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Abstract: Black phosphorene quantum dots (BPQDs) were prepared by ultrasonic-assisted liquid-
phase exfoliation and centrifugation with morphologies proved by TEM results. Furthermore,
an electrochemical enzyme sensor was prepared by co-modification of BPQDs with horseradish
peroxidase (HRP) on the surface of a carbon ionic liquid electrode (CILE) for the first time. The direct
electrochemical behavior of HRP was studied with a pair of well-shaped voltammetric peaks that
appeared, indicating that the existence of BPQDs was beneficial to accelerate the electron transfer
rate between HRP and the electrode surface. This was due to the excellent properties of BPQDs, such
as small particle size, high interfacial reaction activity, fast conductivity, and good biocompatibility.
The presence of BPQDs on the electrode surface provided a fast channel for direct electron transfer of
HRP. Therefore, the constructed electrochemical HRP biosensor was firstly used to investigate the
electrocatalytic behavior of trichloroacetic acid (TCA) and potassium bromate (KBrO3), and the wide
linear detection ranges of TCA and KBrO3 were 4.0–600.0 mmol/L and 2.0–57.0 mmol/L, respectively.
The modified electrode was applied to the actual samples detection with satisfactory results.

Keywords: black phosphorene quantum dots; horseradish peroxidase; direct electrochemistry;
electrochemical detection

1. Introduction

As a rising star of a new two-dimensional layered-structure material, black phospho-
rene (BP) has the advantages of low defect density, high specific surface area, adjustable
particle size, fast hole mobility, long carrier lifetime, good biocompatibility, and direct band
gap [1,2]. Due to the good electrical and optical properties, such as excellent interface
activity, high photoelectric properties, fast electron transfer rate, and good conductivity, BP
and related composites are widely used in solar cells, electronic devices, transistors, and
other fields [3–5]. However, BP is unstable in oxygen-containing aqueous solution, which
limits its application fields, and thus, it is a great challenge to the applications of BP and
BP-based composites [6–9]. In general, BP can be easily obtained by liquid phase ultrasonic
exfoliation under strict oxygen-free and water-free conditions with the protection of or-
ganic solvents [10,11]. Brent et al. prepared 1–5 layers of BP by the liquid phase stripping
method with N-methyl-2-pyrrolidone as the solvent [12]. Different methods, including the
surface hybridization, doping, and functionalization of BP, can reduce the active reaction
of the P atom with O2 or H2O, and solve the easy oxidization of BP [13,14]. Li et al. fabri-
cated a poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and BP (PEDOT: PSS-BP)
composite membrane electrode for electrochemical applications [15]. Liu et al. coated
polymethyl methacrylate on the surface of BP to isolate air and prevent oxidation [16].
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Generally speaking, the selected solvent should have surface energy similar to that of BP
and then effectively protect BP from oxidation [17].

Black phosphorene quantum dots (BPQDs) are one form of nanostructured BP with
unique optical properties and good biocompatibility, which has shown better performances
in biomedical fields, such as drug delivery, cell tracking, and so on [18–20]. But, there
are few reports on the applications of BPQDs in electrochemical sensors before 2017 [21].
Recently, infrequent reports using BPQDs have been published. Ding et al. prepared a
BPQDs doped nano-ZnO composite for detection of hydrogen peroxide [22]. Zhang et al.
synthesized BPQDs from bulk BP by the liquid stripping method with an average particle
size of 8.2 nm, which could significantly catalyze the oxidation process of Ru(bpy)3

2+

and could be used as a co-reactant in an electrochemiluminescence system for sensitive
detection of dopamine [23]. However, no documents about the applications of BPQDs
in electrochemical enzyme sensors have been reported. Since BPQDs exhibit excellent
electrochemical properties, the direct modification of BPQDs on the electrode for the
construction of an electrochemical enzyme biosensor is worth investigating to extend the
applications of BPQDs-based electrochemical biosensors.

