the production of inflammatory cytokines, increasing renal oxidative stress
and macrophage-mediated inflammation, as well as activating the nuclear factor κB (NF-
κB), which is essential in initiating the intrarenal inflammatory response in the event of
nephrotoxicity [92,93].

NLR family pyrin domain containing 3 (NLRP3) are investigated for their associ-
ation with chronic metabolic and inflammatory diseases [94]. This receptor regulates
post-transcriptional processes, with formation of the inflammasome, composed of active
caspase-1 and ASC adapter protein (an apoptosis-associated speck-like protein containing
a CARD domain), which promote the cleavage of inactive pro-IL-1β interleukins and
pro-IL-18 in their active forms [95,96].

NF-κB activation requires the transcription of specific genes that intervene in the
encoding of inflammatory mediators, promoting immune, proliferative, anti-apoptotic, and
anti-inflammatory responses [97]. This causes increased expression of tumor necrosis factor-
α (TNF-α) in renal tubular cells, an important cytokine involved in systemic inflammation
that coordinates the activation of a large network of pro-inflammatory cytokines, such as
interleukin-1, 4, 6 (IL-1β, IL-4, IL-6), transforming growth factor β-1 (TGF-β 1), and the
chemokine chemotaxic protein-1 for monocytes (MCP-1) [98,99].

The increased expression of renal injury molecule 1 (KIM-1), a tubular transmembrane
protein, has a signaling function since it is associated with the activation of T cells and the
immune response. When chronically expressed, it results in progressive renal fibrosis and
chronic renal failure [100].

The inflammatory response with release of TNF-α, interferon-γ (IFN-γ), and IL-1
induces the expression of the enzyme inducible nitric oxide synthase (iNOS) in the renal
medulla, in the glomerular mesangial cells, and in the endothelium cells of the renal
vasculature [101]. With the release of inflammatory enzymes such as COX-2, whose
transcription is dependent on NK-κB [102], as well as nitric oxide (NO), free radicals have
the ability to interact with ROS and form toxic molecules such as peroxidonitrite, which
oxidize and damage cell membrane proteins with even greater toxicity [101]. Therefore,
phytochemical constituents found in Amazonian species may act to inhibit or attenuate
these pathways.

The mitogen-activated protein kinases (MAPKs) signaling system consists of protein
pathways with serine/threonine kinase activity. MAPKs are induced by cellular stress,
inflammatory responses, and apoptotic pathways initiated by a variety of biological stres-
sors [103]. MAPKs lead to the degradation of Iκβ (NF-κβ inhibitor); consequently, they
act in the activation and migration of NF-κβ to the nucleus, producing pro-inflammatory
cytokines including TNF-α [104].

Flavonoids and other classes of compounds also regulate many pathways such as
MAPK, extracellular signal-regulated kinase (ERK), phosphoinositide 3 kinase (PI3K)/Akt,
and protein kinase-related pathways to reduce oxidative stress and inflammation, poten-
tially having nephroprotector effects [105].

Additionally, these natural compounds can reduce inflammation by acting on many
regulatory substances. These include inhibition of NF-κB, activator protein-1 (AP-1),
interleukin-1beta (IL-1β), tumor necrosis factor alpha (TNF-α), IL-6, IL-8, and COX2 [105,106].

Likewise, they act on promising and potent antioxidant molecules that confer anti-
inflammatory activity, inducing transcription factors such as Nrf2, an antioxidant respon-
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sive element (ARE), which mediates the expression of antioxidant proteins. Nrf2 acts
by suppressing the expression of MCP-1 and VCAM-1 and, thus, decreasing monocyte
adhesion and transmigration to endothelial cells, which consequently reduces MAPK
expression [107,108].

Therefore, mechanisms involving the activity of compounds such as alkaloids, flavonoids,
tannins, steroids, and terpenoids may promote the ability to increase antioxidant enzymes,
such as superoxide dismutase (SOD), chloramphenicol acetyltransferase (CAT), and plasma
glutathione peroxidase (GSH-Px), as well as reduce the expression of inducible NO synthase
(iNOS) and nitrites in the cell, thus protecting the renal cells [3,109].

3.3. Nefroprotective Potential of Amazonian Plant Species

There is a growing interest in the nephroprotective potential of Amazonian plant
species. Several studies have investigated the potential of these species to prevent or treat
kidney disease [110], Figure 2.
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3.3.1. Banisteriopsis caapi (Spruce ex Griseb.) Morton

Banisteriopsis caapi (Spruce ex Griseb.) Morton is a woody liana, common around
the Amazon Basin, belonging to the kingdom Plantae, class Equisetopsida C. Agardh,
order Malpighiales Juss. Former Bercht. & J. Presl, family Malpighiaceae Juss., genus
Banisteriopsis CB Rob. and species Banisteriopsis caapi (Spruce ex Griseb.) Morton, which
has broad ethnopharmacological use by the Amazonian people [111]. It is a species used as
the main ingredient of the hallucinogenic drink, called ayahuasca, consumed by religious
groups in Brazil to treat various ailments [112]. It is consumed for its hallucinogenic
properties, which have been known by many of the indigenous people of the Amazon for
centuries [113].

Some species of the Malpighiaceae family are known to produce alkaloids, among
them, B. caapi (Spruce ex Griseb.) Morton. Harmine, one of the main alkaloids found
in B. caapi (Spruce ex Griseb.) Morton, a plant widely consumed in the ayahuasca drink
It is a β-carboline alkaloid widely disseminated due to its monoaminoxidase (MAO)
inhibitory activity. As seen in the studies by Samoylenko et al. [114], harmine and harmaline
(obtained from aqueous extracts of fresh and dried branches of B. caapi (Spruce ex Griseb.)
Morton), have potent effects on MAO inhibitory and antioxidant activity. In addition, strong
antioxidant activity for inhibition of cellular reactive oxygen species (ROS) generation by
phorbol-12-myristate-13-acetate (PMA) has also been observed.
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The effects of harmine against nicotine-induced damage in mouse kidneys were
detailed by Salahshoor et al. [26]. In the study, administration of harmine to nicotine-
treated animals significantly improved renal malondialdehyde (MDA), blood urea nitrogen
(BUN), creatinine, and nitrite oxide levels. It increased the number of glomeruli and the
level of power tissue ferric reducer/antioxidant (FRAP) compared to the nicotine group
(p < 0.05), Table 1.

