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Abstract: Rheumatoid arthritis (RA) remains one of the most prevalent autoimmune diseases world-
wide. Janus kinase 3 (JAK3) is an essential enzyme for treating autoimmune diseases, including RA.
Molecular modeling techniques play a crucial role in the search for new drugs by reducing time
delays. In this study, the 3D-QSAR approach is employed to predict new JAK3 inhibitors. Two
robust models, both field-based with R2 = 0.93, R = 0.96, and Q2 = 87, and atom-based with R2 = 0.94,
R = 0.97, and Q2 = 86, yielded good results by identifying groups that may readily direct their
interaction. A reliable pharmacophore model, DHRRR1, was provided in this work to enable the clear
characterization of chemical features, leading to the design of 13 inhibitors with their pIC50 values.
The DHRRR1 model yielded a validation result with a ROC value of 0.87. Five promising inhibitors
were selected for further study based on an ADMET analysis of their pharmacokinetic properties and
covalent docking (CovDock). Compared to the FDA-approved drug tofacitinib, the pharmaceutical
features, binding affinity and stability of the inhibitors were analyzed through CovDock, 300 ns
molecular dynamics simulations, free energy binding calculations and ADMET predictions. The
results show that the inhibitors have strong binding affinity, stability and favorable pharmaceutical
properties. The newly predicted molecules, as JAK3 inhibitors for the treatment of RA, are promising
candidates for use as drugs.

Keywords: MM/GBSA; 3D-QSAR; drug discovery; JAK3; computational modeling; cancer;
rheumatoid arthritis

1. Introduction

The Janus family of kinases (JAKs) and STAT transcription factors mediate signaling
pathways that are important in cellular activities, such as growth, differentiation and
homeostasis. The abnormal activation of this signaling cascade has been linked to the
pathophysiology of autoimmune disorders, such as rheumatoid arthritis and cancer [1,2].

JAK3 is a component of JAKs involved in the signaling of interleukin-2 (IL-2) and
other cytokines that control immune responses. It is noteworthy that mutations in JAK3’s
Cys909 residue may result in the constitutive activation of the kinase, which can contribute
to the development of autoimmune disorders [3,4]. JAK3 inhibition is a viable therapeutic
method for the treatment of RA and other autoimmune illnesses. JAK3 inhibitors have been
shown in preclinical and clinical research to be effective in lowering RA symptoms and
slowing disease progression. Furthermore, because JAK3 is involved in cell proliferation
and death, it has the potential to be used in cancer therapy. JAK3 inhibitors, in particular,
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have been demonstrated to decrease the production of pro-inflammatory cytokines, such
as IL-2, IL-6 and IL-17, all of which contribute to the pathophysiology of rheumatoid
arthritis. Furthermore, these inhibitors can limit the synthesis of growth factors and
cytokines, which are necessary for cancer cell proliferation and survival, thereby reducing
cancer development [1,5–10].

Importantly, the discovery of the crystalline structure of JAK3 (ID: 4Z16) has shown
the relevance and critical function of the Cys909 residue. This particular residue is found in
the protein’s active region and is required for catalytic activity. Cys909 mutations or modifi-
cations have been shown in studies to have a significant influence on JAK3 function [11–13].
Certain JAK3 inhibitors create covalent connections with the Cys909 residue, increasing
their affinity and selectivity for this enzyme. This important interaction between Cys909
and JAK3 inhibitors can be used to develop more selective and powerful medicines for RA
therapy [14]. Furthermore, understanding the placement and significance of Cys909 in the
structure of JAK3 allows for a better understanding of the underlying molecular processes
involved in this protein’s inhibition. This information can be used to drive the rational
design of new inhibitory compounds that selectively target this active area, enhancing the
effectiveness and selectivity of medications in development [15]. 2-amino-7,9-dihydro-8H-
purin-8-one is a compound that has demonstrated its efficacy in the treatment of several
diseases (Figure 1). In particular, it has been identified as a potential inhibitor of Janus
kinases (JAKs) and as an anticancer agent [16–18].
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its JAK1 and JAK2, which are involved in signaling pathways that regulate immune re-
sponses and inflammatory processes. Upadacitinib selectively targets JAK1, which is in-
volved in regulating the differentiation and function of several immune cells. Tofacitinib 
was chosen for this study because it specifically targets JAK3. Tofacitinib works very well 
to treat rheumatoid arthritis by blocking JAK3 [22], a vital regulator of immune cell dif-
ferentiation and proliferation. Tofacitinib has been linked to several severe adverse effects 
in addition to its efficacy. New inhibitors with novel designs are being created as a result, 
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Figure 1. 2-Amino-7,9-dihydro-8H-purin-8-one.

The FDA has approved the pharmaceuticals baricitinib, tofacitinib (Figure 2) and
upadacitinib as members of the Janus kinase (JAK) inhibitor family of therapies [19–21].
These drugs target specific types of enzymes, known as kinases, that play a critical role in
the immune system’s response to inflammation. Tofacitinib primarily inhibits JAK3 and to
a lesser extent JAK1 and JAK2. By blocking JAK3, tofacitinib reduces inflammation and
helps to slow down the progression of the disease. In contrast, Baricitinib primarily inhibits
JAK1 and JAK2, which are involved in signaling pathways that regulate immune responses
and inflammatory processes. Upadacitinib selectively targets JAK1, which is involved in
regulating the differentiation and function of several immune cells. Tofacitinib was chosen
for this study because it specifically targets JAK3. Tofacitinib works very well to treat
rheumatoid arthritis by blocking JAK3 [22], a vital regulator of immune cell differentiation
and proliferation. Tofacitinib has been linked to several severe adverse effects in addition
to its efficacy. New inhibitors with novel designs are being created as a result, with the
potential to provide improved effectiveness and fewer adverse effects.
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vast libraries of chemical compounds, it enables the process to be accelerated. By locating
the most promising compounds more quickly and precisely than conventional approaches,
CADD also aids in lowering costs and hazards related to clinical trials. Scientists may
logically and effectively design and optimize medications using CADD, which may result
in the development of novel treatments for diseases that were once incurable [23,24]. In
this study, we employ a quantitative three-dimensional quantitative structure–activity
relationship (3D-QSAR) and pharmacophore-based approach to identify key features
crucial for the selective inhibition of JAK3 of novel derivatives of 2-amino-7,9-dihydro-
8H-purin-8-one [25]. Additionally, absorption, distribution, metabolism, excretion and
toxicity (ADMET) studies were conducted to predict the pharmacokinetic and pharmaceu-
tical properties of candidate ligands, encompassing solubility, permeability and metabolic
stability, which are pivotal for drug efficacy and pharmacokinetics [26,27]. Furthermore,
we investigate covalent interactions between JAK3 and ligands through Cys909, recogniz-
ing its vital role in affinity and binding during cancer and RA cell recognition [28–30].
To identify potentially potent molecules for selective JAK3 inhibition, molecular dynamics
(MD) simulations and molecular mechanics-generalized Born surface area (MM/GBSA)
calculations were performed [31]. Notably, MD simulations were conducted over a 300 ns
to assess the stability of ligand–JAK3 complexes.

2. Results and Discussion
2.1. Three-Dimensional-QSAR Models
2.1.1. Analysis Statistics (Field-Based and Atom-Based)

The selection of Model 4 (Table 1) for the field-based approach is justified based on
several factors. Firstly, Model 4 exhibited the highest coefficient of determination (R2)
among all the models and demonstrated a high R2

CV , indicating strong predictive capacity
and low variance. Furthermore, Model 4 displayed a lower root-mean-square error (RMSE)
compared to the other models (Figure 3), signifying improved accuracy in predictions.
Upon examining the contributing factors within Model 4, it becomes evident that the
Gaussian steric term contributes the most to the predicted biological activity, followed by
the Gaussian hydrophobic term and the Gaussian H-bond acceptor (Table 2).

Table 1. Partial least squares (PLS) parameters for generating field-based models.

Factors SD R2 R2
CV R2 Scramble F p-Value RMSE Q2 Pearson-r

1 0.52 0.62 0.49 0.30 42.50 0.00 0.39 0.69 0.91

2 0.38 0.81 0.40 0.49 53.00 0.00 0.35 0.75 0.87

3 0.30 0.88 0.48 0.63 59.30 0.00 0.30 0.81 0.91

4 0.24 0.93 0.51 0.73 78.50 0.00 0.25 0.87 0.94
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The model’s ability to predict the activity of new compounds was evaluated using Q2,
in addition to the criteria R2 and R2

CV , and was a key factor in the final selection process
(Figure 2). Furthermore, to ensure precise and dependable predictions, the quality of data
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and other factors, such as model robustness, simplicity and interpretability, must also
be taken into consideration. In the case of our model, both field-based (with Q2 of 0.87)
and atom-based (with Q2 of 0.86) methods were evaluated, and both demonstrated good
predictive power.

