
Citation: Alharbi, K.H.; Alharbi, W.;

Alhayyani, S.; Roselin, L.S.; Selvin, R.

Enhanced Oxidation of p-Toluidine

Using Supported Zeolite

Nanoparticles. Molecules 2023, 28,

5737. https://doi.org/10.3390/

molecules28155737

Academic Editors: Maria Luisa Di

Gioia, Luísa Margarida Martins and

Isidro M. Pastor

Received: 15 June 2023

Revised: 26 July 2023

Accepted: 26 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Enhanced Oxidation of p-Toluidine Using Supported
Zeolite Nanoparticles
Khadijah H. Alharbi 1,*, Walaa Alharbi 1, Sultan Alhayyani 1 , L. Selva Roselin 1 and Rosilda Selvin 2

1 Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
wnhalharbe@kau.edu.sa (W.A.); salhayyani@kau.edu.sa (S.A.); slous@kau.edu.sa (L.S.R.)

2 Department of Basic Sciences and Humanities, Don Bosco Institute of Technology, Kurla (W),
Mumbai 400 070, India; selvinrosilda@yahoo.com

* Correspondence: khalharbe@kau.edu.sa

Abstract: Supported nanomaterials are becoming increasingly important in many industrial processes
because of the need to improve both the efficiency and environmental acceptability of industrial
processes. The unique properties of supported nanomaterials have attracted researchers to develop ef-
ficient catalytic materials in nanoscale. The extremely small size of the particles maximizes the surface
area exposed to the reactant, allowing more reactions to occur. The environmental hazards resulting
from the conventional manufacturing procedures for organic fine chemicals and intermediates by
classical oxidation catalysis using mineral acids have forced chemical industries to seek less polluting
processes. The present study aimed to oxidize p-toluidine by hydrogen peroxide in the presence of
magnetite supported on nanocrystalline titanium silicalite-1 (M/NTS) zeolite at ambient temperature.
The products detected are 4,4′-dimethylazobenzene as major product and 4,4′-dimethylazoxybenzene
as minor product. Good selectivity, low cost, low wastage of materials and enhanced environmental
friendliness of heterogeneous magnetite nanoparticle supported zeolite catalysts were observed. The
effect of various reaction parameters such as mole ratio, catalyst weight and reusability of catalyst
were studied. At the optimum reaction conditions, the oxidation activity of M/NTS catalyst was
compared with M/NS catalyst, and it was found that titanium in the framework of M/NTS provided
higher activity and selectivity.

Keywords: oxidation of p-toluidine; magnetite; titanium silicalite-1; 4,4′-dimethylazobenzene;
4,4′-dimethylazoxybenzene

1. Introduction

The prime focus of today’s chemists is on the production of industrially impor-
tant organic compounds through economically viable and environment-friendly catalytic
routes [1–3]. Several catalyst systems have been developed in the past. The discovery
and continuing development of new and innovative catalysts has stimulated studies on
different supports [4–6].

Toluidines are methyl-substituted aromatic amines, used in the manufacture of various
organic chemicals. The p-isomer has antimicrobial activity and is used for wastewater
treatment. Also, it is used as a reagent to analyze lignin and nitrile phloroglucinol [7].
Oxidation of p-toluidine produces a number of products depending on the oxidation
method (electrochemical/thermal), nature of the oxidants and experimental conditions
used. These products are considered as industrially valued products for the manufacture
of dyes and other organic chemicals.

