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Abstract: α-Aminophosphonates and related compounds are important due to their real and
potential biological activity. α-Aminophosphonates may be prepared by the Kabachnik–Fields
condensation of oxo compounds, amines and dialkyl phosphites, or by the aza-Pudovik addition
of the same P-reagents to imines. In this review, the methods that allow for the synthesis of α-
aminophosphonates with optical activity are surveyed. On the one hand, optically active catalysts
or ligands may induce enantioselectivity during the Kabachnik–Fields reaction. On the other hand,
asymmetric catalysis during the aza-Pudovik reaction, or hydrogenations of iminophosphonates,
may prove to be a useful tool. Lastly yet importantly, it is possible to start from optically active
reagents that may be associated with diastereoselectivity. The “green” aspects of the different
syntheses are also considered.

Keywords: optically active α-aminophosphonates; asymmetric syntheses; organocatalysts; Kabachnik–
Fields reactions; aza-Pudovik reactions; enantioselective hydrogenations; green syntheses

1. Introduction

α-Aminophosphonates form a representative group within phosphonates due to their
potential biological activity, enabling them to be used in the pharmaceutical industry [1].
The biological activity is related to the enzyme inhibitory properties of the compounds
under discussion. The biological activity includes anticancer and anti-HIV effects, among
others. The basic methods for the synthesis of α-aminophosphonates are the Kabachnik–
Fields condensation and the aza-Pudovik reaction [2]. The phospha-Mannich condensation
involves the reaction of an oxo compound, such as an aldehyde or ketone, a primary
and secondary amine, and dialkyl phosphite, while the Pudovik approach utilizes the
addition of diakyl phosphites to the double bond of imines. As a matter of fact, the imines
formed from the oxo compound and the primary amine may be the intermediate of the
Kabachnik–Fields reaction.

It is a challenge to run the syntheses of α-aminophosphonates in an enantioselective
manner. The stereoselective syntheses of α-aminophosphonic derivatives were summarized
by Ordóñez and colleagues [3], and Palacios et al. [4]. The phospha-Mannich condensa-
tion of an oxo compound, amine and >P(O)H reagent may be carried out in the presence
of an optically active catalyst or additive to obtain the corresponding product as a pre-
dominant enantiomer. The most relevant method for the preparation of optically active
α-aminophosphonates is the enantioselective addition of dialkyl phosphites to the C=N
unit of imines [5–10]. This is promoted by chiral catalysts or additives. The asymmetric
hydrogenation of iminophosphonates is also an attractive method of choice. Lastly yet
importantly, the Kabachnik–Fields reactions were performed using optically active amines,
aldehydes or phosphites as the starting materials [8–11].
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2. Synthetic Approaches for Optically Active α-Aminophosphonates
2.1. Enantioselective Kabachnik–Fields Reactions

An enantioselective three-component Kabachnik–Fields reaction was elaborated to pro-
vide (S)-α-aminophosphonates (1). The method comprised zinc bis(trifluoromethylsulfonyl)
imide (2) as the catalyst, along with an optically active ligand (1,3-bis(imidazolin-2-yl)pyridine:
pybim) (3) in dichloromethan as the solvent at −50–−80 ◦C. The enantiomeric purity of
the resulting aminophosphonates (1) depended on the substituent in the aromatic ring
(Scheme 1) [12]. The highest ee values (90–93%) were obtained by starting from 3-methoxy-
or 4-methylbenzaldehyde or 2-furylaldehyde.
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Scheme 1. Enantioselective synthesis of α-aminophosphonates (1) using zinc bis(trifluoromethylsulfonyl)
imide (2, 3) as the catalyst.

The condensation of benzaldehydes, para-aminoanizole and diisopropyl phosphite
gave the corresponding aminophosphonates (4) under mild conditions, and when using an
optically active phosphinic acid derivative (5) as the catalyst (Scheme 2) [13].