Table 2. Data for field-based fractions.

Factors Steric Electrostatic Hydrophobic H-Bond Acceptor H-Bond Donor

1 0.579 0.071 0.161 0.131 0.059

2 0.514 0.078 0.22 0.155 0.034

3 0.491 0.087 0.213 0.182 0.028

4 0.47 0.092 0.206 0.203 0.029

These findings highlight the critical importance of steric, hydrophobic and hydrogen
bonding interactions in governing the biological activity of the investigated molecules. In
summary, Model 4 was chosen for the field-based method due to its exceptional predictive
performance, primarily attributed to the significant roles played by steric, hydrophobic and
hydrogen bonding terms in forecasting biological activity. Similarly, Model 4 (Table 3) was
selected for the atom-based method for various reasons.

Table 3. PLS parameters for generating atom-based models.

Factors SD R2 R2
CV R2 Scramble Stability F p-Value RMSE Q2 Pearson-r

1 0.50 0.65 0.51 0.38 0.95 48.70 0.00 0.34 0.77 0.94

2 0.33 0.86 0.51 0.53 0.79 74.30 0.00 0.40 0.67 0.86

3 0.28 0.90 0.51 0.68 0.74 71.10 0.00 0.31 0.80 0.91

4 0.23 0.94 0.47 0.78 0.61 85.30 0.00 0.26 0.86 0.93

Firstly, Model 4 demonstrated the highest coefficient of determination (R2) among all
the models and exhibited a high R2

CV, indicating robust predictive capability and low vari-
ance. Additionally, Model 4 yield a lower RMSE compared to the other models (Figure 4),
thereby indicating an enhanced prediction accuracy. Upon the analysis of the factors within
Model 4, it is observed that the hydrophobic/nonpolar term contributes the most to the pre-
dicted biological activity, followed by the H-bond donor and electron-withdrawing terms
(Tables 3 and 4). These findings emphasize the vital role of hydrophobic and hydrogen-
bonding interactions in determining the biological activity of the studied molecules. In
summary, Model 4 was chosen for the atom-based method due to its superior predictive
performance, primarily driven by the substantial influence of hydrophobic/nonpolar and
hydrogen-bonding terms in predicting biological activity.
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Table 4. Data for atom-based fractions.

Factors H-Bond Donor Hydrophobic/Non-Polar Electron Withdrawal

1 0.042 0.753 0.205

2 0.018 0.813 0.169

3 0.02 0.818 0.162

4 0.029 0.804 0.167

2.1.2. Contours Maps Analysis (Field-Based)

In Figure 5A, contour maps depicting regions of favorable and unfavorable steric fields
reveal that the inclusion of groups A01 and A02 elicits a favorable influence on enhancing
biological activity, whereas the presence of groups A1 and A2 yields an unfavorable effect.
Moving to Figure 5B, contour maps portraying regions of favorable and unfavorable
electrostatic fields indicate that groups B1–B4 exhibit a favorable impact on promoting
biological activity, whereas the introduction of groups B01–B03 results in an unfavorable
effect. Turning our attention to Figure 5C, contour maps characterizing regions of favorable
and unfavorable hydrophobic fields suggest that groups C01 and C02 contribute favorably
to the enhancement of biological activity, while groups C1–C3 have an adverse effect.
Proceeding to Figure 5D, contour maps displaying regions of favorable and unfavorable
hydrogen-bond acceptor fields demonstrate that groups D1–D4 exert a favorable influence
on increasing biological activity, whereas groups D01 and D02 have an unfavorable effect.
Lastly, in Figure 5E, the contour map delineates the unfavorable region of the hydrogen-
bond donor field, wherein the presence of groups E1–E2 exhibits an adverse effect on
augmenting biological activity.
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Figure 5. Field-based contour maps were employed in conjunction with compound 35 to elucidate
the molecular effects. (A) Steric contour maps were generated, where green contours correspond
to regions favoring steric interactions, while yellow contours represent regions disfavoring steric
interactions. (B) Electrostatic contour maps were constructed, with blue contours signifying regions
favoring positively charged substituents and red contours indicating regions favoring negatively
charged substituents. (C) Hydrophobic contour maps were analyzed, with yellow contours denoting
hydrophobic regions, which were favored, and grey contours indicating hydrophilic regions, which
were disfavored. (D) Acceptor contour maps were examined, where magenta contours depicted
regions favoring electron acceptor groups and red contours portray regions disfavoring electron
acceptor groups. (E) H-bond donor contour maps were investigated, where cyan contours indicate
regions favoring electron donor groups and purple contours reveal regions disfavoring electron
donor groups.
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The contour maps presented in Figure 5A–E offer valuable insights into the impact of
various molecular fields, including steric, electrostatic, hydrophobic and hydrogen bond
acceptor/donor, on the modulation of biological activity. The findings provide evidence
that specific molecular groups, namely A01, A02, B1–B4, A2, C01, C02 and D1–D5, exhibit
favorable attributes in promoting biological activity. Conversely, the inclusion of groups
A1–A2, B01–B03, C1–C3, D01 and D02 leads to an unfavorable effect on the enhancement
in biological activity. These results have significant implications for the rational design of
novel molecules with potential applications in biological or therapeutic settings.

2.1.3. Contours Maps Analysis (Atom-Based)

The atom-based contour maps presented in Figure 6 illustrate the distribution of
favorable (blue) and unfavorable (red) regions in terms of biological productivity. This
analysis revealed that the red contours observed in Figure 6 correspond to an increase in
biological productivity. Conversely, the red contours observed suggest an adverse impact
on the enhancement in biological productivity.
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withdrawing electrons.

In Figure 6A, the visualization of a blue cube proximal to the nitrogen atom and
cyclohexane moiety signifies a region that acts as a hydrogen bond donor, thereby pro-
moting biological activity. Conversely, the cubes situated on the bonded carbon or the
nitrile moiety exhibit an unfavorable effect on the augmentation of biological activity.
Moving to Figure 6B, the observation of a prominent red and blue cube on (9H-purin-9-yl)
cyclohexyl) acetonitrile suggests that this specific region can either facilitate or impede
biological activity due to the presence of non-polar hydrophobic groups. Additionally, the
presence of a blue cube on 5-chloro-2-oxo-1,2-dihydropyridine indicates that non-polar
hydrophobic groups within this region promote an increase in biological activity. Upon
scrutinizing Figure 6C, it becomes apparent that the red cubes in proximity to 5-chloro-
2-oxo-1,2-dihydropyridine and 5-chloropyridine impede the enhancement of biological
activity. However, the presence of (cyclohexyl)acetonitrile near the blue cubes stimulates
the increase in biological activity.

2.2. Pharmacophore Model

The results obtained from the pharmacophore analysis presented in Table 5 exhibit
distinct values for each model. The survival score serves as an indicator of the overall
performance of the model in predicting pharmacological properties, with higher scores
indicating a superior model performance. The site score reflects the frequency of corre-
spondence between the model and the known pharmacophore sites. The vector score
signifies an optimal angle between different elements of the model, a crucial factor for
prediction accuracy. The volume score represents the optimal size of the active cavity for
effective interaction with the target molecule. The selectivity score quantifies the model’s
ability to discriminate between active and inactive molecules. The num-matched score
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indicates the number of matches between the model elements and known pharmacophore
sites. The inactive score measures the percentage of correctly identified inactive molecules
by the model. The adjusted score is a modification of the survival score that considers
the complexity of the model. The sites score represents the total count of corresponding
pharmacophore sites identified by the model. Lastly, the PhaseHypo score evaluates the
quality of the model’s hypothetical phase, which is crucial for accurate predictions.

The first model in the table demonstrates a relatively high survival score of 5.88,
suggesting favorable predictive capabilities (Table 5 and Figure 7). Moreover, it exhibits
a match count of 19, indicating proficiency in identifying known pharmacophore sites.
The model also displays a selectivity value of 2.02, signifying its ability to discriminate
between active and inactive molecules. With a volume value of 0.76, it appears to possess
an optimally sized active cavity for effective interaction with the target molecule. The fit
value of 3.61 takes into account the model’s complexity. Lastly, the hypothetical phase of
the model was determined to be 8.55, indicating a high-quality phase that contributes to
prediction accuracy. Overall, these results indicate that the first model holds promise as
a suitable candidate for predicting pharmacological properties.
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Table 5. PHASE-generated numerous pharmacophore theories.