As a class of environmental contaminant, trichloroacetic acid (TCA) exhibits certain
carcinogenic effects and can cause a serious impact on human life [24]. It can be found in not
only industrial wastes, but also drinking water as a result of disinfection by chlorine [25].
Various analytical methods have been designed for TCA analysis, such as gas chromatog-
raphy [26], high-performance liquid chromatography [27], capillary electrophoresis [28],
and mass spectrometry [29]. As a widely used food additive and a water disinfection
byproduct, bromate is considered to be potentially carcinogenic and nephrotoxic, and has
been identified as a category I group B2 carcinogen [30]. The acceptable maximum levels of
TCA and bromate in drinking water set by China National Standards are 0.1 mg/L and
10 µg/L, respectively [31]. Also, the abuse of food additives containing potassium bromate
is hazardous to human health. Therefore, it is essential to develop a rapid, reliable, and
sensitive method for the detection of TCA or bromate.

In this paper, BPQDs were prepared by ultrasonic-assisted liquid-phase exfoliation
and centrifugation using multilayer black phosphorus nanoplates (BPNPs) dispersed in
1-methyl-2-pyrrolidinone (NMP). Then, a BPQDs-decorated carbon ionic liquid electrode
(CILE), which was used as the base electrode for horseradish peroxidase (HRP) immobi-
lization, was prepared by simple drop-casting. CILE is made up of carbon paste and ionic
liquid, which have been proven to exhibit many advantages, including wide electrochem-
ical windows, good antifouling ability, high conductivity, and inherent electrocatalytic
ability, and which are selected as the basic electrode for the modification due to the ex-
cellent electrochemical performances [32–34]. The BPQDs provided a large surface area
for loading more HRP molecules with high conductivity and good biocompatibility. The
fabricated modified electrode (Nafion/HRP/BPQDs/CILE) had good electrochemical and
electrocatalytic performances, which was applied to the detection of real samples with
satisfactory results.

2. Results and Discussion
2.1. Characterizations

The BPNPs used were characterized by SEM, with the result shown in Figure 1A,
which presented a typical multilayered flake structure. BPQDs were prepared according
to the previous report [22], and the morphology was characterized by TEM. As shown in
Figure 1B, a tiny and uniform flake-like morphology appeared, with the average diameter
of 10 nm, which showed obvious differences to that of BPNPs. The HRTEM was further
recorded and is shown in Figure 1C; the lattice fringes could be ascribed to the (040) and
(021) planes of BPQDs crystal. From Figure 1D, it could be seen the typical selected area
electron diffraction pattern of BPQDs, which demonstrated the crystallinity of the structure.
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Figure 1. (A) SEM image of BPNPs; (B) TEM image of BPQDs; (C) HRTEM image of BPQDs with
different lattice fringes; (D) selected area electron diffraction pattern of BPQDs.

UV-Vis absorption spectroscopy is a common spectral method used to detect whether
the original biological structure of the enzyme is denatured [35]. As shown in Figure 2A,
the absorption Soret band of HRP in water (curve a) had the same position in the BPQDs
solution (curve b) at 402.6 nm, indicating that the native structure of HRP was not changed
with BPQDs. The structure information of the HRP molecule was further investigated by
FT-IR using a KBr disk, with results shown in Figure 2B. The infrared absorption bands of
amide I and amide II in the HRP structure were 1653.67 cm−1 and 1535.80 cm−1 (curve a),
respectively. The bands of amide I and amide II of HRP in BPQDs-HRP composites were
1653.67 cm−1 and 1511.17 cm−1 (curve b), respectively. The position of the infrared absorp-
tion band was almost the same, with a slight shift, which revealed the certain interaction
between HRP and BPQDs. It indicated that HRP maintained a good conformation in the
composite and did not change after HRP mixing into the BPQDs solution, which could be
attributed to the excellent biocompatibility of BPQDs.
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Figure 2. (A) UV-Vis absorption spectra of 5.0 mg/mL HRP in water (curve a) and 1.0 mg/mL
BPQDs solution (curve b); (B) FT-IR spectra of HRP (curve a) and BPQDs-HRP composite (curve b);
(C) Raman spectra of BPNPs and BPQDs.
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Furthermore, BPQDs were characterized by Raman spectroscopy, with the results
shown in Figure 2C. Three typical peaks appeared at 361.1 cm−1, 440.4 cm−1, and 466.6 cm−1,
respectively, which were corresponding to the one out-of-plane vibration mode A1