A series of optically active α-aminophosphonate derivatives (6) was synthesized under
mild conditions by applying substituted benzaldehydes, aniline derivatives and, in this
case, triethyl phosphite and a chiral pyrrolidine-based organocatalyst (7). The yields fell in
the range of 71–90%, and the enantiomeric purity was 73–92% (Scheme 3) [14]. The use of
triethyl phosphite instead of diethyl phosphite is not advantageous due to the smell and
atom efficiency of the condensation reaction.

The three-component reaction of 2-alkynylbenzaldehydes (8), an aniline derivative,
and diethyl phosphite produced cyclic α-aminophosphonates (9) in the presence of silver
carbonate, and an optically active spirocyclic phosphoric acid (10) as the catalyst. The
yields and enantiomeric purities were variable (Scheme 4) [15].
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Scheme 4. Three-component reaction of 2-alkynylbenzaldehydes (8), an aniline derivative, and
diethyl phosphite to provide α-aminophosphonates (9).

In the above sub-chapter, enantioselective Kabachnik–Fields reactions as described in
the literature were summarized. The methods applied different optically active catalysts
under a wide variety of reaction conditions. The efficiency of the catalysts depended on the
nature of the reaction models. The products were obtained in good yields and in variable,
31–94% enantioselectivities. These catalysts are not simple, and in most cases, their cost is
considerable, which constitutes a shortcoming.

2.2. Optically Active α-Aminophosphonate Derivatives Provided by the Aza-Pudovik Reaction

A highly enantioselective nucleophilic addition of dialkyl phosphites to imines, which
was (11) catalyzed by a chiral cinchona-based phase transfer catalyst (12), was developed.
Phase transfer catalysis is an up-to-date and “green” approach. The hydrophosphonylation
took place in good to high yields and enantioselectivities (Scheme 5) [16].

α-Aminophosphonates containing an N-benzothiazole moiety (15) were synthesized
from imine 14 in excellent yields, and enantiomeric purities were synthesized using chiral
thiourea-coupled cinchona organocatalysts (16a or 16b). These derivatives displayed
activity against cucumber mozaik virus (Scheme 6) [17].

Cinchona-catalyzed (17) enantioselective hydrophosphonylation of trifluoromethyl-
substituted quinazolinone derivatives (18) afforded the corresponding α-aminophosphonates
(19) in good yields, and gave enantiomeric purities (Scheme 7) [18].

Other heterocyclic α-aminophosphonic species, such as quinoxalin derivatives, were
also prepared by the aza-Pudovik approach [19].

Quinine-squaramide (20) catalyzed the enantioselective addition of diphenyl phos-
phite to imines (21) to give the corresponding optically active adducts (22) in good yields,
and in most cases, high enantioselectivities (Scheme 8) [20].
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The chiral binaphthyl-modified squaramide (23)-catalyzed enantioselective addition of
diphenyl phosphite to imines (24) was also described. This method afforded the correspond-
ing aminophosphonates (25) in high yields with excellent (up to 99%) enantioselectivities
(Scheme 9) [21].
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A SPINOL-based phosphoric acid-catalyzed (26) enantioselective reaction of
cinnamaldehyde-derived aldimines (27) and diethyl phosphite gave the correspond-
ing α-aminophosphonate derivatives (28) under mild conditions in 85–98 yields
(Scheme 10) [22].
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An (R,R)-Ph-BPE-catalyzed (29) asymmetric hydrophosphonylation of N-thiophosphinoyl
imines (30) with dialkyl phosphites was performed at room temperature (Scheme 11) [23].
The method gave the corresponding α-aminophosphonates (31) in 68–97% yields and
94–96% enantiomeric purities.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 26 
 

 

An (R,R)-Ph-BPE-catalyzed (29) asymmetric hydrophosphonylation of N-thiophos-
phinoyl imines (30) with dialkyl phosphites was performed at room temperature (Scheme 
11) [23]. The method gave the corresponding α-aminophosphonates (31) in 68–97% yields 
and 94–96% enantiomeric purities. 

 
Scheme 11. Asymmetric hydrophosphonylation of iminophosphonates (30). 