Model Survival Site Vector Volume Selectivity Num-Matched Inactive Adjusted Sites PhaseHypo

DHRRR1 5.88 0.83 0.99 0.76 2.02 19 2.27 3.61 8.85 8.55

DHRRR2 5.86 0.83 0.99 0.75 2.02 19 2.27 3.60 8.85 8.55

DHRRR3 5.86 0.82 0.99 0.76 2.02 19 2.28 3.58 8.85 8.55

DHRRR4 5.85 0.83 0.98 0.75 2.01 19 2.28 3.57 8.85 8.55

DHRRR5 5.83 0.80 0.98 0.74 2.04 19 2.27 3.56 8.85 8.55

DHRRR6 5.83 0.80 0.98 0.74 2.03 19 2.24 3.59 8.85 8.55

DHRRR7 5.81 0.82 0.99 0.72 2.01 19 2.21 3.60 8.85 8.55

DHRRR8 5.80 0.80 0.97 0.72 2.02 19 2.14 3.66 8.85 8.55

DHRRR9 5.76 0.82 0.97 0.69 2.01 19 2.09 3.67 8.85 8.55

DHRR10 5.37 0.83 0.99 0.76 1.51 19 2.22 3.14 8.85 8.55

DRRR11 5.34 0.93 0.99 0.80 1.34 19 2.23 3.11 8.85 8.55

DHRR1 5.33 0.81 0.99 0.75 1.50 19 2.26 3.07 8.85 8.55

DHRR2 5.34 0.83 0.98 0.75 1.50 19 2.23 3.11 8.85 8.55

DHRR3 5.35 0.83 0.98 0.75 1.51 19 2.25 3.10 8.85 8.55

DHRR4 5.34 0.88 1.00 0.72 1.47 19 2.16 3.18 8.85 8.55
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Table 5. Cont.

Model Survival Site Vector Volume Selectivity Num-Matched Inactive Adjusted Sites PhaseHypo

DHRR5 5.35 0.87 1.00 0.74 1.46 19 2.22 3.13 8.85 8.55

HRRR1 5.33 0.83 0.99 0.76 1.48 19 2.70 2.63 8.85 8.55

HRRR2 5.32 0.83 0.98 0.76 1.48 19 2.76 2.57 8.85 8.55

DHRR5 5.34 0.81 0.99 0.76 1.49 19 2.24 3.10 8.85 8.55

Comparing Field-Based and Atom-Based Models with the DHHHR Pharmacophore Model

The pharmacophore model predicts DHHHR1 for the biological activity against JAK3.
It indicates the presence of three aromatic cycles, three hydrophobic features and one
hydrogen-bond donor feature. On the other hand, the coefficients in the 3D-QSAR represent
the relative importance of each factor (steric, electrostatic, hydrophobic, hydrogen-bond
acceptor and hydrogen-bond donor) in predicting biological activity. In the DHHHR1
pharmacophore model, the hydrophobic features correspond to the most important coeffi-
cients in both models. In the field-based model, the hydrophobic factor has a coefficient of
0.206, suggesting its significant role in predicting biological activity. Furthermore, in the
atom-based 3D-QSAR model, the hydrophobic/non-polar factor has a coefficient of 0.804,
indicating its importance as well. The pharmacophore model also predicts the presence of
a hydrogen-bond donor feature. In the field-based model, the hydrogen-bond donor factor
has a coefficient of 0.029, while in the atom-based 3D-QSAR model, the hydrogen-bond
donor factor also has a coefficient of 0.029. Although this coefficient is relatively low, it
shows that this feature can contribute to the predicted biological activity.

The features in the pharmacophore model, such as the hydrophobic and hydrogen-
bond donor features, correspond to the factors in the 3D-QSAR model with significant
coefficients, suggesting a relationship between the two models in predicting the biological
activity against JAK3.

2.3. Three-Dimensional-QSAR Models Insights for Designing Novel JAK3 Ligands

Figure 8 presents the essential information provided by the field-based and atom-based
approaches for the design of novel ligands targeting anti_JAK3. The results of this analysis
highlight the key molecular interactions between JAK3 and the ligands, with particular
emphasis on the central role of Cys909. These findings are of paramount importance for
medicinal chemists and drug designers in the development of promising therapies aimed
at targeting JAK3 and improving the treatment outcomes for patients with autoimmune
diseases and cancer. The 3D-QSAR models’ results, summarized in Figure 8, lead us to
designate the 13 JAK3 inhibitors, shown in Table 6 with their pIC50.
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Table 6. Metrics for the DDRRR 1 hypothesis evaluation.

Hypothesis DHRRR_1

PhaseHypo Score 1.35
EF1% 2.3

BEDROC160.9 0.96
ROC 0.87

AUAC 0.74
Ave Outranking Decoys 4.29

Total Actives 17
Ranked Actives 17

Matches 4 of 5
Excluded Volumes Yes

2.4. Pharmacophore Validation

The performance of prediction models is frequently assessed in molecular modeling
using the H-validation technique. To train and test the model in a cross-validated fashion,
this approach divides the dataset into several of groups, or subsets, and uses each of
these groups.

Table 6 indicates that the pharmacophore model is effective. The model’s high true-
positive rate and low false-positive rate are both shown by the ROC (receiver operating
characteristic) value of 0.87. This shows that the model can properly discriminate between
chemicals that are active and inactive. Other indicators of strong model performance are
EF1 percent (1 percent enrichment factor) and BEDROC160.9 (BEDROC with an alpha
value of 160.9). The model appears to be able to rank inactive compounds on average lower
than active compounds, as seen by the average decoy ranking, which is also rather high
at 4.29. This shows that the approach is successful at locating active substances and may be
helpful in virtual screening initiatives.

The ROC curve as a function of the false positive rate (FPR) in Figure 9 indicates the
performance of a binary classification model. The FPR represents the number of results
incorrectly classified as positive compared to the total number of true negatives. The
closer the ROC curve is to the upper left corner, the more the model is considered to be
performing well. In this example, the model has a good performance because the ROC
curve approaches the upper left corner, indicating that the model has a high sensitivity
(ability to detect true positives) and low specificity (low false-positive rate).
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2.5. Predicted Activity Using 3D-QSAR Models of New Ligands’ Design

The most optimal models for field-based and atom-based analyses were selected based
on the findings presented in Table 7. Subsequently, these models were utilized to make
predictions of the pIC50 values for the target molecules. The predicted pIC50 values were
then compared to the experimental pIC50 values to evaluate the accuracy of the models.
The results demonstrate that both the field-based and atom-based models exhibit robust
predictive capabilities for the target molecules. The predicted pIC50 values closely align
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with the experimental values, with minimal absolute mean differences. These outcomes
underscore the efficacy of both the field-based and atom-based models in forecasting the
activity of molecules against the JAK3 target. Furthermore, these models can also be
leveraged for the design of new molecules with anticipated activity against the JAK3 target,
thereby significantly expediting the drug discovery process.

Table 7. Predicted activity via field-based and atom-based methods.

Reference
pIC50 = 9.15
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Table 7. Cont.

Reference
pIC50 = 9.15
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2.6. ADMET and Screening Using Covalent Docking

The ADMET study is a crucial step in the development of new drug compounds,
enabling their pharmacokinetics and safety to be assessed [32].

The ADMET analysis of the new compounds predicted in Table 7 shows that com-
pounds D2, D3, D11 and D12 exhibited the best LogS values (lower negative values under
−4 indicate a lower solubility). D1, D5, D7 and D13 had optimal LogD (the logarithm of
the distribution coefficient between octanol and water, indicating the lipophilicity of the
compound) and LogP values (the logarithm of the partition coefficient between octanol
and water, measuring the hydrophobicity of the compound). Compound D3 demonstrated
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the best intestinal absorption (HIA, indicating the percentage of the compound absorbed
into the bloodstream after oral administration), whereas Caco-2 cell permeability was
the highest for D13. MDCK permeability (measuring the compound’s ability to cross the
blood–brain barrier) was optimal for D1 and D5, and D7 and D8 exhibited the best BBB
(blood–brain barrier) penetration (indicating the ratio of the compound’s concentration in
the brain to that in the blood). D2, D3 and D8 had the most suitable volumes of distribution
(VDss, indicating the extent of the compound’s distribution in the body).

The inhibition of the CYP3A4 enzyme is crucial to JAK3 inhibition [33–36], as CYP3A4
is involved in the metabolism of many drugs, including JAK3 inhibitors. CYP3A4 belongs
to the cytochrome P450 family. This family of enzymes is involved in the metabolism of
drugs and other foreign substances (xenobiotics) in the body. By inhibiting CYP3A4, the
plasma concentration of JAK3 inhibitors can be increased, enabling a more effective inhi-
bition of JAK3 [37,38]. This may be particularly important for patients with autoimmune
diseases, such as rheumatoid arthritis, where effective JAK3 inhibition can help to reduce
inflammation and improve symptoms. Based on the results provided, it appears that all
compounds are inhibitors of CYP3A4. D4 did not inhibit any metabolic enzyme, whereas
D7 and D9 were the least inhibitory. D4, D9 and D10 were not metabolized, and clearance
was good for all compounds. However, only D8 presented a risk of genotoxicity.