g and
two in-plane vibration modes B2g and A2

g of BPQDs, and the results were close to other
literature [36,37]. According to the reference [38], the intensities of the A1

g, B2g, and A2
g

modes increased with the number of layers, and the intensity ratio (A1
g/A2

g) values of
BPNPs and BPQDs were 0.70 and 0.62, respectively. A1

g/A2
g ratio values were larger than

0.6, demonstrating the evidence for lower oxidation of BPQDs [39]. In comparison with
BPNPs, the Raman peaks displayed lightly blue shifts of BPQDs, which could stem from
the weakened interlayer Van der Waals force as a result of reduced thickness [40].

XPS is used to evaluate the structural and chemical states of the elements of BPNPs
and BPQDs, with the result shown in Figure 3. The survey spectrum of BPNPs (Figure 3A)
and BPQDs (Figure 3B) illustrated the presence of P and O elements. High-resolution XPS
spectra of the P 2p signal enable a precise investigation of the oxidation state of P. In the P 2p
spectra of BPNPs (Figure 3C), there were two peaks at 130.2 eV and 131.0 eV, corresponding
to single spin-orbit P–P 2p3/2 (green) and P–P 2p1/2 (purple), respectively [41]. The third
relatively weak peak at 134.0 eV was observed by slight oxidation of BPNPs, which was
attributed to P–O bonds (brown) [42]. In the spectrum of BPQDs (Figure 3D), the intensity
of P–O bonding of BPQDs was higher than of BPNPs, indicating that the electron of P was
taken by O in the process of exfoliated BPQDs. This suggests that the exfoliated nanosheets
are more prone to being oxidized.
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Cyclic voltammetric curves of BPQDs/CILE and CILE were checked by using 1.0 mmol/L
K3[Fe(CN)6] solution as an electrochemical probe, with curves shown in Figure 4. A pair
of well-shaped redox peaks appeared on the bare CILE (curve a). The redox peak cur-
rents on BPQDs/CILE (curve b) were significantly higher than those of bare CILE, with
the oxidation and reduction peak currents increased for 1.62 and 1.69 times after the
double-large charging current were substrated. Furthermore, the effective electrochemical
surface area of BPQDs/CILE was calculated according to the Randles–Sevcik equation [43],
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(Ip = 2.69 × 105AD1/2n3/2υ1/2C). The effective area of BPQDs/CILE was calculated to be
0.204 cm2, which was 1.63 times larger than that of bare CILE (0.126 cm2). The results
showed that the existence of BPQDs greatly increased the effective surface area of the work-
ing electrode, which was beneficial to providing a large electrode interface and improving
the electrochemical performance.
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2.2. Direct Electrochemistry

Cyclic voltammetry was used to investigate the properties of different modified
electrodes, with curves shown in Figure 5A. The largest redox peaks current appeared in pH
2.0 PB; therefore, it was selected as the optimum pH to study the electrochemical behaviors.
In pH 2.0 PB, on Nafion/CILE (curve a), CILE (curve b), and Nafion/BPQDs/CILE (curve
c), no redox peaks appeared, indicating that there was no electrochemical reaction at
the selected potential windows. When HRP was embedded, a couple of well-defined
redox peaks appeared on Nafion/HRP/BPQDs/CILE (curve e), with the peak currents
as 38.90 µA (Ipc) and 47.92 µA (Ipa), respectively. The cathodic (Epc) and anodic (Epa)
peak potential were located at −0.205 V and −0.132 V with the peak-to-peak separation
(∆Ep) as 73 mV, which could be considered as a quasi-reversible reaction of the HRP
Fe(III)/Fe(II) redox active center. The equilibrium peak potential (E0′), which was calculated
from the equation as E0′ = (Epa + Epc)/2, was estimated as −0.169 V. Compared with
Nafion/HRP/BPQDs/CILE, a pair of redox peaks also appeared on Nafion/HRP/CILE
(curve d), with the peak currents as 14.16 µA (Ipc) and 9.50 µA (Ipa), respectively. The
ratios of the cathodic and anodic peak currents of two HRP modified electrodes (curve e
and d) were 2.75 and 5.04, respectively, which was larger than the increase in the effective
surface area of the BPQDs modified CILE (1.63). Therefore, the presences of BPQDs
on the electrode surface plays key roles in promoting the electron transfer rate of HRP
Fe(III)/Fe(II) [44]. BPQDs have advantages including large specific surface areas and good
electrical conductivity and centers. When BPQDs are present on the CILE surface, they can
provide more electron transfer paths for HRP Fe(III)/Fe(II) to exchange electrons with CILE.
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Figure 5. (A) Cyclic voltammograms of (a) Nafion/CILE, (b) CILE, (c) Nafion/BPQDs/CILE,
(d) Nafion/HRP/CILE, and (e) Nafion/HRP/BPQDs/CILE in pH 2.0 PB with a scan rate of 100 mV/s;
(B) Cyclic voltammograms of Nafion/HRP/BPQDs/CILE with different scan rates in pH 2.0 PB
(from a to k: 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 mV/s); (C) Cyclic voltammograms of
Nafion/HRP/BPQDs/CILE at different pH PB (from a to g, representing pH values of 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0) with a scan rate of 100 mV/s.