In this sub-chapter, enantioselective aza-Pudovik addition reactions were summa-
rized. The presented chiral catalyst-promoted methods gave the corresponding products 
in variable yields and enantiomeric purities. The typical catalysts are the cinchona alka-
loids, or their modified versions. There were no data released on the re-circulation of the 
organocatalysts. The aza-Pudovik addition is an attractive approach due to the mild con-
ditions required, and the 100% atomic efficiency. 

2.3. Synthesis of Enantiopure α-Aminophosphonates by the Asymmetric Hydrogenation of 
Iminophosphonates 

The palladium-catalyzed asymmetric hydrogenation of α-iminophosphonates (32) 
performed at 40 °C for 24 h in a solvent mixture afforded the corresponding α-aminophos-
phonates (33) in 91–98% yields and 85–97% enantiomeric purities. (R)-Difluorophos or its 
analogue (34a or 34b) served as the ligand for Pd (Scheme 12) [24,25]. 

 

R R1 Yield (%) ee (%) R R1 Yield (%) ee (%) 
H Et 93 96 4-Me iPr 96 97 
H Me 97 94 4-F iPr 91 97 
H iPr 98 96 4-Cl iPr 93 94 
H Bn 93 95 4-Br iPr 90 92 

Scheme 11. Asymmetric hydrophosphonylation of iminophosphonates (30).

In this sub-chapter, enantioselective aza-Pudovik addition reactions were summarized.
The presented chiral catalyst-promoted methods gave the corresponding products in vari-
able yields and enantiomeric purities. The typical catalysts are the cinchona alkaloids, or
their modified versions. There were no data released on the re-circulation of the organocat-
alysts. The aza-Pudovik addition is an attractive approach due to the mild conditions
required, and the 100% atomic efficiency.

2.3. Synthesis of Enantiopure α-Aminophosphonates by the Asymmetric Hydrogenation
of Iminophosphonates

The palladium-catalyzed asymmetric hydrogenation of α-iminophosphonates
(32) performed at 40 ◦C for 24 h in a solvent mixture afforded the corresponding
α-aminophosphonates (33) in 91–98% yields and 85–97% enantiomeric purities. (R)-
Difluorophos or its analogue (34a or 34b) served as the ligand for Pd (Scheme 12) [24,25].
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A Pd/(R)-difluorophos (34a)-catalyzed hydrogenation was also described as affording
cyclic sulfonamido derivatives (36) (Scheme 13) [25].
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Asymmetric hydrogenation of hydroxy-iminophosphonates (37) gave the correspond-
ing hydroxy-aminophosphonates (38) in up to 90% ee using catalytic amounts of palla-
dium(II)acetate, together with an (R)-BINAP (39) ligand in 2,2,2-trifluoroethanol (TFE). (1S)-
(+)-10-Camphorsulfonic acid (CSA) served as a Brønsted acidic activator (Scheme 14) [26].
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The Pd-catalyzed asymmetric hydrogenation of α-hydrazonophosphonates (40) was
performed under mild conditions. After a second, more forcing hydrogenation, the method
provided the corresponding α-aminophosphonates (41) in up to 96% yield and 90–98%
enantiomeric purities (Scheme 15) [27].
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Scheme 15. Pd-catalyzed asymmetric hydrogenation of α-hydrazonophosphonates (40).

Asymmetric hydrogenation of α,β-enaminophosphonates (42) was performed using
a rhodium(I)-phosphoramidite (43) catalyst (Scheme 16) [28]. This method gave the cor-
responding products (44) in up to 95% yield and 99% enantiomeric purity under mild
reaction conditions.
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Scheme 16. Asymmetric hydrogenation of α,β-enaminophosphonates (42) using a rhodium(I)-
phosphoramidite (44) catalyst.

α-Acylamino-β-ketophosphonates (45) were subjected to selective hydrogenation
affording β-hydroxy-α-aminophosphonates (46) in high diastereo- and enantioselectivities.
The conditions included a ruthenium chloride catalyst incorporating an optically active (S)
bis(diphenyl-phosphino)biaryl ligand (47) (Scheme 17) [29].
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Scheme 17. Asymmetric hydrogenation of α-acylamino-β-ketophosphonates (45).