Table 1. Phytocompounds from Amazonian plant species and their pharmacological activity.

Species Parts Used Isolated or Characterized Constituents Pharmacological
Activity

Banisteriopsis caapi (Spruce ex
Griseb.) Morton Stem Harmine (1), harmaline (2) [114], tetrahydroharmine

(3), and harmalinic acid (4) [115]

Analgesic [22],
hallucinogen [23],
anesthetic [24],
antidiabetic [25],
anticancerogenic [18],
nephroprotective,
diuretic [26]

Peganum harmala L. Seeds Harmol (5), harmalol (6), harmine (1), and harmaline
(2) [116]

Antioxidant,
nephroprotective,
anti-inflammatory,
anti-apoptotic [116]

Passiflora edulis Sims Fruit peel, leaves, flowers,
seeds Orientin (7) and isoorientin (8) [117]

Anxiolytic, sedative,
neuropathic pain [118],
anticonvulsant [119],
cognitive function and
degenerative diseases
[120], antioxidant action,
antitumor action,
hypoglycemic action,
obesity, insomnia,
nephroprotector [121]

Annona muricata L. Leaves Acetogenin (9) [122], δ-Cadinene (10), and
α-Muurolene (11) [123]

Anticancerogenic,
hepatoprotective,
neurotoxic,
antinociceptive,
antiulcerative,
chemopreventive,
nephroprotective [124]

Uncaria tomentosa (Willd.) DC. Stem Uncarine F (12), speciophylline (13), and mitraphylline
(14) [125]

Antioxidant and
immunomodulator,
anti-inflammatory,
analgesic, anticancer, and
diuretic [126]

Hymenaea courbaril L. Stem and leaves Fisetin (15), cyclosativene (16), caryophyllene (17), and
α-himachalene (18) [127]

Antioxidant,
antiulcerogenic,
anti-inflammatory,
antitumor, and diuretic
[128]

Echinodorus macrophyllus
(Kunth) Micheli Leaves Linalool (19), α-caryophyllene (20), β-caryophyllene

(21) [129], isovitexin (22), and isoorientin (8) [130]

Diuretic,
anti-inflammatory,
treatment of kidney and
liver disorders [131]

Acmella oleracea (L.) R. K.
Jansen Flowers and leaves Spilanthol (23), spermidine (24), spermine (25), and

3-acetylaleuritolic acid (26) [132–134]

Aphrodisiac, treatment of
male sexual dysfunctions,
diuretic, and
anti-inflammatory
[135,136]

Rosmarinus officinalis L. Leaves Camphene (27), limonene (28), camphor (29), borneol
(30), cineol (31), and linalool (19) [137]

Analgesic,
anti-inflammatory,
anticarcinogenic,
antirheumatic,
nephroprotective,
spasmolytic,
antihepatotoxic,
atherosclerotic [138]
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The numbers in bold correspond to the molecular structures shown below. 

3.3.2. Peganum harmala L. 
The studied group belongs to the kingdom Plantae, class Equisetopsida C. Agardh, 

order Sapindales Juss. ex Bercht. & J. Presl, family Nitrariaceae Lindl., genus Peganum L. 
and species Peganum harmala L. [139]. The herbaceous P. harmala L. is perennial and  
branched, with leaves sectioned into three to five linear lobes. It produces whitish-yellow 
flowers and fruits in globular capsules with three chambers, containing black angular 
seeds [140]. It is commonly called wild rue, Syrian rue, or African rue [141]. 

Most species of the Nitrariaceae family contain alkaloids, which have been the subject 
of studies for their possible biological and pharmacological activity. For example, the 
studies by Niu et al. [142], when investigating the protective effect of harmine—the major 
compound isolated from P. harmala L.—in renal inflammation induced by lipopolysaccha-
ride (LPS), as well as the respective molecular mechanisms involved, showed that pre-
treatment with harmine markedly alleviated the lesion kidney, reducing the release of 
renal biomarkers, inflammatory mediators, and the formation of malondialdehyde (MDA) 
and myeloperoxidase (MPO), while increasing superoxide dismutase (SOD) and glutathi-
one (GSH) and reducing renal histopathological changes. Furthermore, in immunohisto-
chemical staining and western blot analysis, the study indicated that the treatment with 
harmine suppressed the expression of the toll-like receptor 4 (TLR4), phosphorylation of 
nuclear factor kappa B (NF-κB) p65, and κBα inhibitor (IκBα), while the treatment also 
inhibited the expression of NLRP3, caspase-1, and interleukin-1β (IL-1β). In summary, 
pretreatment with harmine extracted from P. harmala L. can protect against LPS-induced 
acute kidney injury by attenuating oxidative stress and inflammatory responses and in-
creasing antioxidant activity. The underlying mechanisms of harmine in mice with LPS-
induced acute kidney injury may be related to the inhibition of the TLR4-NF-κB and 
NLRP3 pathways of the inflammasome. 