The inhibition of JAK3 by the ligand can lead to a modification of the conformation
of CYP3A4, which can disrupt its enzymatic activity. Several mechanisms can contribute
to this inhibition [1,39]. Firstly, the modification of the conformation of CYP3A4 can
alter the structure of its active site, which is responsible for substrate binding and drug
metabolism. This can prevent substrate binding or alter catalysis by changing the spatial
arrangement of active residues. Moreover, the modification of the conformation of CYP3A4
can disrupt the binding of NADPH, which is an essential cofactor for the enzymatic activity
of CYP3A4. NADPH is required to provide electrons to CYP3A4, which are used to activate
molecular oxygen and form reactive radicals that metabolize substrates [1,39–41]. Finally,
the inhibition of JAK3 by the ligand can also affect the regulation of the expression of
CYP3A4. Studies have shown that JAK3 signaling can regulate the expression of CYP3A4
by modifying the expression of nuclear receptors involved in its regulation. Therefore,
the inhibition of JAK3 by the ligand can disrupt this regulation and affect the expression
of CYP3A4. In conclusion, ligands with ADMET properties can inhibit the activity of
CYP3A4 due to their ability to form a covalent bond with the Cys909 residue of JAK3. This
interaction can disrupt the conformation of CYP3A4 and alter its enzymatic activity in
several ways, which can have implications for drug metabolism and toxicity [42].

The results show that the newly designed compounds in Table 8 meet the drug-likeness
criteria and have the potential to serve as promising leads for the development of new oral
drugs. The compounds exhibited suitable physicochemical properties and complied with
Lipinski’s rules for potential oral bioavailability.

2.7. Physicochemical Property

The results in Table 9 indicate that all compounds adhered to the established guidelines
for the number of heavy atoms (HA, ranging from 8 to 12), the number of hydrogen-bond
donors (HD, ranging from 3 to 7), the topological polar surface area (TPSA, ranging from
111.69 to 167.4 Å2), the number of rotations (nRot, ranging from 2 to 4), the number of rings
(nRing, ranging from 4 to 5), the maximum number of rings (MaxRing, 9), the number of
heteroatoms (nHet, ranging from 9 to 13), the hydrophilicity coefficient (fChar, ranging from
0 to 0), the number of stereogenic centers (nStereo, 0) and the molar mass (MW, ranging
from 360.11 to 477.14 g/mol). Furthermore, all compounds complied with Lipinski’s rules
for potential oral bioavailability, which include a molecular weight (MW) of less than 500,
no more than five hydrogen-bond donors (HD ≤ 5), no more than ten heavy atoms
(HA ≤ 10) and a LogP value lower than or equal to 5. In conclusion, the series of
13 polycyclic organic compounds meet the drug-likeness criteria and have the potential to
serve as promising leads for the development of new oral drugs.
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Table 8. ADMET analysis of the compounds that were newly designed.

ADMET Rule D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 Tofacitinib

LogS −4–0.5 −3.582 −3.387 −3.928 −3.464 −3.861 −3.469 −3.941 −3.944 −3.463 −3.463 −3.388 −3.388 −3.872 −2.176

LogD 1–3 3.341 2.983 2.875 1.636 2.88 1.635 2.88 3.122 1.315 1.315 1.329 1.329 3.159 1.426

LogP 0–3 2.929 2.256 2.297 1.197 2.251 1.253 2.195 2.887 0.939 0.939 0.861 0.861 2.711 1.174

HIA >30 0.849 0.64 0.938 0.42 0.853 0.797 0.848 0.155 0.252 0.252 0.462 0.462 0.438 0.934

Caco-2 >−5.15 −5.084 −5.132 −5.284 −5.829 −5.186 −5.824 −5.294 −5.17 −5.751 −5.751 −5.744 −5.744 −4.964 −4.655

MDCK >20 × 10−6 1.33 × 10−5 1.07 × 10−5 4.10 × 10−6 7.24 × 10−6 3.84 × 10−6 4.97 × 10−6 4.26 × 10−6 8.33 × 10−6 4.48 × 10−6 4.48 × 10−6 5.18 × 10−6 5.18 × 10−6 5.59 × 10−6 6.3 × 10−6

BBB 0–0.3 0.041 0.027 0.012 0.107 0.011 0.073 0.01 0.009 0.35 0.35 0.073 0.073 0.037

VDss 0.04–20 0.561 0.589 0.484 1.51 0.433 1.363 0.481 0.38 1.012 1.012 1.226 1.226 0.655

1A2-inh Yes No No No No No No Yes No No No No No Yes

1A2-sub Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

2C19-inh Yes Yes Yes No No No No Yes No No No No Yes No

2C19-sub No No No No No No No No No No No No No No

2C9-inh Yes Yes Yes Yes Yes No No Yes No No No No No No

2C9-sub No No No No No No No No No No No No No No

2D6-inh No No No No No No No No No No No No No No

2D6-sub No No No No No No No No No No No No No No

3A4-inh Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

3A4-sub No No Yes Yes Yes Yes Yes No Yes Yes Yes Yes No No

CL ≥5 7.891 7.891 8.039 5.676 5.94 7.485 7.953 7.953 5.648 6.664 7.141 6.372 6.753 8.737

Ames No No No No No No No Yes No No No No No No
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Table 9. The physicochemical features of the compounds that were newly designed.

P. P nHA nHD TPSA nRot nRing MaxRing nHet fChar nStereo MW Lipinski

Rule 0~12 0~7 0~14 0~11 0~6 0~6 1~15 −4~4 ≤2 100~600

Accepted

D1 8 3 111.69 3 4 9 10 0 0 402.040

D2 8 3 111.69 3 4 9 9 0 0 368.080

D3 9 4 127.48 2 5 9 10 0 0 393.070

D4 11 3 151.61 4 5 9 12 0 0 477.140

D5 9 4 127.48 2 5 9 10 0 0 393.070

D6 11 4 154.51 4 5 9 12 0 0 465.140

D7 9 4 127.48 2 5 9 10 0 0 393.070

D8 9 3 116.62 2 5 9 10 0 0 393.070

D9 12 3 156.54 4 5 9 13 0 0 466.140

D10 12 3 156.54 4 5 9 13 0 0 466.140

D11 12 4 167.4 4 5 9 13 0 0 466.140

D12 12 4 167.4 4 5 9 13 0 0 466.140

D13 8 3 111.69 2 4 9 9 0 0 360.110

Tofacitinib 7 1 88.910 4 18 9 7 0 2 312.170

The compounds D1, D2 and D3 share a common core structure of 2-amino-7,9-dihydro-
8H-purin-8-one, with only substitutions in the aromatic ring differing between them. Specif-
ically, D1 contains a pyridine ring, D2 includes a phenyl ring with a pyridine moiety, while
D3 has a phenyl ring. The results of covalent docking allowed us to evaluate the affinity
(Kcal/mol) of D1 for the newly designed groups using 3D-QSAR and pharmacophore
models. The compound 5-chloro-6-(1H-imidazol-4-yl)pyridin-2(1H)-one interacts with
several residues, including a and c, as well as d and g, which correspond to the group
2-(piperidin-1-yl)acetonitrile. Notably, D1 exhibited good ADMET properties and acted as
a CYPA34 inhibitor. Compared to tofacitinib, the new predicted molecules exhibited good
ADMET and physicochemical properties.

The utilization of computer modeling in chemistry simplifies and guides the design of new
groups for each molecule with advantageous pharmacokinetic and ADMET features. Moreover,
the models employed in this study can serve as a point of reference for future research.

2.8. Covalent Docking (CovDock)

Research based on the freshly discovered crystal structure of JAK3 (PDB ID: 4Z16),
for example, demonstrated that CovDock could properly predict the binding modes and
affinities of newly developed compounds that establish a covalent bond with the Cys909
residue in JAK3 [3]. This approach has demonstrated a good resolution and better ligand
structure goodness of fit to experimental data. On the other hand, molecular docking has
been used to study the interaction between tofacitinib and JAK3 [43,44]. Tofacitinib is known
to have solubility issues, but molecular docking has been employed to predict its binding mode
and identify potential modifications that could improve its solubility and efficacy.

By combining the ADMET study with a CovDock study, molecules can be filtered to
select only those with a high affinity for the therapeutic target [45]. Indeed, drugs need
to interact specifically and strongly with their biological target if they are to be effective.
Following ADMET analysis, the molecules selected for CovDock, the first five compounds
with high affinity, were chosen for further study, as shown in Figure 10 and Table 10, and
were able to form a covalent bond with residue Cys909.
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The CovDock analysis revealed that compound D1 interacts with JAK3 protein
residues in several ways (Figure 11A). Specifically, it forms two hydrogen bonds with
residue LEU905, a carbon–hydrogen bond with TYR904, a Pi–cation bond with ARG911,
a Pi–anion bond with ASP912, as well as two Pi–sigma bonds with LEU828. Additionally,
it interacts with VAL836, ALA853, VAL884, MET902 and LEU956 through alkyl-type in-
teractions. Finally, Pi–alkyl bonds are observed with residues ALA853, LEU956 and an
unidentified molecule. These findings suggest that compound D1 has potential as a JAK3
protein inhibitor.