In this sub-chapter, in most cases, enantiopure α-aminophosphonates were synthe-
sized by asymmetric hydrogenation of iminophosphonates and enaminophosphonates.
The methods discussed apply chiral catalysts, thereby allowing for the preparation of the
corresponding products in good yields and 72–99% enantiomeric purities. The application
of transition metal catalysts and the complexity and high cost of P-ligands constitutes a
disadvantage.

2.4. Optically Active α-Aminophosphonates by Miscellenious Methods

The asymmetric synthesis of α-iminophosphonates (49) was performed in two steps.
First, the imin (48) was prepared, followed by a desymmetrized isomerization in the
presence of a chiral cinchona catalyst (50). Following a deprotonation on the methylene
unit of the benzyl group, an enantioselective protonation constituted the main enantio-
differentiating step. The deprotonated species was complexed by the phenolic OH function
of the cinchona catalyst, establishing a =N. . .H. . .O=P network. The yields of this elegant
method were variable, and fell in the range of 20–63%. The enantiomeric purities were
between 72 and 96% (Scheme 18) [30].
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A thiourea-coupled cinchona alkaloid-catalyzed (51) aza-Henry reaction of iminophos-
phonates (52) and nitromethane provided the corresponding α-aminophosphonates (53)
under mild conditions in good yields, and with enantiomeric excesses (Scheme 19) [31].
This addition method has the advantage of 100% atomic efficiency.
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Scheme 19. Asymmetric synthesis of α-aminophosphonates (53) by aza-Henry reaction.

A chiral phosphoric acid (54) efficiently promoted the asymmetric addition of several
indoles (55) to the N=C unit of α-iminophosphonate (56) to afford enantio-enriched α-
aminophosphonate derivatives (57) (Scheme 20) [32].
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Scheme 20. Enantioselective addition of indoles (55) to an iminophosphonate (56).

The Reformatsky synthesis is a valuable process that is widely used for the formation
of C−C bonds. An enantioselective aza-Reformatsky reaction starting from iminophospho-
nates (58) was developed. The reaction of α-iminophosphonates (58) and iodoacetate (59)
in the presence of a Zn catalyst with a BINOL-ligand (60) afforded the corresponding amino
acid esters (61) in excellent yields and enantioselectivities (Scheme 21) [33]. The amino
acid esters (61) were converted to amino acids, and then they were used in the synthesis of
P-containing β-lactams. The products (61) were of high enantiopurity.
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Scheme 21. An enantioselective aza-Reformatsky reaction.

A catalytic asymmetric [3+2] cycloaddition reaction of iminophosphonates (62) with
methyl acrylate carried out using a Cu- or Ag–FeSulphos catalyst (63) afforded phosphonoyl-
proline derivatives (64) in variable yields and high enantioselectivities (Scheme 22) [34].
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Scheme 22. A catalytic asymmetric [3+2] cycloaddition reaction.

α-Iminophosphonates (52) were converted to amino-cianophosphonates (65) in reac-
tion with acetyl cyanid using a cinchona alkaloid (66) as the catalyst at −45–0◦C. The yields
fell in the range of 75–80%. The enantiomeric purity was 73–92% (Scheme 23) [35]. This
transformation may be regarded as a special, rarely applied method. The low temperature
needed is not robust.

A series of optically active α-aminophosphonates (68) was synthesized from cyclic
α-iminophosphonates (66) and indole derivatives (67) using a chiral phosphoric acid (69)
as the catalyst under mild conditions. The method provided the corresponding multi-
cyclic α-aminophosphonate derivatives (68) in 85–98% yields and 91–98% enantiomeric
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purities (Scheme 24) [36]. As this is an addition, the transformation is attractive due to
its enantioselectivity.
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Scheme 24. Enantioselective synthesis of indole-based α-aminophosphonates (68).