When a mixture of aniline, p-toluidine and o-toluidine were oxidized in a sulfuric
acid medium with a platinum electrode, rosaniline was formed [8]. The electrochemical
oxidation method has its own drawbacks of high cost of the electrodes, the risk of formation
of unwanted by-products and the energy demand.
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The oxidation of p-toluidine using oxidizing agents such as KMnO4, K2Cr2O7, sul-
furic acid and K3Fe(CN)6 was reported, and these catalysts resulted in the formation
of a trimer and/or tetramer of p-toluidine [9–11]. Biocatalytic oxidation using enzyme
peroxidase leads to the formation of both a trimer and a tetramer along with other by-
products [12]. The selectivity towards trimer and tetramer depends on the oxidant type, pH
of the medium, temperature and concentration of p-toluidine [13]. Ritu Singh investigated
the oxidation of p-toluidine by sodium dichromate and analyzed it iodometrically and
spectrometrically (at 530 nm) in an aqueous acidic medium. The kinetic behavior of the
reaction was altered by p-toluidine and hydrogen ion concentration. This is because of
the formation of an intermediate complex that breaks down into two different reaction
paths [14]. The oxidation of o-toluidine and m-toluidine with lead acetate produced better
yield of azo compound in comparison to p-toluidine [15]. Oxidation of o-toluidine with
periodate oxidant in an acetone–water medium illustrates that the reaction was one of
first-order kinetics with respect to both oxidant and substrate. Further, it was found that the
reaction was pH-dependent, and the reaction slowed down while decreasing the dielectric
constant and increased while increasing the ionic strength [16]. These catalysts cause severe
environmental pollution, as they require rigorous control of the experimental conditions
and leaching of transition metal ions [17]. In addition, the product selectivity was low, as it
involved various multistage reaction process [18].

Owing to the disadvantages of homogenous catalysts, they are replaced by numer-
ous heterogeneous catalysts such as metals, metal oxides, supported metal complexes,
metal catalysts supported on mesoporous materials, metallosilicalites, hydrotalcites and
heteropoly compounds. These are supposed to be promising catalysts because of the
advantage of great catalyst reusability and shape selectivity [19–21]. Among the various
solid catalysts, zeolites are extensively studied. Zeolites are crystalline aluminosilicates
having regular arrangements of micropores with high surface area, exchangeable cations
and shape selectivity [22–27]. The shape selectivity of catalysts is used for various catalytic
reactions over zeolite heteroatom-based sites such as acidic and basic sites and Ti and Fe
sites [28]. TS-1 molecular sieve possesses nanopores and so exhibits higher activity [29],
excellent adsorption properties [30] and the unique shape-selective catalytic function of
MFI topology [31]. Titanium silicalite-1 (TS-1) zeolite with MFI topology is widely used for
industrial applications due to the unique catalytic oxidation performance of the reaction
system composed of TS-1 zeolite and H2O2 (TS-1/H2O2 system) [32]. The intrinsic activity
of the Ti atom in the TS-1 is higher than that in the conventional titanium dioxide cata-
lyst [33]. Zhen et al. synthesized a series of TS-1 zeolites with homogeneous distribution of
Ti atoms and free of extra-framework Ti species and/or anatase, and these catalysts were
used for the oxidation reactions. It was reported that there exists a molecular traffic control
(MTC) effect in TS-1/H2O2 catalyst systems in catalytic oxidation reaction. The existence
of a molecular traffic control (MTC) effect in TS-1/H2O2 resulted in lesser diffusion of the
substrate molecules that would affect the catalytic oxidation behavior of TS-1 zeolite [34].

Optimizing the structural parameters like size, morphology and loading of metal
nanoparticles on a solid support is of great significance because the solid support influ-
ences the catalytic performance, as it provides a large surface for dispersing metal species
and also modifies the electronic and geometrical behavior of the metal nanoparticles via
strong metal−support interactions [35,36]. Nanoparticles attract industrial interest in many
distinct fields because of specific properties such as size, shape and distribution of nanopar-
ticles, which influence the functional properties [37–39]. Magnetic nanoparticles (MNPs)
with different shapes such as spheres, rods, tubes and flowers in porous and non-porous
forms were synthesized [40–42]. Wang et al. studied the effect of localizing the metal
nanoparticles within the zeolite and the shape selectivity to the metal nanoparticle cata-
lysts and reported that the zeolite micropores could form a three-dimensional micropore
modulation to the metal nanoparticles [43]. The unique properties of magnetite (Fe3O4)
nanoparticles (Fe3O4 NPs), which include being super-paramagnetic, biodegradable and
non-toxic to humans, draw great research interest [44–46]. Magnetic nanoparticles can
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be either used as single nanoparticles or made into composites by combining them with
other materials. Magnetite zeolite composite can be made without any change in the
magnetic properties because the modifications are not severed, and catalyst recovery is
also feasible with simple techniques [47]. Loiola et al. have reported structural features of
magnetic zeolites composites and discussed the importance of incorporation of magnetic
nanoparticles for various applications [48].