Similarly, the CovDock analysis of D2 indicated that this compound interacts with
JAK3 protein residues through several bonds (Figure 11B). It forms two hydrogen bonds
with LEU905, a carbon–hydrogen bond with TYR904, and another with LEU828, as well
as a Pi–sigma interaction with LEU828 and a Pi–sulfide bond with MET902. In addition,
it interacts with LEU956, LEU828, ALA853, VAL836, ALA853, VAL884, LEU956, ALA966
and LEU956 through alkyl-type interactions, at varying distances. These interactions
suggest that D2 also has potential as a JAK3 inhibitor. D3 (Figure 11C) indicates that
this compound interacts with JAK3 protein residues through two hydrogen bonds with
LEU905 and GLU903, a carbon–hydrogen bond with TYR904, two carbon–hydrogen bonds
with ASP912, a Pi–cation bond with ARG911, and a Pi–sulfide bond with MET902. It
also interacts with VAL836, MET902, VAL836, ALA853, VAL884, LEU956, LEU828 and
Cys909 through Pi–alkyl type interactions, at varying distances. These varied interactions
suggest that D3 could be a potential JAK3 protein inhibitor. D4 (Figure 11D) indicates
that this compound interacts with JAK3 protein residues through two hydrogen bonds
with LEU905, a carbon–hydrogen bond with TYR904, another with LEU828, a Pi–anion
interaction with ASP912, and two Pi–sigma bonds with LEU828 and LEU956. It also
interacts with LEU956, LEU828, ALA853, VAL836, ALA853, VAL884, MET902 and ALA966
through alkyl-type interactions, at varying distances. These interactions suggest that D4
also has potential as a JAK3 protein inhibitor. D5 (Figure 11E) indicates that this compound
interacts with JAK3 protein residues through three hydrogen bonds with LEU905 and
ASP912, a carbon–hydrogen bond with TYR904, and two carbon–hydrogen bonds with
ASP912 and GLU903. It also forms Pi–sigma interactions with LEU828 and Pi–sulfide
bonds with MET902. Additionally, D5 interacts with LEU956, LEU828, ALA853, LEU905,
VAL884, LEU956, ALA853, LEU956, LEU956 and ALA966 through alkyl-type interactions,
at varying distances. These varied interactions suggest that D5 could be a potential inhibitor
of the JAK3 protein. Finally, at distances of 3.04, 2.75, 2.08 and 3.78, tofacitinib established
numerous hydrogen bonds with residues Leu828 and Leu906. Leu956, Ala966, Leu828
(4.35), Ala853 (4.56) and Leu956 (4.39) were among the residues with which tofacitinib
interacted hydrophobically (Figure 11F).
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Figure 11. Two-dimensional and three-dimensional interactions of the newly designed compounds
with JAK3 protein using CovDock analysis. Figure shows the docking analyses for the new com-
pounds, D1 to D5, which favor (A–E), respectively. (F) favors Tofacitinib, which is FDA-approved.

Table 10. The affinity of compounds studied by CovDock.

Compound D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 Tofacitinib

Affinity
(Kcal/mol) −9.10 −9.55 −9.37 −9.53 −9.5 −5.63 −6.71 −7–24 −6.36 −4.15 −7.42 −6.66 −8.10 −7.50

The results generated by the CovDock analysis of compounds D1 to D5 suggest that
all these compounds have potential as JAK3 inhibitors. The affinity values obtained by
CovDock for these compounds range from −7.37 to −9.55 Kcal/mol, indicating that they
have a good binding affinity with the JAK3 protein (Table 10). In conclusion, the presence of
a specific cysteine residue, Cys909, in the enzyme’s active site makes CovDock particularly
relevant for the discovery of JAK3 inhibitors.

The D1–D5 compounds analyzed in this study were able to form a covalent bond with
Cys909 and interacted with several JAK3 protein residues through multiple types of bonds
and interactions, suggesting their potential as JAK3 protein inhibitors. The study highlights
the importance of CovDock in drug discovery and the potential for the development of
new drugs for the treatment of autoimmune diseases, such as rheumatoid arthritis. The
hydrogen bonds observed between the molecules and the protein residues, as well as
the other types of interactions, such as Pi–cation, Pi–anion and Pi–sigma bonds, indicate
the importance of hydrogen bonding in the molecular recognition process, which can be
exploited in the design of new drugs with improved affinity and selectivity.
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2.9. Molecular Dynamics Simulation Analysis

The RMSD results shown in Figure 12 illustrate the high degree of stability of the new
compounds in interaction with JAK3. Compound D1 demonstrated stability with an RMSD
between 2.5 and 3 Å, compound D2 with an RMSD between 2 and 2.5 Å, compound D3
with an RMSD between 1.5 and 2 Å, compound D4 with an RMSD between 1 and 2.5 Å
and finally, compound D5 with an RMSD between 2.5 and 3.5 Å. The analysis of the graphs
shows that the most stable RMSDs follow the following order: D3, D2, D4, D1 and finally
D5. The RMSF analysis shows a similar stability for the residues of the complexes formed
by the new compounds with JAK3 (Figure 12), except the common residues showing an
RMSF greater than 3 Å (ARG1086, PRO814, ARG1085, GLY861, ILE1040, PRO862, ASN1028,
ASP863, GLY831, ILE1041, ASN832, LYS830, ILE1039, SER860, PHE833, GLN864, PRO814,
ARG1086, THR815, ARG1085, ASN832, ILE816, GLY831, PHE833, LEU844, ASN1022,
ASN1020, ASN1028, ARG1084, ASN1021, GLY834, LYS830, ASN1031, ASP846, ASN1030
and GLY845), which lie outside the pocket site of the JAK3 active site. Both SASA and RoG
calculation results indicate that all compounds retain their structure during the 300 ns simulation
(Figure 12). During the simulation, an average SASA of 15,500 Å2 was observed for D1, D2 and
D5, and 14570 Å2 for D3, D4 and tofacitinib, with remarkable stability. The same was observed
for RoG, with an average of 20.2 Å for D1, D2 and D5, and 19.6 Å for D3, D4 and tofacitinib.
This means that the compactable structures can maintain their shape and surface area even in
the presence of a solvent. Additionally, the stable RoG values indicate that the structures of the
complexes are able to maintain their compactness and shape during the simulation.

The nH-bond analysis in Figure 13 shows that the newly designed compounds ex-
hibit stability with a minimum number of one bond and a maximum number of up to
nine bonds during the 300 ns simulation, with no extraneous occupancies. These results
confirm previous findings for RMSD, RMSF, SASA and RoG, which also testify to the
stability of complexes formed with JAK3. The new compounds show a remarkable affinity
for JAK3, with high structural stability during the 300 ns simulation.
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2.9.1. DSSP Analysis

The letters T, E, B, H, G, I and C are codes used in the DSSP (Dictionary of Secondary
Structure of Proteins) program to describe the secondary structure of proteins (Figure 14).
Their meanings are: T: turn; E: extended strand in parallel and/or anti-parallel β-sheet
conformation; B: residue in isolated β-bridge; H: α-helix; G: 3-helix; I: 5-helix; and C: coil
(coiled or unstructured structure). These codes describe the local conformation of each
protein residue in terms of its helical, β-sheet or loop conformation. The DSSP program is
very useful for analyzing protein structure and predicting function.
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The DSSP analysis shows that the complexes formed between compounds D1–D5 and
JAK3 (Figure 15), compared to the apoprotein, exhibit similar structures with some exceptions
for certain transitions between the T, E, B, H, G and I conformations. Overall, however,
the comparisons show a strong similarity between the complexes formed, suggesting that
the complexes tend to be stable. This may be due to the nature of the interaction between
the compounds and JAK3, which allows a stable conformation of the complexes formed.
This analysis is important because it suggests that the D1–D5 compounds have the ability
to form stable complexes with JAK3, which may be beneficial for the development of
drugs for the treatment of diseases linked to JAK3 activity. In conclusion, the results of
the DSSP analysis suggest that the complexes formed between compounds D1–D5 and
JAK3 are stable and that these compounds can be considered potential candidates for the
development of drugs targeting JAK3.

Molecules 2023, 28, x FOR PEER REVIEW 19 of 35 
 

 

The DSSP analysis shows that the complexes formed between compounds D1–D5 
and JAK3 (Figure 15), compared to the apoprotein, exhibit similar structures with some 
exceptions for certain transitions between the T, E, B, H, G and I conformations. Overall, 
however, the comparisons show a strong similarity between the complexes formed, sug-
gesting that the complexes tend to be stable. This may be due to the nature of the interac-
tion between the compounds and JAK3, which allows a stable conformation of the com-
plexes formed. This analysis is important because it suggests that the D1–D5 compounds 
have the ability to form stable complexes with JAK3, which may be beneficial for the de-
velopment of drugs for the treatment of diseases linked to JAK3 activity. In conclusion, 
the results of the DSSP analysis suggest that the complexes formed between compounds 
D1–D5 and JAK3 are stable and that these compounds can be considered potential candi-
dates for the development of drugs targeting JAK3.  