The effect of scan rate (υ) on the cyclic voltammetric responses of Nafion/HRP/BPQDs/
CILE was studied from 50 to 1000 mV/s, and the curves are shown in Figure 5B. The ca-
thodic and anodic peak currents increased simultaneously with the increase in scan rate.
The redox peak potentials also shifted slightly with the ∆Ep value enlarged, indicating
a quasi-reversible process. The linear regression equations of the current and scan rate
were computed as Ipc (mA) = 29.25 υ (V/s) +0.7901 (γ = 0.992) and Ipa (mA) = −25.69
υ (V/s) −2.267, (γ = 0.991), respectively. Also, the linear relationships between redox
potential (Ep) and lnυ were obtained as Epc (V) = −0.0521 lnυ (V/s) −0.2752 (γ = 0.993)
and Epa (V) = 0.0523 lnυ (V/s) −0.0845 (γ = 0.992), respectively. According to Lavi-
ron’s model [45,46], the corresponding electrochemical parameters were calculated with
the electron transfer coefficient (α), the values of the electron transfer number (n), and
the apparent electron transfer rate constant (ks) as 0.50, 0.986, and 1.54 s−1, respectively.
The ks value is larger than that of HRP on Nafion/HRP/AuNTs/CILE (1.01 s−1) [47],
Nafion/HRP/Co3O4/CILE (0.94 s−1) [48], and HRP/nano-Ni-SnO2/GCE (1.10 s−1) [49],
indicating that the existence of BPQDs played an important role for the fast electron transfer
between HRP and the electrode surface. The average surface concentration (Γ*) of electroac-
tive HRP on the modified electrode was calculated based on the equation Q = nFAΓ* [50].
The value of Γ* was estimated to be 3.54×10−9 mol/cm2, and the total amount of HRP on
the modified electrode interface was 2.98×10−8 mol/cm2, which accounted for 11.88% of
HRP molecules on the electrode surface taking part in the electrode reaction.

The pH of buffer solution could affect the electrochemical behavior of HRP on the
modified electrodes, and the results are shown in Figure 5C. From the pH range from 2.0 to
8.0, the E0′ value shifted negatively with the increase in pH. It can be seen that the largest
redox peaks current appeared in PB 2.0 (curve a). The electrochemical reaction involves the
proton, and Nafion film can protect the HRP molecules on the electrode surface; therefore,
pH 2.0 PB was used in this experiment, which could provide enough protons for the
electrode reactions. There was a good linear relationship between E0′ and the different
pH with the linear regression equation as E0′ (V) = −0.0545 pH −0.0431 (γ = 0.991). The
slope value was −54.5 mV/pH, which was slightly smaller than the theoretical value
of −59.0 mV/pH for the same amounts of protons and electrons [51], indicating that
microenvironment changes could affect the electrochemical behavior of HRP.