The present study aimed to oxidize p-toluidine by hydrogen peroxide in the presence
of magnetite supported on nanocrystalline titanium silicalite-1 (MNTS) zeolite catalysts at
room temperature. The results are compared with magnetite supported nanocrystalline
silicalite-1 (MNS) zeolite catalyst.

2. Results and Discussion
2.1. Dynamic Light Scattering (DLS) Measurements

The concentrated zeolite precursor sols (TCP-0 and SCP-0), aged concentrated zeolite
precursor sols (NTS and NS), magnetite nanoparticles (M) and magnetite nanozeolite
composite (M/NTS and M/NS) were evaluated by DLS analysis after dilution. The results
presented in Table 1 represent that the particle size increases with the ageing period and
the application of hydrothermal treatment, due to the aggregation of primary units [49].

Table 1. Dynamic Light Scattering (DLS) Measurements.

Sample Particle Size (nm) Polyindex

M 4.1 0.02

TCP-0 4.2 0.58

SCP-0 4 0.54

NTS 39 0.05

NS 36.9 0.03

M/NTS 46.7 0.04

M/NS 43.6 0.03

2.2. X-ray Diffraction (XRD) Analysis

The XRD pattern (Figure 1a) of the synthesized magnetite nanoparticles reveals that
the peaks located at 2θ values 30.31, 35.92, 43.6, 53.3, 57.38 and 62.96 correspond to (220),
(311), (400), (422), (511) and (440) planes of the magnetite phase (JCPDS card #89-4319) [50].
It is important to note that there is no additional peak detected for other iron oxides, such as
FeO and Fe2O3, which implies that the synthesized material is pure Fe3O4. In addition, the
broad peak confirms the formation of nano-sized Fe3O4. Figure 1b,c show the XRD patterns
of M/NTS and M/NS, which indicate that both samples are crystalline, and the reflection
with high intensity observed in the 2θ ranges of 7–9◦, 23–25◦ and 45◦ reveals the presence of
magnetite and zeolite-MFI phases (JCPDS card #44-003) [51]. Also evident from the powder
pattern is the highly crystalline nature of the formed zeolite–magnetite nanomaterial.
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Figure 1. The XRD pattern: (a) magnetite nanoparticles, (b) M/NTS and (c) M/NS.

2.3. Scanning Electron Microscopy (SEM) Analysis

SEM analysis was used to confirm the morphology and textural properties of the
synthesized materials. The SEM micrograph of magnetic nanoparticles is shown in Figure 2.
The surface morphology of all the materials demonstrated the agglomeration of many ultra-
fine nanoparticles. Studying the surface morphology of magnetic nanoparticles shows that
the iron particles have spherical morphology, as shown in Figure 2b, which confirmed the
formation of the magnetite nanoparticles [52], and these particles are highly agglomerated,
with diameter of about 30–50 nm (Figure 2a). Upon incorporation of magnetic nanoparticles
into a zeolite network (M/NTS and M/NS), slight agglomeration can be observed, and this
could be due to a large surface-area-to-volume ratio and interactions between magnetite
and zeolite particles leading to morphological changes [53]. The well-dispersed particles
have diameter of about 100 nm (Figure 2b,c).
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2.4. Transmission Electron Microscopy (TEM) Analysis