Another study observed the effects of harmine on the renal activity of mice after cis-
platin administration. The researchers demonstrated that there was a significant decrease 
in the total antioxidant capacity of the renal tissue, in the diameter of the renal corpuscles, 
and in the level of IL-10 expression in the group treated with cisplatin in relation to the 
control group, while the values of these parameters were significantly similar to those of 
the control group in the moderate or high dose groups treated with harmine + cisplatin. 
In addition, they noted significant increases in serum levels of urea and creatinine, Bow-
man’s space, amount of malondialdehyde, apoptosis rate, and gene expressions of TNF-
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3.3.2. Peganum harmala L. 
The studied group belongs to the kingdom Plantae, class Equisetopsida C. Agardh, 

order Sapindales Juss. ex Bercht. & J. Presl, family Nitrariaceae Lindl., genus Peganum L. 
and species Peganum harmala L. [139]. The herbaceous P. harmala L. is perennial and  
branched, with leaves sectioned into three to five linear lobes. It produces whitish-yellow 
flowers and fruits in globular capsules with three chambers, containing black angular 
seeds [140]. It is commonly called wild rue, Syrian rue, or African rue [141]. 

Most species of the Nitrariaceae family contain alkaloids, which have been the subject 
of studies for their possible biological and pharmacological activity. For example, the 
studies by Niu et al. [142], when investigating the protective effect of harmine—the major 
compound isolated from P. harmala L.—in renal inflammation induced by lipopolysaccha-
ride (LPS), as well as the respective molecular mechanisms involved, showed that pre-
treatment with harmine markedly alleviated the lesion kidney, reducing the release of 
renal biomarkers, inflammatory mediators, and the formation of malondialdehyde (MDA) 
and myeloperoxidase (MPO), while increasing superoxide dismutase (SOD) and glutathi-
one (GSH) and reducing renal histopathological changes. Furthermore, in immunohisto-
chemical staining and western blot analysis, the study indicated that the treatment with 
harmine suppressed the expression of the toll-like receptor 4 (TLR4), phosphorylation of 
nuclear factor kappa B (NF-κB) p65, and κBα inhibitor (IκBα), while the treatment also 
inhibited the expression of NLRP3, caspase-1, and interleukin-1β (IL-1β). In summary, 
pretreatment with harmine extracted from P. harmala L. can protect against LPS-induced 
acute kidney injury by attenuating oxidative stress and inflammatory responses and in-
creasing antioxidant activity. The underlying mechanisms of harmine in mice with LPS-
induced acute kidney injury may be related to the inhibition of the TLR4-NF-κB and 
NLRP3 pathways of the inflammasome. 

Another study observed the effects of harmine on the renal activity of mice after cis-
platin administration. The researchers demonstrated that there was a significant decrease 
in the total antioxidant capacity of the renal tissue, in the diameter of the renal corpuscles, 
and in the level of IL-10 expression in the group treated with cisplatin in relation to the 
control group, while the values of these parameters were significantly similar to those of 
the control group in the moderate or high dose groups treated with harmine + cisplatin. 
In addition, they noted significant increases in serum levels of urea and creatinine, Bow-
man’s space, amount of malondialdehyde, apoptosis rate, and gene expressions of TNF-
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studies by Niu et al. [142], when investigating the protective effect of harmine—the major 
compound isolated from P. harmala L.—in renal inflammation induced by lipopolysaccha-
ride (LPS), as well as the respective molecular mechanisms involved, showed that pre-
treatment with harmine markedly alleviated the lesion kidney, reducing the release of 
renal biomarkers, inflammatory mediators, and the formation of malondialdehyde (MDA) 
and myeloperoxidase (MPO), while increasing superoxide dismutase (SOD) and glutathi-
one (GSH) and reducing renal histopathological changes. Furthermore, in immunohisto-
chemical staining and western blot analysis, the study indicated that the treatment with 
harmine suppressed the expression of the toll-like receptor 4 (TLR4), phosphorylation of 
nuclear factor kappa B (NF-κB) p65, and κBα inhibitor (IκBα), while the treatment also 
inhibited the expression of NLRP3, caspase-1, and interleukin-1β (IL-1β). In summary, 
pretreatment with harmine extracted from P. harmala L. can protect against LPS-induced 
acute kidney injury by attenuating oxidative stress and inflammatory responses and in-
creasing antioxidant activity. The underlying mechanisms of harmine in mice with LPS-
induced acute kidney injury may be related to the inhibition of the TLR4-NF-κB and 
NLRP3 pathways of the inflammasome. 

Another study observed the effects of harmine on the renal activity of mice after cis-
platin administration. The researchers demonstrated that there was a significant decrease 
in the total antioxidant capacity of the renal tissue, in the diameter of the renal corpuscles, 
and in the level of IL-10 expression in the group treated with cisplatin in relation to the 
control group, while the values of these parameters were significantly similar to those of 
the control group in the moderate or high dose groups treated with harmine + cisplatin. 
In addition, they noted significant increases in serum levels of urea and creatinine, Bow-
man’s space, amount of malondialdehyde, apoptosis rate, and gene expressions of TNF-
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studies by Niu et al. [142], when investigating the protective effect of harmine—the major 
compound isolated from P. harmala L.—in renal inflammation induced by lipopolysaccha-
ride (LPS), as well as the respective molecular mechanisms involved, showed that pre-
treatment with harmine markedly alleviated the lesion kidney, reducing the release of 
renal biomarkers, inflammatory mediators, and the formation of malondialdehyde (MDA) 
and myeloperoxidase (MPO), while increasing superoxide dismutase (SOD) and glutathi-
one (GSH) and reducing renal histopathological changes. Furthermore, in immunohisto-
chemical staining and western blot analysis, the study indicated that the treatment with 
harmine suppressed the expression of the toll-like receptor 4 (TLR4), phosphorylation of 
nuclear factor kappa B (NF-κB) p65, and κBα inhibitor (IκBα), while the treatment also 
inhibited the expression of NLRP3, caspase-1, and interleukin-1β (IL-1β). In summary, 
pretreatment with harmine extracted from P. harmala L. can protect against LPS-induced 
acute kidney injury by attenuating oxidative stress and inflammatory responses and in-
creasing antioxidant activity. The underlying mechanisms of harmine in mice with LPS-
induced acute kidney injury may be related to the inhibition of the TLR4-NF-κB and 
NLRP3 pathways of the inflammasome. 