The Pd-phosphine complex (70)-catalyzed arylation of cyclic sulfonyl-iminophosphonate
derivatives (71) with boronic acids gave the corresponding products (72) in 81–97% yields, and
with up to 99% ee (Scheme 25) [37].

An asymmetric Mannich reaction was developed by reacting α-iminophosphonates
(73) with keto acids (74) in the presence of a saccharide-derived bifunctional amine-thiourea
organocatalyst (75). The yields were up to 93%, and the enantiomeric purities covered the
range of 90–99% (Scheme 26) [38].
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The reaction of α,β-unsaturated aldehydes (78) and cyclic sulfonyl-iminophosphonate
(77) in the presence of dibenzoquinone (79) as an oxidant afforded the corresponding
products (81). The efficient carbene-catalyzed enantioselective cyclization reaction took
place with 97–99% enantiomeric selectivity (Scheme 27) [39]. The precursor of the carbene
is heterocycle 80. The mechanism of the reaction was substantiated. The key steps involve
the formation of a vinyl enolate intermediate (82) from enal and the catalyst, and the
subsequent addition of vinyl enolate (82) to ketiminophosphonates to form the complex
(83). The overall process is an asymmetric formal aza [4+2]-cycloaddition reaction.
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Scheme 27. Enantioselective method for the synthesis of tricyclic α-amino phosphonates (81) (A),
and the possible mechanism of the reaction (B).

Ordónez applied different N-acyliminium salts for the synthesis of racemic α-
aminophosphonates [40].

The enantioselective Michael addition of α-nitrophosphonates to enones affording
α-nitro-δ-oxophosphonates (85) was also described. Using a quinine thiourea chincona
catalyst (84), the products (85) were obtained in good yields and variable enantioselectivi-
ties. The α-nitro-δ-oxophosphonates (85) were transformed to cyclic α-aminophosphonates
(86) after the in situ reduction of the NO2 group, followed by intramolecular cyclization
(Scheme 28) [41].
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Scheme 28. Synthesis of cyclic α-aminophosphonates (86) using a bifunctional organocatalyst (84).

The reaction of benzyloxycarbonylamino-alkylphosphonium salts (87) with dimethyl
phosphite in a cinchona-coupled quinine (89a or 89b)-catalyzed method at −70◦C led to
optically active α-aminophosphonate derivatives (88) in good yields (Scheme 29) [42].
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Scheme 29. Enantioselective reaction of benzyloxycarbonylamino-alkylphosphonium salts (87) with
dimethyl phosphite.

Enantioselective reductive phosphonylation of acetamide derivatives using an iridium
complex ([Ir(COE)2Cl]2: chlorobis(cyclooctene)iridium(I) dimer), and as a combination,
a chiral thiourea organocatalyst (90) as the catalyst system, gave the optically active α-
aminophosphonates (91) in good yields and high enantiomeric purities (Scheme 30) [43].

In this chapter, we collected methods for the synthesis of optically active α-
aminophosphonates that can be obtained by different types of reactions. Each process
results in the formation of the desired optically active product using a chiral catalyst.
The methods presented, in some cases, may differ from each other. For example, they
may differ in the reaction conditions used. A few protocols gave the corresponding
optically active products either in good yields, or else only in good enantiomeric
purity, but in lower yields. The selection of the best method for the synthesis the
corresponding products depends on the substrates. The enantioselective methods
demonstrated may be useful in special cases.
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2.5. Synthesis of Enantioenriched α-Aminophosphonate Derivatives from Optically Active
Starting Materials

Dialkyl (S)-α-phenylethylamino-methylphosphonates (93) were synthesized from
α-phenylethylamine (92), paraformaldehyde and dialkyl phosphites in an MW-assisted
Kabachnik–Fields reaction without the use of any solvent. The yields fell in the range of
71–80%. During the reaction, the optical activity was retained (Scheme 31) [44,45].
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Scheme 31. Synthesis of (S)-α-phenylethylamino-methylphosphonates (93) by Kabachnik–Fields
reaction.