 
Figure 15. Analysis of the newly designed compounds compared to apoprotein using DSSP. 

2.9.2. Free Energy Landscape Analysis (FEL) 
The analysis of the FEL for the design of new compounds includes folding spots 

along the PC2 and PC1. D1 and D2 represent two folding spots located between −2.3 and 
−2.2, with average free energy landscape energies of 7.7 and 7 kcal/mol, respectively (Fig-
ure 16. Compounds D3 and D4 show a single folding spot located between −2.1 and −1.5, 
with an average free energy landscape of 6.5 kcal/mol for both (Figure 17). D5 represents 
a single folding spot located between −2 and 2, with an average free energy landscape of 
7 kcal/mol (Figures 18 and 19). As for tofacitinib, it represents a single folding spot located 
between the PC2 and PC1 of −2 and 3, with an average free energy landscape of 9 kcal/mol 
(Figures 18 and 19). 

According to the analysis of the results, compounds with a single folding spot indi-
cate that the structure has not undergone additional folding changes (complexes), but 
overall, the structures demonstrate stability based on the landscape free energy. Finally, 
the comparison between the new ligands and FDA-approved tofacitinib indicates that the 
new inhibitors exhibit less stability than tofacitinib (low energy implies reduced stability). 

Figure 15. Analysis of the newly designed compounds compared to apoprotein using DSSP.



Molecules 2023, 28, 5914 19 of 34

2.9.2. Free Energy Landscape Analysis (FEL)

The analysis of the FEL for the design of new compounds includes folding spots along
the PC2 and PC1. D1 and D2 represent two folding spots located between −2.3 and −2.2,
with average free energy landscape energies of 7.7 and 7 kcal/mol, respectively (Figure 16.
Compounds D3 and D4 show a single folding spot located between −2.1 and −1.5, with an
average free energy landscape of 6.5 kcal/mol for both (Figure 17). D5 represents a single
folding spot located between −2 and 2, with an average free energy landscape of 7 kcal/mol
(Figures 18 and 19). As for tofacitinib, it represents a single folding spot located between the PC2
and PC1 of −2 and 3, with an average free energy landscape of 9 kcal/mol (Figures 18 and 19).
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According to the analysis of the results, compounds with a single folding spot indicate
that the structure has not undergone additional folding changes (complexes), but overall,
the structures demonstrate stability based on the landscape free energy. Finally, the com-
parison between the new ligands and FDA-approved tofacitinib indicates that the new
inhibitors exhibit less stability than tofacitinib (low energy implies reduced stability).

2.10. MM/GBSA Analysis

In drug discovery, the MM/GBSA method is widely employed to assess potential drug
candidates and optimize their binding affinity. The outcomes of the MM/GBSA analysis of-
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fer valuable insights into the pivotal residues implicated in the binding interaction, thereby
guiding the rational design of novel compounds with enhanced binding affinity. The results
presented in Table 11 show the MM/GBSA outcomes during the 300 ns simulation for the
new compounds predicted with tofacitinib.

Table 11. Comparative study of delta energy (Kcal/mol) for the newly designed compounds D1–D5
in comparison with tofacitinib using MM/GBSA.

Delta Energy
(Kcal/mol) D1 D2 D3 D4 D5 Tofacitinib

∆VDWAALS −33.95 −36.93 −40.29 −32.60 −37.09 −22.82

∆EEL −30.27 −29.89 −33.86 −32.77 −19.55 −32.93

∆EGB 42.36 46.61 48.34 45.61 34.48 55.89

∆ESURF −5.00 −4.78 −5.55 −4.78 −4.64 −3.34

∆GGAS −64.22 −66.82 −74.15 −65.37 −56.64 −55.75

∆GSOLV 37.35 41.83 42.79 40.84 29.84 52.55

∆TOTAL −26.87 −24.99 −31.37 −24.54 −26.80 −3.20

The MMGBSA method was used to estimate binding free energy from molecular
dynamics simulations. Table 11 shows that the main contributions to binding energy come
from van der Waals interactions (∆VDWAALS), electrostatic interactions (∆EEL), energy due
to cavitation/solvation (∆EGB) and surface interactions (∆ESURF). The values of ∆VDWAALS
and ∆EEL for the new compounds (D1–D5) were all more negative than those of tofacitinib.
This indicates that the new compounds have stronger van der Waals and electrostatic
interactions with the target protein compared to tofacitinib, which could potentially lead
to more stable binding. The values of ∆EGB for all the compounds (D1–D5) were positive,
indicating that energy is required for cavitation and solvation. However, the values are
lower than that of tofacitinib, suggesting that the new compounds may have less solvation
energy, which could contribute to their favorable binding. The values of ∆ESURF for
all the compounds (D1–D5) and tofacitinib were negative, indicating favorable surface
interactions between the ligands and the target protein. The values of ∆GGAS for all the
compounds (D1–D5) and tofacitinib were negative, indicating that the gas-phase energy of
the complexes is favorable. However, the values for D3 and D4 were more negative than those
of the other compounds, suggesting that they have stronger gas-phase interactions, potentially
contributing to their stability. The values of ∆GSOLV for all the compounds (D1–D5) were positive,
indicating that energy is required for solvation. However, the values were lower than that
of tofacitinib, suggesting that the new compounds may have less solvation energy, which
could be advantageous for binding. The values of ∆TOTAL for all the compounds (D1–D5)
were more negative than that of tofacitinib. This indicates that the new compounds, on
average, have more favorable binding energies compared to tofacitinib, suggesting their
potential as better JAK3 inhibitors. The comparative analysis of the ∆Energy values shows
that the new compounds (D1–D5) generally exhibit more favorable interactions with the
target protein compared to tofacitinib. D3 stands out with the most negative ∆TOTAL value,
indicating that it could potentially form the most thermodynamically stable complex among
the studied compounds.

3. Conclusions

In this study, novel medications for RA, one of the most common autoimmune illnesses
globally, were sought using molecular modeling approaches. The search for JAK3 inhibitors,
crucial enzymes for treating autoimmune illnesses, such as RA, was the main objective
of the study. The 3D-QSAR approach was employed to predict new JAK3 inhibitors, and
two robust models were developed, yielding good results by identifying groups that can
readily direct their interaction. A reliable pharmacophore model was provided to enable
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the clear characterization of chemical features, leading to the design of 13 inhibitors with
their pIC50. CovDock was used to investigate the binding affinity of these inhibitors,
revealing a strong affinity. Among the 13 inhibitors, 5 showed a high affinity, greater
than −8 kcal/mol. To confirm these results, MD simulations and free energy binding
calculations were performed for 300 ns. The results of these analyses suggest that the
newly predicted molecules have promising potential as JAK3 inhibitors for the treatment
of rheumatoid arthritis.

In conclusion, this study provides valuable insights into the development of new
drugs for the treatment of RA. The researchers’ use of molecular modeling techniques
allowed them to identify promising JAK3 inhibitors with favorable strong binding affinity
and favorable stability. The results of this study provide a foundation for further research
and the development of these inhibitors as potential drugs for the treatment of RA.

4. Methods and Materials
4.1. Data Set

The dataset employed in this study comprised a series of 35 molecules (Table 12) with
reported IC50 (Exp) values against the JAK3 target, as indicated by previous investiga-
tions [16]. Such datasets are widely employed in pharmacological studies to evaluate the
efficacy of molecules targeting JAK3, a pivotal player in numerous physiological processes,
including immune response regulation. To facilitate analysis, the IC50 values were con-
verted to pIC50, a logarithmic measure reflecting the activity of the molecules. Within this
dataset, 28 molecules were allocated for training purposes, while the remaining 7 molecules
were designated for testing. The molecule exhibiting the highest activity within the training
set was identified and utilized as a reference to gauge the activity of other molecules. The
partitioning of the dataset into training and test sets was performed randomly to ensure an
equitable distribution of data. It is noteworthy that this dataset has not yet undergone com-
putational modeling processes. Nevertheless, it provides a robust foundation for subsequent
analysis and modeling endeavors, which hold potential for the discovery of novel compounds
exhibiting efficacy against the JAK3 target. Through the examination of pIC50 values within
the training set, researchers can identify shared characteristics among active molecules, thereby
facilitating the design or prediction of novel molecules with enhanced activity.

Table 12. A comparative analysis of the experimental and predicted pIC50 values utilizing 3D-QSAR,
field-based, and atom-based models.

Model 3D-QSAR Field-Based Atom-Based

No. Compound pIC50 (Exp) QSAR pIC50 (Pred)

1
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Table 12. Cont.