Another study observed the effects of harmine on the renal activity of mice after cis-
platin administration. The researchers demonstrated that there was a significant decrease 
in the total antioxidant capacity of the renal tissue, in the diameter of the renal corpuscles, 
and in the level of IL-10 expression in the group treated with cisplatin in relation to the 
control group, while the values of these parameters were significantly similar to those of 
the control group in the moderate or high dose groups treated with harmine + cisplatin. 
In addition, they noted significant increases in serum levels of urea and creatinine, Bow-
man’s space, amount of malondialdehyde, apoptosis rate, and gene expressions of TNF-

(30)

Cineol

Molecules 2023, 28, x FOR PEER REVIEW 13 of 26 
 

 

(24) 

 

(26) 

 

(27) 

Limonene 

 

(28) 

Camphor 

 

(29) 

Borneol 

 

(30) 

Cineol 

 

(31) 

 

The numbers in bold correspond to the molecular structures shown below. 

3.3.2. Peganum harmala L. 
The studied group belongs to the kingdom Plantae, class Equisetopsida C. Agardh, 

order Sapindales Juss. ex Bercht. & J. Presl, family Nitrariaceae Lindl., genus Peganum L. 
and species Peganum harmala L. [139]. The herbaceous P. harmala L. is perennial and  
branched, with leaves sectioned into three to five linear lobes. It produces whitish-yellow 
flowers and fruits in globular capsules with three chambers, containing black angular 
seeds [140]. It is commonly called wild rue, Syrian rue, or African rue [141]. 

Most species of the Nitrariaceae family contain alkaloids, which have been the subject 
of studies for their possible biological and pharmacological activity. For example, the 
studies by Niu et al. [142], when investigating the protective effect of harmine—the major 
compound isolated from P. harmala L.—in renal inflammation induced by lipopolysaccha-
ride (LPS), as well as the respective molecular mechanisms involved, showed that pre-
treatment with harmine markedly alleviated the lesion kidney, reducing the release of 
renal biomarkers, inflammatory mediators, and the formation of malondialdehyde (MDA) 
and myeloperoxidase (MPO), while increasing superoxide dismutase (SOD) and glutathi-
one (GSH) and reducing renal histopathological changes. Furthermore, in immunohisto-
chemical staining and western blot analysis, the study indicated that the treatment with 
harmine suppressed the expression of the toll-like receptor 4 (TLR4), phosphorylation of 
nuclear factor kappa B (NF-κB) p65, and κBα inhibitor (IκBα), while the treatment also 
inhibited the expression of NLRP3, caspase-1, and interleukin-1β (IL-1β). In summary, 
pretreatment with harmine extracted from P. harmala L. can protect against LPS-induced 
acute kidney injury by attenuating oxidative stress and inflammatory responses and in-
creasing antioxidant activity. The underlying mechanisms of harmine in mice with LPS-
induced acute kidney injury may be related to the inhibition of the TLR4-NF-κB and 
NLRP3 pathways of the inflammasome. 

Another study observed the effects of harmine on the renal activity of mice after cis-
platin administration. The researchers demonstrated that there was a significant decrease 
in the total antioxidant capacity of the renal tissue, in the diameter of the renal corpuscles, 
and in the level of IL-10 expression in the group treated with cisplatin in relation to the 
control group, while the values of these parameters were significantly similar to those of 
the control group in the moderate or high dose groups treated with harmine + cisplatin. 
In addition, they noted significant increases in serum levels of urea and creatinine, Bow-
man’s space, amount of malondialdehyde, apoptosis rate, and gene expressions of TNF-

(31)

The numbers in bold correspond to the molecular structures shown below.



Molecules 2023, 28, 6411 12 of 24

3.3.2. Peganum harmala L.

The studied group belongs to the kingdom Plantae, class Equisetopsida C. Agardh,
order Sapindales Juss. ex Bercht. & J. Presl, family Nitrariaceae Lindl., genus Peganum
L. and species Peganum harmala L. [139]. The herbaceous P. harmala L. is perennial and
branched, with leaves sectioned into three to five linear lobes. It produces whitish-yellow
flowers and fruits in globular capsules with three chambers, containing black angular
seeds [140]. It is commonly called wild rue, Syrian rue, or African rue [141].

Most species of the Nitrariaceae family contain alkaloids, which have been the subject
of studies for their possible biological and pharmacological activity. For example, the
studies by Niu et al. [142], when investigating the protective effect of harmine—the major
compound isolated from P. harmala L.—in renal inflammation induced by lipopolysaccha-
ride (LPS), as well as the respective molecular mechanisms involved, showed that pretreat-
ment with harmine markedly alleviated the lesion kidney, reducing the release of renal
biomarkers, inflammatory mediators, and the formation of malondialdehyde (MDA) and
myeloperoxidase (MPO), while increasing superoxide dismutase (SOD) and glutathione
(GSH) and reducing renal histopathological changes. Furthermore, in immunohistochemi-
cal staining and western blot analysis, the study indicated that the treatment with harmine
suppressed the expression of the toll-like receptor 4 (TLR4), phosphorylation of nuclear
factor kappa B (NF-κB) p65, and κBα inhibitor (IκBα), while the treatment also inhibited
the expression of NLRP3, caspase-1, and interleukin-1β (IL-1β). In summary, pretreatment
with harmine extracted from P. harmala L. can protect against LPS-induced acute kidney
injury by attenuating oxidative stress and inflammatory responses and increasing antiox-
idant activity. The underlying mechanisms of harmine in mice with LPS-induced acute
kidney injury may be related to the inhibition of the TLR4-NF-κB and NLRP3 pathways of
the inflammasome.