2.3. Electrocatalytic Performances of TCA and KBrO3

Due to the excellent catalytic activity of HRP on the modified electrode, the electro-
catalytic performances of Nafion/HRP/BPQDs/CILE for two halide compounds were
studied. These compounds are stable in aqueous solution and cannot be degraded on the



Molecules 2023, 28, 6151 7 of 15

commonly used electrode system. The presence of HRP on the modified electrode can
greatly decrease the overpotential of the analytes on the electrode due to its catalytic effects.

As an organic halide, TCA is widely used for herbicides and preservatives. Therefore,
it is important to find a sensitive method for TCA analysis [52]. The redox protein-modified
electrodes exhibit excellent electrocatalytic activity to TCA [53]. Figure 6A shows the electro-
catalytic behaviors of modified electrodes for TCA. When different concentrations of TCA
were gradually added to pH 2.0 PB, the reduction peak current increased gradually, while
the oxidation peak current decreased gradually until it disappeared (curves c-n). With the
increase in TCA concentration, there was a good linear relationship between the catalytic
reduction peak current and the TCA concentration in the range of 4.0 to 600.0 mmol/L
(Figure 6B). The linear regression equation was Ip (mA) = 0.0105 C (mmol/L) + 0.1335
(γ = 0.994), and the detection limit was 0.03 mmol/L (3S/N), where S is the standard devia-
tion of the blank, and N is the slope of the linear calibration curve. When the concentration
of TCA exceeded 600.0 mmol/L, the reduction peak current remained basically unchanged,
showing a typical Michaelis–Menten kinetics mechanism. In order to confirm HRP cat-
alytic behavior, comparison experiments were explored with Nafion/BPQDs/CILE as the
working electrode, which showed no redox peaks appeared for TCA (curves a, b, and inset
of Figure 6A), indicating that HRP played key roles in the electrocatalytic reaction. If no
HRP is present on the modified electrode, the electrochemical reduction of TCA cannot be
realized with no peaks appearing (curve b). The electrocatalytic mechanism was proposed
as follows [52]:

HRP Fe(III) + H+ + e− ↔ HRP Fe(II)

2[HRP Fe(II)] + Cl3CCOOH + H+ → 2[HRP Fe(III)] + Cl2CHCOOH + Cl−
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Figure 6. (A) Cyclic voltammograms of Nafion/BPQDs/CILE in 0.1 mol/L pH 2.0 PB with (a) 0.0,
(b) 5.0 mmol/L TCA, and Nafion/HRP/BPQDs/CILE with 4.0, 20.0, 40.0, 80.0, 120.0, 160.0, 200.0,
260.0, 340.0, 400.0, 500.0, 600.0 mmol/L TCA (curves c–n) at the scan rate of 100 mV/s. Inset was
magnification of curves from a to d. (B) Linear relationship of catalytic reduction peak currents and
TCA concentration.

Therefore, HRP-based Nafion/BPQDs/CILE was a typical electrocatalytic process
towards TCA. The apparent Michaelis constant (KM

app) is an important index of enzyme–
substrate reaction kinetics. According to the Lineweaver–Burk equation [54], the KM

app of
the catalytic reaction could be calculated to be 0.46 mmol/L, which was smaller than that
of the reported value [48,53]. The smaller the KM

app, the better the affinity of the enzyme to
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the substrate, and the stronger the catalytic ability of the enzyme, which indicated that this
modified electrode had higher electrocatalytic activity.

KBrO3 is mainly used as an analytical reagent, oxidant, and food additive. Foods
containing KBrO3 for a long time will cause great harm to the kidneys of the body. There-
fore, it is very important to detect the content of KBrO3 in foods [55]. Figure 7A shows
the electrocatalytic effect of Nafion/HRP/BPQDs/CILE on different concentrations of
KBrO3. A new reduction peak appeared and moved negatively (curves c-n) with increasing
concentration of KBrO3, and the reduction peak current also increased gradually. The
electrocatalytic mechanism was proposed as follows [56]:

HRP Fe(III) + H+ + e− → HRP Fe(II)

6HRP Fe(II) + BrO3
− + 6H+ → 6HRP Fe(III) + Br− + 3H2O
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Figure 7. (A) Cyclic voltammograms of Nafion/BPQDs/CILE in 0.1 mol/L pH 2.0 PB with (a) 0.0,
(b) 3.5 mmol/L KBrO3, and Nafion/HRP/BPQDs/CILE with 2.0, 4.0, 6.0, 10.0, 12.0, 15.0, 22.0,
30.0, 36.0, 42.0, 51.0, 57.0 mmol/L KBrO3 (curves c–n) at the scan rate of 100 mV/s. Inset was
magnification of curves a and b. (B) Linear relationship of catalytic reduction peak currents and
KBrO3 concentration.