Model 3D-QSAR Field-Based Atom-Based

No. Compound pIC50 (Exp) QSAR pIC50 (Pred)
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subsequent PLS (partial least squares) procedure, variables with a standard deviation be-
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[64,65]. Cubes with a 1 Å grid were defined to encompass the space occupied by the 
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strings of zeros and ones, which functioned as independent variables. The QSAR models 
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Software

In the present investigation, a comprehensive array of computational methodologies
was employed to identify potential ligands exhibiting enhanced activity towards a specific
target [30,46]. Specifically, the Schrödinger software 2021 suite was utilized to execute
an analysis, CovDock studies, and the formulation of a pharmacophore hypothesis [47].
Molecular dynamics (MD) simulations and MM/GBSA calculations were performed us-
ing the latest version of the GROMACS software (2021) [48,49]. The Swiss ADME and
ADMETlab 2.0 web servers were leveraged to evaluate the ADMET properties of the iden-
tified compounds [50–52]. The three-dimensional structures of the ligands were visualized
using BIOVIA Discovery Studio [53], and the design of new molecules was facilitated
using ChemSketch [54].

4.2. Three-Dimensional-QSAR

Field-based methodology relies on the characterization of electrostatic, van der Waals
and steric fields to elucidate molecular interactions. This approach is widely employed
to discern the intricate interactions occurring between a given molecule and its biological
target [55,56]. By calculating these fields in the vicinity of the molecule, a predictive model
can be constructed to estimate the biological activity of the compound. Conversely, the
atom-based method relies on atomic descriptors to depict the molecular structure [57].
Atomic descriptors are derived from various atom-specific properties, including size and
electronegativity. Both approaches, field-based and atom-based, provide valuable informa-
tion on the groups that favor and disfavor the increase in biological activity, leading to the
easier design of new compounds and predicting their activity.

4.3. QSAR Methodology

The 35 structures encompassed in the dataset were meticulously aligned through
the utilization of Schrödinger software 2021 [47]. To create distinct training and test
sets, a random splitting method was employed, with an approximate ratio of 80:20
(28 compounds allocated to the training set and 7 compounds assigned to the test set).
During the training process of the models, the OPLS_2005 force field was implemented [58].
The calculation of the fields was conducted on an orthorhombic grid, with a spacing of
1 Å, extending 3 Å beyond the boundaries of the training set molecules. For van der
Waals and electrostatic interactions, a threshold of 30 kcal/mol was set, while any points
situated within a distance of 2 Å from any of the atoms in the training set were eliminated.
In the subsequent PLS (partial least squares) procedure, variables with a standard devi-
ation below 0.01 were excluded, and variables exhibiting regression coefficients highly
sensitive to minor alterations in the composition of the training set were eliminated by
employing a |t-value| < 2.00 filter [59–62]. The maximum number of PLS factors was
defined as 1. An atom-based model was developed for each group of compounds sharing
identical or similar scaffolds [63]. The atoms were categorized into specific atom types, such
as hydrogen-bond donor (D), hydrophobic or nonpolar (H), negative ionic (N), positive
ionic (P), electron-withdrawing (including hydrogen-bond acceptors, W), and miscella-
neous (X) [64,65]. Cubes with a 1 Å grid were defined to encompass the space occupied by
the aligned conformations, and each cube was assigned a value of zero or one depending
on the presence or absence of atoms or sites. The molecules were represented by binary
strings of zeros and ones, which functioned as independent variables. The QSAR models
were established by incorporating PLS factors into these independent variables, with a set
of four PLS factors to prevent overfitting. Regression coefficients were assigned to each bit
to identify specific chemical features that positively or negatively influenced the activity.
The predictive ability of the QSAR model was evaluated through a leave-one-out (LOO)
cross-validation analysis. Consequently, a series of models were generated [66].
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4.4. Pharmacophore Hypothesis

The pharmacophore hypothesis, a widely adopted approach in pharmaceutical chem-
istry, serves to identify and model the crucial interactions between a drug molecule and its
biological target. This approach is rooted in the understanding that specific structural or
chemical attributes of the molecule play a pivotal role in its biological activity [67,68]. The
sophisticated Schrödinger software version 2021 offers advanced tools for generating and
validating pharmacophore hypotheses by leveraging information of molecular interactions,
including hydrogen bonds, electrostatic interactions and hydrophobic interactions [69].

To prepare the structure data file for our test compounds, we employed the LigPrep
panel integrated within the Schrödinger software version 2021 [47]. Ligand chemistry was
appropriately normalized and extrapolated for pharmacophore modeling using PHASE,
an automated process that aligns the ligands based on their optimal arrangement and
shared properties (Figure 20). Subsequently, the prepared ligands were imported into
the Maestro workspace, and their experimental binding affinities (pIC50) were utilized
to categorize them as active or inactive, with pIC50 values derived from the equation
pIC50 = −log (IC50). An IC50 affinity of ≤ 50 nM corresponded to a pIC50 value exceeding
6.0, while a threshold of 10 µM or a pIC50 value below 7.0 was employed to identify
inactive molecules. The assumption requirement was set to match at least 50% of the active
compounds, and a minimum of five features were preferred for a successful match. The
assumption difference criteria remained at their default settings, except for donor and
negative molecules, where ionic features were assigned a value of 1 to ensure compatibility
between the acceptor and negative features.

Molecules 2023, 28, x FOR PEER REVIEW 28 of 35 
 

 

were established by incorporating PLS factors into these independent variables, with a set 
of four PLS factors to prevent overfitting. Regression coefficients were assigned to each 
bit to identify specific chemical features that positively or negatively influenced the activ-
ity. The predictive ability of the QSAR model was evaluated through a leave-one-out 
(LOO) cross-validation analysis. Consequently, a series of models were generated [66]. 

4.4. Pharmacophore Hypothesis 
The pharmacophore hypothesis, a widely adopted approach in pharmaceutical 

chemistry, serves to identify and model the crucial interactions between a drug molecule 
and its biological target. This approach is rooted in the understanding that specific struc-
tural or chemical attributes of the molecule play a pivotal role in its biological activity 
[67,68]. The sophisticated Schrödinger software version 2021 offers advanced tools for 
generating and validating pharmacophore hypotheses by leveraging information of mo-
lecular interactions, including hydrogen bonds, electrostatic interactions and hydropho-
bic interactions [69]. 

To prepare the structure data file for our test compounds, we employed the LigPrep 
panel integrated within the Schrödinger software version 2021 [47]. Ligand chemistry was 
appropriately normalized and extrapolated for pharmacophore modeling using PHASE, 
an automated process that aligns the ligands based on their optimal arrangement and 
shared properties (Figure 20). Subsequently, the prepared ligands were imported into the 
Maestro workspace, and their experimental binding affinities (pIC50) were utilized to cat-
egorize them as active or inactive, with pIC50 values derived from the equation pIC50 = 
−log (IC50). An IC50 affinity of ≤ 50 nM corresponded to a pIC50 value exceeding 6.0, while 
a threshold of 10 µM or a pIC50 value below 7.0 was employed to identify inactive mole-
cules. The assumption requirement was set to match at least 50% of the active compounds, 
and a minimum of five features were preferred for a successful match. The assumption 
difference criteria remained at their default settings, except for donor and negative mole-
cules, where ionic features were assigned a value of 1 to ensure compatibility between the 
acceptor and negative features. 

 
Figure 20. (A) Illustration of the significant model features associated with the reference molecule 
exhibiting the highest pIC50 values (pIC50 = 9.15). (B) Alignment of molecules based on the pharma-
cophore model. 

4.5. ADMET 
The suboptimal pharmacokinetic characteristics of lead-like molecules constitute a 

pivotal contributor to the high rate of clinical trial failures. To mitigate this challenge, and 
concurrently economize time and resources, in silico assessment can be leveraged during 

Figure 20. (A) Illustration of the significant model features associated with the reference molecule exhibiting
the highest pIC50 values (pIC50 = 9.15). (B) Alignment of molecules based on the pharmacophore model.

4.5. ADMET

The suboptimal pharmacokinetic characteristics of lead-like molecules constitute
a pivotal contributor to the high rate of clinical trial failures. To mitigate this challenge,
and concurrently economize time and resources, in silico assessment can be leveraged
during the early stages of drug design and development, before the progression of lead-like
molecules into preclinical studies [26,27,34,70].

4.6. Molecular Docking (MD)

Molecular dynamics simulations are a valuable tool for investigating a diverse range of
phenomena, encompassing aspects such as protein stability and flexibility, receptor–ligand
interactions and the dynamics of water molecules surrounding biomolecules.

Standard molecular docking and CovDock are two different techniques used to study
the interactions between a ligand and a protein. Standard molecular docking relies on
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the use of algorithms to predict the most favorable conformation of the ligand–protein
complex, based on binding energy [71]. Covalent molecular docking, on the other hand,
takes into account covalent interactions between the ligand and the protein. In this case,
the ligand is designed to contain a reactive function that can form a covalent bond with
a specific residue of the protein. This method is particularly useful for studying enzymes
and proteins involved in diseases, as it allows for specific targeting of the active residues of
the protein [72].