Another study observed the effects of harmine on the renal activity of mice after
cisplatin administration. The researchers demonstrated that there was a significant decrease
in the total antioxidant capacity of the renal tissue, in the diameter of the renal corpuscles,
and in the level of IL-10 expression in the group treated with cisplatin in relation to the
control group, while the values of these parameters were significantly similar to those of
the control group in the moderate or high dose groups treated with harmine + cisplatin. In
addition, they noted significant increases in serum levels of urea and creatinine, Bowman’s
space, amount of malondialdehyde, apoptosis rate, and gene expressions of TNF-α, NF-κB,
IL-1β, and caspase-3 in the renal tissue of the cisplatin group compared to the control
group, while these criteria did not differ in the harmine + cisplatin moderate or high dose
groups. Thus, the study considered that harmine protected the kidneys against damage
induced by cisplatin, and the antioxidant, anti-inflammatory, and anti-apoptotic properties
of this compound were involved in the observed curative effect [118].

3.3.3. Passiflora edulis Sims

The species under study belongs to the kingdom Plantae, class Equisetopsida C.
Agardh, order Malpighiales Juss. ex Bercht. & J. Presl, family Passifloraceae Juss. ex Roussel,
genus Passiflora L. and species Passiflora edulis Sims, with wide ethnopharmacological
use by the people of the Amazon. Passiflora edulis Sims is a vine, supported by axillary
tendrils [143]. It consists of palmate leaves, usually three-lobed with serrated margins; large
flowers, with long peduncles, whitish, with a purple and pink triple crown; fruits, oval-
shaped berries, containing abundant flat ovoid seeds, covered by a yellowish or brownish
aril [144]. It has a vast geographic distribution: Brazil, Paraguay, Argentina, Antilles (West
Indies islands), Central America, Venezuela, and Ecuador. It is commonly called passion
fruit [121].

Pharmacological trials have shown numerous activity from compounds obtained from
P. edulis Sims, including anxiolytic, sedative, neuropathic pain [118], activity linked to
alcoholism and narcotics use [145], anticonvulsant and anxiolytic activity [119], cognitive
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function and degenerative diseases [120], antioxidant, antitumor action, hypoglycemic
action, obesity, and insomnia [121].

The species is rich in natural bioactive compounds, among them, a significant con-
tent of flavonoids. For example, orientin and isoorientin are compounds with potential
hypoglycemic effects, pointed out in the study by Galdino et al. [117] when evaluating the
therapeutic effect of the aqueous extract of the fruit peel of P. edulis Sims as an adjuvant to
insulin, to confer nephroprotection against diabetes induced by streptozotocin in Wistar
rats. In the study, those animals treated with P. edulis extract showed superior glycemic con-
trol, which resulted in a reduction in the urinary albumin/creatinine ratio; maintenance of
basal levels of mRNA expression of Nphs1, Nphs2, and Wt1n in the renal tissue; expression
of mRNA Lrp2; prevention of protein loss from the renal tissue to the urinary space; and
maintenance of glomerular basement membrane thickness, hyalinization, and glomerular
and tubulointerstitial fibrosis with values close to those of the control group and signifi-
cantly lower than those in the diabetic group. Therefore, the extract of P. edulis revealed
potential therapeutic action of nephroprotection due to the reduction and prevention of the
development of diabetic kidney disease.

The protective effect of flavonoids from P. edulis Sims was evaluated in alloxan-induced
diabetic Rattus norvegicus, in which researchers observed renal dysfunction in uncontrolled
diabetic groups, given the increased production of free radicals, with probable cellular
damage and tubular damage, resulting in renal inflammation. In the study, the biomarkers
urea and creatinine were measured in the animals’ bloodstream. Diabetic animals that
received the flavonoid fraction of P. edulis Sims had lower urea and creatinine values when
compared to the control group [146].

3.3.4. Annona muricata L.

This plant species belongs to the kingdom Plantae, class Equisetopsida C. Agardh,
order Magnoliales Bromhead, family Annonaceae Juss., genus Annona L. and species
Annona muricata L. It has various uses in traditional indigenous medicine [139]. It is
medium to large in size, reaching up to 10 m in height. Its leaves are green and shiny,
with an oval shape and smooth texture, while its flowers are large and solitary, with thick,
yellowish petals [147]. The species is widely distributed geographically, being found in
several tropical regions of the world, including Central and South America, Africa, and
Asia. It is known by several popular names, such as soursop, fruit of the count, and heart
of queen, and is cultivated for its edible fruits, which have a sweet and slightly acidic
taste [148].

In addition to its gastronomic uses, A. muricata L. is also consumed due to its medici-
nal properties. Many of these properties come from bioactive compounds present in its
leaves, seeds, and fruits, with antioxidant, anti-inflammatory, antiparasitic, and anticancer
activity [124].

A well-described example in the scientific literature is the species A. muricata L. This
species has been studied for its bioactive metabolites, including acetogenins, and its con-
stituents may have anticancer, hepatoprotective, neurotoxic, antinociceptive, antiulcerative,
and chemopreventive activity [122].

A study of veterinary pharmacology and toxicology [149] demonstrated that A. muri-
cata L. attenuates glycerol-induced nephrotoxicity in male albino rats through angiotensin-
converting enzyme (ACE) signaling pathways. The methanolic extract of the leaves of
A. muricata L., in that study, caused a significant decrease in the expression of the kidney
injury molecule 1 (KIM-1) and exhibited antioxidant properties. This nephroprotective
effect of the extract was observed by improving the levels of enzymatic and non-enzymatic
antioxidants, suppressing inflammatory processes and inhibiting lipid peroxidation, thus
revealing such antioxidant and anti-inflammatory properties.
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3.3.5. Uncaria tomentosa (Willd.) DC.