In the MW-assisted solvent- and catalyst-free phospha-Mannich reaction of α-
phenylethylamine derivatives (94) with benzaldehyde and dimethyl phosphite, the cor-
responding α-aminophosphonates (95a and 95b) were formed in a diastereo-selective
manner (Scheme 32) [46].
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Bis derivatives (96) could be synthetized in the reaction of (S)-α-phenylethylamine
(92) with two equivalents of the oxo compound and two equivalents of the dialkyl phos-
phite. During the reaction, the optical activity was retained. The yields of the bis-α-
aminophosphonate derivatives (96) were 83–84%. The (S)-bis(diphenylphosphinoylmethyl)-
α-phenylethylamine (96) was double deoxygenated, applying phenylsilane under MW-
assisted solvent-free conditions. Then, the optically active bisphosphine was converted to a
chiral platinum(II) complex (98) by a reaction with dichlorodibenzonitrile platinum (97)
(Scheme 33) [44,45].
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Optically active α-aminophosphine oxides (100) were synthesized from the ethyl ester
of chiral proline (99), benzaldehyde and diphenylphosphine oxide in toluene at reflux
(Scheme 34) [47].

Molecules 2023, 28, x FOR PEER REVIEW 21 of 26 
 

 

 
Scheme 32. A diastereo-selective Kabachnik–Fields reaction. 

Bis derivatives (96) could be synthetized in the reaction of (S)-α-phenylethylamine 
(92) with two equivalents of the oxo compound and two equivalents of the dialkyl phos-
phite. During the reaction, the optical activity was retained. The yields of the bis-α-ami-
nophosphonate derivatives (96) were 83–84%. The (S)-bis(diphenylphosphinoylmethyl)-
α-phenylethylamine (96) was double deoxygenated, applying phenylsilane under MW-
assisted solvent-free conditions. Then, the optically active bisphosphine was converted to 
a chiral platinum(II) complex (98) by a reaction with dichlorodibenzonitrile platinum (97) 
(Scheme 33) [44,45]. 

 
Scheme 33. Synthesis of an optically active ring Pt complex (98). 

Optically active α-aminophosphine oxides (100) were synthesized from the ethyl es-
ter of chiral proline (99), benzaldehyde and diphenylphosphine oxide in toluene at reflux 
(Scheme 34) [47]. 

 
Scheme 34. Synthesis of optically active α-aminophosphine oxides (100) from a proline ester. Scheme 34. Synthesis of optically active α-aminophosphine oxides (100) from a proline ester.

>P(O)H reagents derived from chiral alcohols were useful reagents in the preparation
of optically active aminophosphonic derivatives [48].

Chiral dialkyl phosphites (101) derived from (−)-borneol, (−)-menthol and (−)-1,2:5,6-
di-O-isopropylidene-α-D-glucofuranose were applied as starting reagents for the prepara-
tion of chiral α-aminophosphonates (102) using the Kabachnik–Fields condensation. Good
stereoselectivity was observed in the reactions. The transformation proceeded at room
temperature, or upon heating (~60–80 ◦C) to give the corresponding α-aminophosphonates
(102) in high yields and good stereoselectivities. Hydrolysis with 2 N HCl in aqueous diox-
ane gave the corresponding (R)-α-aminobenzylphosphonic acids (103) (Scheme 35) [49].
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α-Aminophosphonic acid derivatives (106) were synthesized from N-diphenylphosphinoyl-
imines (104) using a cyclic (R,R)-TADDOL-based phosphite (105) (Scheme 36) [50]. This is a
good example for the application of a chiral phosphite.
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Scheme 36. The synthesis of α-aminophosphonate derivatives (106) from the reaction of a phosphi-
noyl imine and (R,R)-TADDOL-based phosphite (105).

α-Amido sulfones were suitable starting materials in the preparation of C-chiral
α-aminophosphonic derivatives, using the above mentioned chiral phosphite (105) [51].