In the present study, several key metrics were calculated for both systems [34,45],
including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF),
solvent-accessible surface area (SASA), radius of gyration (RoG) and hydrogen-bond
analysis (H-bond). RMSD measures the deviation of atomic positions, revealing stability
and conformational changes over time. It helps to assess a molecular model’s accuracy and
compare different structures. RMSF quantifies atom or residue fluctuations, identifying
flexible regions related to dynamics and ligand binding sites. SASA calculates the accessible
surface area, shedding light on protein–water interactions and buried regions. It is useful
for studying folding, protein–protein interactions and ligand binding. RoG characterizes
overall compactness and shape, providing information on global conformational properties
and transitions. H-bond analysis examines hydrogen bond formation and stability, crucial
for molecular recognition and binding specificity.

4.6.1. CovDock and Molecular Docking-Based Virtual Screening

Molecular docking investigations were executed employing the Schrodinger Maestro
software version 2021. Specifically, the X-ray structures of Tyrosine kinase 3 with the
Protein Data Bank identification code 4Z16, characterized by a resolution of 2.90 Å, were
chosen as the docking targets for the CovDock simulations [30]. Before docking, the
protein structure underwent preparatory procedures using Maestro’s Protein Preparation
Wizard. These included the addition of hydrogen atoms, removal of water molecules and
adjustment of tautomeric and protonation states of the amino acids. Subsequently, the
crystal structure’s energy was minimized by utilizing the OPLS2005 force field. As for
the ligands, they were prepared using the LigPrep module in Schrodinger. Ionizer was
employed to generate ligand structures at a physiological pH of 7.4, followed by energy
minimization using the OPLS2005 force field. In preparation for molecular docking, the
reactive amino acid residue Cys909 was temporarily mutated to a residue more amenable to
accommodating the pre-reactive conformations of the ligands. The receptor grid for docking
was generated, with the reactive functional groups of the ligands constrained within a 5 Å
vicinity of the Cβ atom of the reactive amino acid residue, employing the standard Glide
XP mode. Post-docking minimization was performed, and up to three optimal-fit poses
were recorded for each ligand. All poses were subjected to meticulous manual inspection,
and the pose with the most favorable docking score was chosen, unless otherwise specified.
The amino acid residue was then reverted back to Cys909, and conformational sampling
was performed using Prime VSGB2.0 coupled with the OPLS2005 force field. CovDock
simulations were conducted utilizing the CovDock application, with Cys909 serving as
the nucleophilic residue. This nucleophilic residue underwent conjugate addition to the
predefined carbonyl activation site within CovDock. The formation of the covalent bond
was ascertained for ligand poses featuring reactive functional groups within a 5 Å range,
following the specified reaction scheme. Ligand selection and ranking were based on the
Glide scores of the binding modes observed in the pre-reactive complexes.

4.6.2. Molecular Docking Standard (MDS)

Before molecular docking, we optimized the ligands to be docked using Avogadro soft-
ware 2.0. Next, we downloaded the structure of JAK3 from the RCSB database (PDB ID: 4Z16).
The 4Z16 crystal complex consists of water molecules and the co-crystallized ligand 4LH
with the protein 4Z16. We prepared the protein by removing all water molecules and the
co-crystallized ligand from the protein and adding polar hydrogens to the JAK3 protein
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structure using Discovery Studiosoftware 2021. The active site of 4Z16 is defined by the
sphere containing the co-crystallized ligand (4LH). Once the ligand and protein were pre-
pared, we performed molecular docking using AD4 and AutoVina. The three-dimensional
grid was defined using the AUTOGRID algorithm, which determines the binding energy
of ligands with their receptor [73]. The default grid size is x = 60, y = 60, and z = 60, with a
distance between grid points of 0.375 Å [73]. The center of the grid is the active site of the
receptor with coordinates (x = −6.68875 Å, y = −14.7757 Å, and z = 1.89597 Å). The docking
results obtained by AD4 and Vina were visualized using Discovery Studio software 2021.
CovDock, the guide for the procedure, explains the several actions that may be taken to
complete the CovDock approach utilizing AD4 with flexible side chains [74].

4.7. MD Simulation

Molecular dynamics (MD) simulations were performed employing the GROMACS
MD engine. The input files for the simulations were generated using CHARMM-GUI [75],
utilizing the CHARMM36 force field for system calculation [76]. The system was solvated
in a cubic box using the TIP3P water model, with a padding of 10 Å. To ensure system
neutrality, NaCl salt was added at an ionic concentration of 0.15 M, and the Monte Carlo
method was employed for ion positioning [77]. A gradient descent method was applied to
minimize the energy of the system over a duration of 10,000 steps. Following the energy
minimization, the system was equilibrated in a constant atom number, volume and tem-
perature (NVT) ensemble at a temperature of 310 K for 30 ns. Subsequently, the system
underwent unrestricted MD simulations for a duration of 300 ns in a constant number of
atoms, pressure and temperature (NPT) ensemble, with a reference temperature of 310 K
and pressure of 1 atm. Trajectory MD analyses were conducted using the Visual Molec-
ular Dynamics (VMD) software 2020 to examine system stability and generate essential
parameters, such as root-mean-square deviation (RMSD), root-mean-square fluctuation
(RMSF), radius of gyration (RoG), protein solvent accessible surface area (SASA) and
H-bond analysis [34,78,79].

4.8. Free Binding Energy (MM/GBSA)

The assessment of the binding affinity between receptors and small ligands can be
determined by analyzing the binding free energy. In this particular study, the molecular
mechanics/generalized Born surface area (MM/GBSA) method was used to calculate the
binding free energy using the AMBER 14 software to calculate the binding free energy [49,80].
The calculation of Equations (1)–(7) used in this study are presented below [27]: ∆VDWAALS,
∆EEL, ∆EGB, ∆ESURF, ∆GGAS, ∆GSOLV and ∆TOTAL.

∆VDWAALS: This term represents the van der Waals interaction energy between the
protein–ligand complex and its surroundings [81].

∆VDWAALS = ∑i ∑j 6ε

(σij

rij

)12

− 2

(
σij

rij

)6
, (1)

where ε is the energy scaling factor, σij is the distance at which the potential energy of
the interaction between atoms i and j is zero, rij is the distance between atoms i and j,
and the summations are over all pairs of atoms i and j. The equation is based on the
Lennard–Jones potential.

∆EEL: This term represents the electrostatic interaction energy between the protein–
ligand complex and its surroundings [82,83].

∆EEL = ∑i ∑j qi ∗ qj

εr
(2)

where qi and qj are the partial charges on atoms i and j, r is the distance between atoms i
and j, ε is the dielectric constant of the solvent, and the summations are over all pairs of
atoms i and j. The equation is based on Coulomb’s law.
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∆EGB: This term represents the energy change associated with the molecule’s transfer
from a vacuum to a solution [84].

∆EGB = γ ∑i qi
2

ri
+ k ∑i ∑j qi ∗ qj

rij
+ ∑i

σi, (3)

where γ and κ are constants that depend on the solvent dielectric constant and ionic
strength, qi is the partial charge on atom i, ri is the distance from atom i to the center of
the solvent-accessible surface, rij is the distance between atoms i and j, and σi is a surface
tension term that penalizes the creation of a solvent-accessible surface. The equation is
based on the generalized Born model.

∆ESURF: This term represents the energy change associated with the surface area of
the protein–ligand complex [85–88].

∆ESURF = γ ∑i 1
ri

, (4)

where γ is a constant that depends on the solvent dielectric constant and ionic strength, and
ri is the distance from atom i to the center of the solvent-accessible surface. The equation is
based on the solvent-accessible surface area (SASA) model.

∆GGAS: This term represents the Gibbs free energy change associated with the
gas phase [89].

∆GGAS = H − TS, (5)

where H is the enthalpy, T is the temperature, and S is the entropy. The equation is derived
from the Gibbs–Helmholtz equation.

∆GSOLV: This term represents the Gibbs free energy change associated with the solva-
tion of the protein–ligand complex [90].

∆GSOLV = ∆HSOLV − T∆SSOLV, (6)

where ∆HSOLV is the enthalpy change associated with the solvation process, ∆SSOLV is
the entropy change associated with the solvation process, and T is the temperature. The
equation is based on the thermodynamic definition of Gibbs free energy.

∆TOTAL: This term represents the total energy change associated with the interaction
of the protein–ligand complex with its environment [89,90].

∆TOTAL = ∆VDWAALS + ∆EEL + ∆EGB + ∆ESURF + ∆GSOLV, (7)

where each term is calculated using the appropriate equation as described above. The total
energy change represents the overall stability or instability of the protein–ligand complex
in its environment.
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