The group studied has wide ethnopharmacological use in the Amazon. It belongs to
the kingdom Plantae, class Equisetopsida C. Agardh, order Gentianales Juss. ex Bercht. & J.
Presl, family Rubiaceae Juss., genus Uncaria Schreb. and species Uncaria tomentosa (Willd.)
DC. [150]. Preliminary phytochemical screenings demonstrated the marked presence of
tannins in species belonging to the Rubiaceae family. These plant species are widely
disseminated in the culture of traditional people and communities, due to their richness in
the production of bioactive compounds [151,152].

Other phytochemical studies have found tetracyclic and pentacyclic oxindole alkaloids,
indole and β-carbonyl alkaloids, flavonoids [153], coumarins [154], proanthocyanidins,
steroids, ursan-derived triterpenoids, and quinovic acid glycosides [125].

The species U. tomentosa (Willd.) DC. has been associated with several health benefits,
such as antioxidant and immunomodulatory, anti-inflammatory, analgesic and anticancer
action, in addition to other medicinal properties. In traditional medicine, the plant is used
to treat a variety of conditions, including infections, arthritis, diabetes, gastrointestinal
problems, and “kidney cleansing” [126].

The renal benefits of herbal medicines such as U. tomentosa (Willd.) DC. have been
demonstrated in the studies by Vattimo and Silva [155], when performing a pretreatment
with U. tomentosa (Willd.) DC. in experimental models of ischemia/reperfusion, in which
there was functional protection assessed by increased creatinine clearance, reduced peroxi-
dation, and urinary thiobarbituric acid reactive substances (TBARS), probably related to
the antioxidant activity of the herbal medicine.

3.3.6. Hymenaea courbaril L.

The studied group belongs to the kingdom Plantae, class Equisetopsida C. Agardh,
order Fabales Bromhead, family Fabaceae Lindl., genus Hymenaea L. and species Hymenaea
courbaril L. [156]. The Fabaceae family is known to produce a wide variety of bioactive
compounds, including tannins. The tannins present in Hymenaea courbaril L. have been the
object of research for their potential biological effects, such as antioxidant, antiulcerogenic,
anti-inflammatory, and antitumor properties [128]. Some studies also report the antiviral
and antibacterial activity of these compounds [157].

Hymenaea courbaril L. has a wide distribution in South America and Central America; it
is a large tree, reaching 15 to 20 m in height, and the trunk can be up to 1 m in diameter [158].
The flowers are pollinated by bats. Ripe fruits are eaten by rodents, birds, and monkeys,
which, when breaking the fruits, release the seeds [159]. Its wood is considered valuable
due to its high density and resistance to attack by xylophagous organisms. In the Amazon
region, the species is known as jassaí, jataí, jataíba, jataíba stone, jataúba, jatel, jati, jatobá
de anta, jutaí, jutaí açu, jutaí white, jutaí grande, and jutaí catinga [160].

The main phytochemical constituents found In the species are flavonoids, such as
quercetin, kaempferol, and isorhamnetin, which are present in the leaves and fruits; tannins,
such as catechins and proanthocyanidins, most commonly found in bark and seeds; fatty
acids, including oleic and linoleic acid (seeds); and stilbenes, such as trans-resveratrol,
found in the bark and fruit [161,162].

The tea produced from the bark of H. courbaril L. is indicated to treat kidney prob-
lems [163]. Pereira et al. [164] demonstrated the oxidizing activity of the methanolic fraction
of H. courbaril L. seeds in mice treated with acetaminophen; the study showed the probable
restoration of renal glutathione (GSH) levels in animals treated with the extract, in addition
to reversing the increase in carbonylated proteins. Another study, using aqueous extracts
of seed or bark of H. courbaril L., observed a reduction in renal levels of reactive substances
to thiobarbituric acid 7 days after treatment [165].

3.3.7. Echinodorus macrophyllus (Kunth) Micheli

This species belongs to the kingdom Plantae, class Equisetopsida C. Agardh, order
Alismatales R. Br. ex Bercht. & J. Presl, family Alismataceae Vent., genus Echinodorus
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Rich. and the species Echinodorus macrophyllus (Kunth) Micheli, widely used by traditional
medicine in Brazil [166]. The Alismataceae family is known for the presence of several
bioactive compounds. Many Alismataceae species have traditionally been used in folk
medicine for the treatment of a vast range of diseases, due to their diuretic and anti-
inflammatory effects, as well as in kidney and liver disorders [131]. Some of the bioactive
compounds present in plants of this family, such as Echinodorus macrophyllus, have been
the object of scientific investigation for their pharmacological properties and possible
therapeutic applications [167].

Echinodorus macrophyllus is a perennial plant, herbaceous or subshrub, of aquatic origin,
emerging from the water. It has rhizomes and can reach between 1 and 2 m in height. Its
leaves are petiolate and oval, with a heart-shaped base and a sharp tip [168]. Popularly, the
species is known as leather hat, water hyacinth, campanha tea, brejo tea, poor man’s tea,
mineiro tea, congonha do brejo, brejo herb, and swamp herb [169].

According to Silva et al. [129], among the constituents produced by the species are
the terpenic profile containing linalool, α- and β-caryophyllene, E-nerolidol, and phytol as
predominant, as well as a variety of diterpenoids belonging to the same classes, such as the
chapecoderines of the group labdanos. Furthermore, a (+)-3-carene derivative was detected,
along with a significant proportion of carotenoids. Gasparotto et al. [130] demonstrated
the presence of the flavonoids vitexin and isovitexin. While Garcia et al. [170] found the
presence of phenylpropanoids in the species, such as ferulic and E-caffeoyl tartronic acid
(2-E-caffeoyloxymalonic acid).