When the concentration of KBrO3 was 2.0 to 57.0 mmol/L, there was a good linear
relationship between the reduction peak current and the concentration of KBrO3 (Figure 7B).
The linear regression equation was Ip (µA) = 0.0483 C (mmol/L) + 0.0681 (γ = 0.996), and
the detection limit was 0.18 mmol/L (3S/N). According to the Lineweaver–Burk equation,
the KM

app was 0.052 mmol/L. Also, CV curves of Nafion/BPQDs/CILE with the addition
of KBrO3 (curves a and b) were recorded, which did not exhibit any responses, indicating
that the electro-reduction to KBrO3 had not taken place without HRP. The results also
showed that this HRP-modified electrode had a good catalytic effect on KBrO3.

A systematic comparison with different modified electrodes for electrocatalytic detec-
tion of TCA and KBrO3 is listed in Table 1. This modified electrode indicated a relatively
wider linear range and lower detection limit for the detection of the target analytes with a
simple preparation procedure, which also extended the applications of BP-related nanoma-
terial in an electrochemical sensor.
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Table 1. Comparison of analytical performances of different modified electrodes for TCA and KBrO3

analysis.

Modified Electrodes

TCA

Ref. Modified Electrodes

KBrO3

Ref.Linear
Range

(mmol/L)

Detection
Limit

(mmol/L)

Linear
Range

(mmol/L)

Detection
Limit

(mmol/L)

Nafion/Mb/TiO2@CNF/CILE 5.0–105.0 1.6 [52] PdNPs/PANI/SBA-15/GCE 0.008–40.0 0.005 [31]
TH/TNTs/CS/GCE 0.015–1.5 / [56] Nafion/Hb/AuNPs/ND/CILE 0.01–12.0 0.0033 [55]
CTS/ELDH-GR-Hb/CILE 5.0–135.0 1.506 [57] rGO-PDDA/PMo12/GCE 0.02–10.0 / [58]
Hb/PDDA/PGE 3.92–58.4 1.98 [59] Cd-IL/CPE 5.0–20.0 3.0 [60]
Nafion/Hb/GQD/CILE 6.0–100.0 2.0 [61] MWCNT/Pd/GCE 1.0–40.0 / [62]
np-Ag electrode 2.5–22.5 0.25 [63] Tungsten oxide electrode 0.3–45.0 0.1 [64]
CdOMCPE 0.23–0.003 0.0023 [65] Fe(III)P/MWCNTs/GCE 0.5–3.5 / [66]

Nafion/HRP/BPQDs/CILE 4.0–600.0 0.03 This
work Nafion/HRP/BPQDs/CILE 2.0–57.0 0.18 This

work

Notes: CNF: carbon nanofiber; TH: thionine; TNTs: titanate nanotubes; CS: chitosan; CTS: chitosan; ELDH:
exfoliated Co2Al layered double hydroxide; GR: graphene; PDDA: Poly(diallyldimethylammonium); GQD:
graphene quantum dots; np-Ag: nanoporous silver; CDOMCPE: CdO modified carbon paste electrode; PANI:
polyaniline; SBA-15: mesoporous; ND: nano-diamond; rGO: graphene oxide; PMo12: Phosphomolybdate;
MWCNT: multiwall carbon nanotubes; Fe(III)P: 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride.

2.4. Analytical Applications

To check the application to practical samples, Nafion/HRP/BPQDs/CILE was used to
determine the content of TCA in medical facial peel solution and KBrO3 in flour supernatant
by standard calibration. Furthermore, different concentrations of standard solutions were
added to the sample solutions to calculate the recovery by the standard addition method
using the same procedure. The contents of TCA and KBrO3 in the sample solutions were
calculated as 11.20 mmol/L and 0 mmol/L, which were in accordance with the content
of the real sample. The recovery was further calculated as 97.0% to 109.1% for TCA and
97.3% to 103.0% for KBrO3, with the results shown in Table 2. All the results proved
that this method could be used for the analysis of TCA and KBrO3 in real samples with
good applications.