The addition of the two optically active dimenthyl phosphites (101, R2 = menthyl) to
N-(p-tolylsulfinyl)-benzaldimine (107) afforded the corresponding sulfonyl-aminophosphonates
(108) in a diastereomeric ratio of 91/100%. A subsequent acidic hydrolysis of the two sulfonyl-
aminophosphonates (108) gave the corresponding optically active, free α-aminophosphonic
acids (109) in 72/75% (Scheme 37) [52,53].
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1,2-cyclohexylenediamine-related bis(phenylmethylphosphonates) (111) were syn-
thetized from the corresponding optically active bis-imine (110) and dialkyl phosphites
in a diastereoselective manner without the use of any catalyst. The method afforded the
corresponding bis(α-aminophosphonate) derivatives (111) under MW-assisted conditions
in variable yields of 19–68% (Scheme 38) [54]. However, this procedure is not reproduceable
due to the use of a kitchen MW oven.

Molecules 2023, 28, x FOR PEER REVIEW 23 of 26 
 

 

 
Scheme 37. Asymmetric addition of chiral phosphites (101) to sulfinimines (107). 

1,2-cyclohexylenediamine-related bis(phenylmethylphosphonates) (111) were syn-
thetized from the corresponding optically active bis-imine (110) and dialkyl phosphites in 
a diastereoselective manner without the use of any catalyst. The method afforded the cor-
responding bis(α-aminophosphonate) derivatives (111) under MW-assisted conditions in 
variable yields of 19–68% (Scheme 38) [54]. However, this procedure is not reproduceable 
due to the use of a kitchen MW oven. 

 
Scheme 38. Synthesis of bis(aminophosphonates) (111) by the aza-Pudovik reaction. 

The elegant methods shown above involve different optically active starting materi-
als. The optical activity was preserved during the reactions. This kind of approach hides  
further future challenges.  

3. Conclusions 
To summarize the contents of this review, the most useful methods for the synthesis 

of optically active α-aminophosphonates and related derivatives as described in the last 
decade were surveyed. The target compounds are  important due to their potential and 
real biological activity. The most important approach is the asymmetric Kabachnik–Fields 
reaction of an oxo compound, an amine and a dialkyl phosphite performed in the presence 
of an optically active catalyst or additive. Another frequently used protocol is the enanti-
oselective aza-Pudovik addition of >P(O)H regents to the C=N unit of imines in the pres-
ence of chiral catalysts. There were no data released on the possible re-circulation of the 
catalysts. Asymmetric catalytic hydrogenation of iminophosphonates is also an attractive 
synthetic method. It is an elegant approach if one of the components (e.g., the amine or 
the phosphite) of the Kabachnik–Fields condensation is optically active. Of course, there 
are special methods as well. Throughout the discussion, we tried to point out the “green” 
aspects, but  also described the disadvantages. 

Funding:. This project was supported by the National Research, Development and Innovation Office 
(K134318). 

Conflicts of Interest: The authors declare no conflicts of interest.  

Scheme 38. Synthesis of bis(aminophosphonates) (111) by the aza-Pudovik reaction.

The elegant methods shown above involve different optically active starting materials.
The optical activity was preserved during the reactions. This kind of approach hides further
future challenges.

3. Conclusions

To summarize the contents of this review, the most useful methods for the synthesis
of optically active α-aminophosphonates and related derivatives as described in the last
decade were surveyed. The target compounds are important due to their potential and
real biological activity. The most important approach is the asymmetric Kabachnik–Fields
reaction of an oxo compound, an amine and a dialkyl phosphite performed in the pres-
ence of an optically active catalyst or additive. Another frequently used protocol is the
enantioselective aza-Pudovik addition of >P(O)H regents to the C=N unit of imines in the
presence of chiral catalysts. There were no data released on the possible re-circulation of the
catalysts. Asymmetric catalytic hydrogenation of iminophosphonates is also an attractive
synthetic method. It is an elegant approach if one of the components (e.g., the amine or
the phosphite) of the Kabachnik–Fields condensation is optically active. Of course, there
are special methods as well. Throughout the discussion, we tried to point out the “green”
aspects, but also described the disadvantages.

Funding: This project was supported by the National Research, Development and Innovation
Office (K134318).
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