Traditionally, the Amazonian population uses extracts from the leaves of E. mac-
rophyllus, from infusion, decoction, or maceration methods, in water or alcohol, to treat
urinary system disorders, as they are known to be powerful diuretic agents. In view of
popular usage, Nascimento et al. [171] demonstrated that preconditioning with E. macro-
phyllus attenuated cyclophosphamide-induced acute kidney injury in rats as evidenced by
increased creatinine clearance and reduced oxidative metabolites in urine and increased
reserve of antioxidant enzymes in renal tissue.

Studies carried out in a model of acute kidney injury induced by gentamicin found
similar results of antioxidant protection of E. macrophyllus, when administering crude
ethanolic extracts of leaves and fractions of E. macrophyllus by endogastric route, in normal
rats or with acute tubular necrosis induced by gentamicin-cine. Thus, it was demonstrated
that it produced a dose-dependent reduction in urine output. The extracts in question were
effective in reversing all changes induced by gentamicin, such as polyuria and reduction
in the glomerular filtration rate; in addition, the morphological changes induced by gen-
tamicin were not observed in animals that were treated with extracts of E. macrophyllus
concomitantly with gentamycin [167].

3.3.8. Acmella oleracea (L.) R. K. Jansen

The studied group belongs to the kingdom Plantae, class Equisetopsida C. Agardh,
order Asterales Link, family Asteraceae Bercht. & J. Presl, genus Acmella Rich. ex Pers.
and the species Acmella oleracea (L.) R. K. Jansen, which is widely used in medicine and
cooking by traditional Amazonian people [172]. The Asteraceae family is known for the
presence of bioactive compounds, such as sesquiterpene lactones and flavonoids [173].
Primarily for their medicinal properties, species in this family have traditionally been used
to treat a wide range of ailments, including respiratory problems, inflammation, headaches,
gastrointestinal problems, and infectious diseases [24]. Scientific research has focused
on some of the bioactive compounds present in plants of this family, such as Acmella
oleracea, in search of possible therapeutic applications, such as analgesic, anti-inflammatory,
antimicrobial, and antioxidant activity [136].

Acmella oleracea is an important medicinal herb, which occurs in tropical and subtropi-
cal regions of the planet. It is an annual, perennial herbaceous, 30–40 cm high, semi-straight,
or creeping, with cylindrical, a fleshy stem and decumbent branches, usually without roots
at the nodes. The main root is pivotal, with abundant lateral branches. The leaves are
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opposite, membranous, and petiolate [174]. The species is popularly known as jambu, cress
from pará, abecedária, cress bravo, cress from Brazil, cress from the north, buttercup, crazy
herb, jabuaçu, and nhambu [136].

Acmella oleracea is used in northern Brazil for the treatment of various diseases, such
as tuberculosis, flu, cough, and rheumatism, and as an anti-inflammatory; in addition,
hydroethanolic formulations with this species are popularly used as a female aphrodisiac,
for treatment of male sexual dysfunctions, and as a diuretic [135,136].

Regarding the production of metabolites, A. oleracea is a rich source of secondary
metabolites, and its phytochemistry has been widely investigated [175]. Borges et al. [176]
observed an increase of 31.6% in the content of spilanthol and 16.8% of flavonoids in the
inflorescences and higher contents of total phenols, carotenoids, spermidine, and spermine
in the leaves and flowers of jambú. The work by Abeysiri et al. [132] revealed that alkaloids,
flavonoids, saponins, steroid glycosides, and tannins are distributed in all parts of the
plant. Going into more detail about the phytochemical composition of A. oleracea, several
triterpenoids were found, such as 3-acetylaleuritolic acid, β-sitostenone, and stigmasterol.
Furthermore, steroidal glycosides, namely, stigmasteryl-3-O-β-D-glucopyranoside and
β-sitosteryl-3-O-β-D-glucopyranoside, have been identified. Several phenolic compounds
were also detected, such as vanillic, trans-ferulic, and trans-isoferulic acids; scopoletin; and
fatty acids such as n-hexadecanoic and n-tetradecanoic acids [132–134].

Some studies have observed a marked diuretic action of aqueous extract of A. oleracea
inflorescences in rats; the authors have described an increase in Na+ and K+ levels and a
reduction in osmolarity in the urine of animals treated with the extract [177]. Yadav and
collaborators [178] showed that the ethanolic extract of A. oleracea in rats provided diuresis
similar to that produced by the action of furosemide. Gerbino et al. [179] consider that the
inhibition of cyclic AMP induced by spilanthol negatively modulates the mechanisms of
urine concentration. Furthermore, the mechanisms of action on the kidney show that A.
oleracea is a promising source of compounds with diuretic activity.

3.3.9. Rosmarinus officinalis L.

The species belongs to the kingdom Plantae, class Equisetopsida C. Agardh, order
Lamiales Bromhead, family Lamiaceae Martinov, genus Rosmarinus L. and species Rosma-
rinus officinalis L.; it has wide ethnopharmacological use [180]. The Lamiaceae family is one
of the most important herbaceous families; it is composed of an immense variety of plant
species with biological and medicinal applications [138]. This family includes numerous
aromatic spices, including Rosmarinus officinalis L., a plant species commonly known as
rosemary, which is useful in cooking due to its characteristic aroma; it is widely used by
indigenous populations where it grows spontaneously [181].

Rosmarinus officinalis is a shrubby herb, widely used in culinary, medicinal, and com-
mercial applications, including the fragrance and food industries [182]. The leaves (fresh or
dried) are consumed due to the characteristic odor that they offer to the dish. They are also
consumed in small amounts in the form of tea, while extracts of R. officinalis are regularly
used for their active natural antioxidant properties to improve shelf life of perishable
foods [183].