Table 2. Analytical results of real samples using this electrochemical sensor (n = 3).

Samples Added
(mmol/L)

Total
(mmol/L)

Recovery
(%)

RSD
(%)

Medical facial
peel solution

10.00 20.90 97.0 3.21
20.00 33.01 109.1 3.67
30.00 43.54 107.8 2.81

Flour
supernatant

2.00 1.98 99.0 2.13
4.00 4.12 103.0 3.36
6.00 5.84 97.3 2.91

2.5. Interference Test

The anti-interference ability of Nafion/HRP/BPQDs/CILE was investigated in the
presence of 1.0 mmol/L foreign agents, such as K+, Na+, Ca2+, Co2+, L-cysteine, aspartic
acid, and glucose, in pH 2.0 PB, with 4.0 mmol/L TCA as the model. The results are shown
in Figure 8A, with the original differential pulse voltammetry (DPV) curves presented in
Figure 8B–H. It can be seen that the presence of some interfering analytes led to positive
interference, with the response current increased. However, the relative error was less than
5.0% at the selected concentration, which was in the normal range of relative error and did
not interfere with the target analysis. Therefore, Nafion/HRP/BPQDs/CILE had good
anti-interference ability.
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2.6. Stability and Repeatability of the Modified Electrode

The stability of Nafion/HRP/BPQDs/CILE was studied by multi-scan cyclic voltam-
metry, and the results are shown in Figure 9A. After 50 consecutive cycles of scanning,
the current and potential of the redox peak of the modified electrode remained basically
unchanged, and the deviation of the redox peaks current between the 1st lap and the
50th lap was 3.08% and 2.58%. It was proved that Nafion/HRP/BPQDs/CILE had good
stability and reproducibility in N2-saturaterd PB. After the modified electrode was stored
for 20 days at 4 ◦C, the cyclic voltammetric curve was measured again. After 50 cy-
cles of continuous scanning, it was found that the redox peak current was retained at
94.7% and 92.3% of its original value, respectively (Figure 9B), which demonstrated that
Nafion/HRP/BPQDs/CILE had good storage stability and a long lifetime. Five parallel
modified electrodes were used to detect 20.0 mmol/L TCA with the RSD value of 3.65% and
10.0 mmol/L KBrO3 with the RSD value of 2.92%, demonstrating the good repeatability of
Nafion/HRP/BPQDs/CILE.
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3. Materials and Methods
3.1. Reagents and Chemicals

Ionic liquid 1-hexylpyridinium hexafluorophosphate (HPPF6, >99%, Lanzhou Yulu
Fine Chem. Ltd., Co., Lanzhou, China), HRP (MW. 40000, Sinopharm Chem. Reagent Co.,
Shanghai, China), black phosphorus nanoplates dispersion (BPNPs, Nanjing XFNANO
Materials Tech. Ltd., Co., Nanjing, China), trichloroacetic acid (TCA, Tianjin Kemiou Chem.
Co., Tianjin, China), graphite powder (particle size 30 µm, Shanghai Colloid Chem. Co.,
Shanghai, Shanghai, China), potassium bromate (KBrO3, Shanghai Aladdin Regent Ltd.,
Co., Shanghai, China), potassium hexacyanoferrate (III) (K3[Fe(CN)6], Guangzhou Chem.
Reagent Co., Guangzhou, China), Nafion ethanol solution (5.0%, Beijing Honghaitian Tech.
Co., Beijing, China), and 1-methyl-2-pyrrolidinone (NMP, 99.5%, Shanghai Aladdin Regent
Ltd., Co., Shanghai, China) were used directly.

The supporting electrolyte was 0.1 mol/L phosphate buffer (PB) solution with various
pH values and deoxygenated by using pure nitrogen for 30 min before the experiments.
All the other chemicals were of analytical grade, and ultra-pure water from a Mill-Q water
purification system (Milli-Q IQ7000, Boston, MA, USA) was used throughout the experiments.