Phytochemical screenings carried out on the species revealed 0.5% to 2.5% volatile oil
in the leaves. Among the phytocompounds, the species exhibits the presence of monoter-
pene hydrocarbons (alpha and beta-pinene), camphene, limonene, camphor (10% to 20%),
borneol, cineol, linalool, and verbinol [137]. In addition to numerous volatile and aromatic
components, the species has flavonoids, such as diosmetin, diosmin, genkwanin, luteolin,
hispidulin, and apigenin, as well as terpenoid compounds such as triterpenes (oleanolic
and ursolic acid) and diterpene carnosol. Among the phenols found in the species are
caffeic, chlorogenic, labiatic, neochlorogenic, and rosmarinic acids, as well as a considerable
number of salicylates [182–184].

Among the ethnomedicinal applications for R. officinalis are analgesic, anti-inflammatory,
anticarcinogenic, antirheumatic, nephroprotective, spasmolytic, antihepatotoxic, atheroscle-
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rotic, carminative, and choleretic action. It also offers protection against UV and gamma
radiation and improvement of stress [138].

Zohrabi et al. [185] investigated the effect of an oral extract of R. officinalis on acute renal
failure (ARF) disorders induced by ischemia/reperfusion in rats. The authors showed that
the aqueous extract of R. officinalis suffered the oxidative stress marker malondialdehyde
(MDA), increased the ferric antioxidant reducing power (FRAP) compared to the vehicle
groups and, regarding the histopathological analyses, observed a significant reduction in
vessel management, disturbance of the tubules, and Bowman’s Capsule space compared to
the vehicle groups.

Another study evaluated the effectiveness of R. officinalis essential oil (REO) against
changes induced by potassium dichromate in the kidneys of male rats, in which they
injected hexavalent chromium to induce renal dysfunction (oxidative damage and alter-
ations in the antioxidant defense system, and histopathological and immunohistochemical
alterations). The animals were treated with REO before or after the induction of renal
dysfunction, resulting in an improvement in the toxic effect by extinguishing, chelating,
and detoxifying free radicals and enhancing the state of antioxidant defense [186].

4. Conclusions

Knowing the phytocompounds with potential nephroprotective effects against AKI
based on the traditional Amazonian knowledge of treating different ailments that dis-
turb/affect the health of the kidneys is generally passed on over generations by healers,
housewives, and elderly people from riverside communities, who, due to limited access
to health services, use this precious information about the natural resources of the Ama-
zon as their only resource. The pharmacotoxicological validation of this information is
highly necessary, considering that it subsidizes the knowledge of the medicinal potential
of the Amazonian flora, substantially improving the phytochemical and pharmacological
relevance of these species, especially in the face of AKI, a clinical condition with high
morbidity and mortality. Although much of the research on the nephroprotective potential
of Amazonian plant species is still in the preclinical stage, these plants show promise as a
potential source of new therapies for kidney disease. However, more research is needed to
fully understand its mechanisms of action and possible side effects, as well as to develop
safe and effective dosages for human use.
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D-Homo and D-Seco Estratriene Derivatives. Steroids 2015, 97, 45–53. [CrossRef] [PubMed]
71. Singh, A.R.; Bajaj, V.K.; Shekhawat, P.S.; Singh, K. Screening of Potential Male Contraceptive Drugs from Natural Resources: An

Overview. Int. J. Pharm. Sci. Res. 2013, 4, 1654–1668.
72. Thao, N.P.; Luyen, B.T.T.; Kim, E.J.; Kang, J., II; Kang, H.K.; Cuong, N.X.; Nam, N.H.; Van Kiem, P.; Van Minh, C.; Kim,

Y.H. Steroidal Constituents from the Edible Sea Urchin Diadema Savignyi Michelin Induce Apoptosis in Human Cancer Cells.
J. Med. Food 2015, 18, 45–53. [CrossRef]

73. Rattanasopa, C.; Phungphong, S.; Wattanapermpool, J.; Bupha-Intr, T. Significant Role of Estrogen in Maintaining Cardiac
Mitochondrial Functions. J. Steroid. Biochem. Mol. Biol. 2015, 147, 1–9. [CrossRef]

74. Sultan, A. Steroids: A Diverse Class of Secondary Metabolites. Med. Chem. 2015, 5, 7. [CrossRef]
75. Aav, R.; Kanger, T.; Pehk, T.; Lopp, M. Unexpected Reactivity of Ethyl 2-(Diethylphosphono)Propionate Toward 2,2-Disubstituted-

1,3-Cyclopentanediones. Phosphorus Sulfur Silicon Relat. Elem. 2005, 180, 1739–1748. [CrossRef]
76. Santo, B.L.S.d.E.; Santana, L.F.; Kato Junior, W.H.; Araújo, F.d.O.d.; Tatara, M.B.; Croda, J.; Bogo, D.; Freitas, K.d.C.; Guimarães,

R.d.C.A.; Hiane, P.A.; et al. Medicinal Potential of Garcinia Species and Their Compounds. Molecules 2020, 25, 4513. [CrossRef]
[PubMed]

77. Mahipal, P.; Pawar, R.S. Nephroprotective Effect of Murraya Koenigii on Cyclophosphamide Induced Nephrotoxicity in Rats.
Asian Pac. J. Trop. Med. 2017, 10, 808–812. [CrossRef]

78. Dennis, J.; Witting, P. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients 2017, 9, 718. [CrossRef] [PubMed]
79. Ashour, M.; Wink, M.; Gershenzon, J. Biochemistry of Terpenoids: Monoterpenes, Sesquiterpenes and Diterpenes. In Biochemistry

of Plant Secondary Metabolism; Wiley-Blackwell: Oxford, UK, 2010; pp. 258–303.
80. Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural Products (Secondary Metabolites). In Biochemistry and Molecular Biology of Plants;

Buchanan, B.B., Gruissem, W., Jones, R.L., Eds.; American Society of Plant Physiologists: Rockville, MA, USA, 2000; Volume 24,
pp. 1250–1319.
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