3.2. Apparatus

A CHI 1040C electrochemical workstation (Shanghai CH Instrument, Shanghai, China)
was used for all the electrochemical experiments. A traditional three-electrode system was
used, with the self-made modified electrode (Nafion/HRP/BPQDs/CILE) as the working
electrode, a platinum wire as the auxiliary electrode, and an Ag/AgCl (saturated KCl) elec-
trode as the reference electrode. Scanning electron microscopy (SEM) was performed on a
JSM-7100F (JEOL Electron Co., Tokyo, Japan) with transmission electron microscopy (TEM)
on a JEM-2010F (JEOL Electron Co., Tokyo, Japan). Ultraviolet-visible (UV–Vis) absorption
spectra were performed on a UV-5 spectrophotometer (Mettler Toledo, Columbus, OH,
USA), with Fourier-transform infrared spectroscopy (FT-IR) recorded on a Tensor 27 FT-IR
spectrophotometer (Bruker Optics, Karlsruhe, Germany).

3.3. Preparation of BPQDs

Combining ultrasonic-assisted liquid-phase exfoliation and centrifugation could be
used to obtain BPQDs, as described in the previous work [22]. Therefore, the general
preparation procedure was described as follows. First, 5.0 mL 1.0 mg/mL BPNPs and
5.0 mL NMP were mixed and stirred, and sonicated in an ice bath for 8 h. The dispersion
was centrifuged at 7000 rpm and 10,000 rpm for 20 min each to obtain BPQDs.

3.4. Preparation of BPQDs Modified Electrode

CILE was constructed with graphite power and HPPF6 (mass ratio of 2:1), accord-
ing to the previously reported procedure; it was used as the substrate electrode, and its
surface was gently smoothed before use [67]. In a nitrogen-filled glove box, 10.0 µL of
0.5 mg/mL BPQDs solution was applied on the CILE surface and dried naturally to obtain
the BPQDs/CILE, which was further coated by 10.0 µL of 15.0 mg/mL HRP solution and
10.0 µL of 0.5% Nafion ethanol solution in sequence with the whole process dried under
nitrogen. Other electrodes were fabricated using the same procedure for comparison, and
the preparation process of the working electrode is shown in Scheme 1.

3.5. Samples Analysis

Medical facial peel solution (35% TCA) was purchased from Shanghai EKEAR Bio.
Tech. Co., (Shanghai, China) and used as the real sample for TCA analysis, which was
directly diluted by the PB. The flour (purchased from Haikou Guilinyang farm product
market) was selected as the sample for KBrO3 analysis. The sample solution was prepared
by dispersing 10.0 g flour into 100 mL distilled water, sonicating for 30 min, and then
centrifuging for 20 min at 10,000 rpm to obtain supernatant, which was used as the samples
for further analysis.
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4. Conclusions

In this paper, highly ambient-stable BPQDs were prepared by ultrasonic-assisted
liquid-phase exfoliation and centrifugation using multilayer BPNPs. BPQDs were modified
on the surface of CILE by layer-by-layer coating and used as the base electrode, then HRP
was fixed on the BPQDs/CILE surface, and Nafion was used as a protective film to prepare
a modified electrode (Nafion/HRP/BPQDs/CILE). A pair of well-shaped redox peaks
appeared on cyclic voltammograms, and the electrocatalytic performances of the modified
electrode were tested. The electrocatalytic behaviors of TCA and KBrO3 were investigated,
and the wide linear detection ranges were 4.0–600.0 mmol/L and 2.0–57.0 mmol/L, with a
low detection limit of 0.03 mmol/L and 0.18 mmol/L, respectively. Due to the specific char-
acteristic of BPQDs, such as large specific surface areas, good electrical conductivity, and
abundant active center, the direct electrochemistry of HRP was achieved with an enhanced
redox peak current, which proved the positive effects of BPQDs on the electrode surface
on the electron transfer of the HRP Fe(III)/Fe(II) redox center to exchange electrons with
CILE. The excellent biocompatibility and high specific surface area of BPQDs proved that
the constructed electrochemical HRP biosensor had an excellent electrochemical response
and high electrocatalytic activity, and could be applied to the actual sample detection.
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