Figure 3 displays the TEM images of magnetite nanoparticles, M/NTS and M/NS
materials. The magnetite sample exhibited spherical size with uniform particle size dis-
tribution in the range from 4 to 6 nm. The average size is determined as 5 nm (Figure 3a).
Figure 3a,b show the TEM images of magnetite supported on titanium nanosilicate and
magnetite supported on nanosilicate, respectively. It can be clearly seen that there is in-
crease in particle size after coating with zeolite material. Large spherical contrast spots
observed in the TEM image (Figure 3b,c) are considered to be the magnetite nanoparticles
based on their particle size [54]. These magnetic nanoparticles are strongly attached to the
zeolite surface and cannot be detached under high ultrasonication and at high temperature.
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2.5. Surface Area and Pore Size Analysis

Nitrogen adsorption–desorption studies were carried out at 77.4 K to investigate the
porous structure of the magnetite supported zeolite nanoparticles (M/NTS and M/NS).
The nitrogen physisorption isotherms of M/NTS and M/NS nanoparticles are shown in
Figure 4a,b. The results suggest that the samples are microporous [55]. The micropore
volume is typically half the value for microporous ZSM-5. This implies that they are
nanoparticles. The BET surface areas are found to be 512 and 568 m2/g for samples of
M/NTS and M/NS. The nanozeolite materials are considered as highly porous materials
with large surface area compared to other oxide nanoparticles [56]. The micropore volumes
of M/NTS-1 and M/NS-1 are 0.127 cm3/g and 0.120 cm3/g, respectively.
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Figure 4. N2 adsorption–desorption isotherms of (a) M/NTS and (b) M/NS.

2.6. Catalytic Activity Studies

Oxidation of p-toluidine by hydrogen peroxide was carried out over the magnetite
supported nanocrystalline zeolite (M/NTS and M/NS) catalysts. In the first step, the
influence of time-on-stream (TOS) on the conversion was studied using the catalyst mag-
netite supported nanocrystalline titanium silicalite-1 (M/NTS-1) zeolite. The conversion of
p-toluidine increased with increasing TOS until 100 min and became constant afterwards.
Henceforth, for further study, the TOS was fixed at 100 min. The oxidation of p-toluidine in
acetonitrile by hydrogen peroxide is carried out in the presence and absence of the M/NTS
catalyst under identical conditions. The results indicate that without the catalyst, the
reaction was extremely slow and produced only 4,4′-dimethylazoxybenzene. On the other
hand, in the presence of the M/NTS catalyst, the reaction proceeded faster and produced
4,4′-dimethylazobenzene as a major product along with 4,4′-dimethylazoxybenzene. The re-
action parameters such as p-toluidine/hydrogen peroxide molar ratio and catalyst quantity
were optimized. Under the optimized reaction condition, the catalytic activity of magnetite
supported nanocrystalline titanium silicalite-1 and magnetite supported nanocrystalline
silicalite-1 were compared. The products, 4,4′-dimethylazobenzene (~85–95%) and 4,4′-
dimethylazoxybenzene (~5–15%), were confirmed by gas chromatography–mass spec-
troscopy. The reaction scheme is represented as follows (Scheme 1). The formation of
4,4′-dimethylazobenzene and 4,4′-dimethylazoxybenzene compounds was also observed
by several researchers in the oxidation of p-toluidine by hydrogen peroxide [57,58].

Molecules 2023, 28, x FOR PEER REVIEW 15 of 16 
 

 

55. Hsu, H.L.; Roselin, L.S.; Savidha, R.; Selvin, R. Enhanced photocatalytic performance of magnetite/TS-1 thin film for phenol 
degradation. J. Saudi Chem. Soc. 2022, 26, 101538. 

56. Jamshidi, P.; Shemirani, F. Synthesis of a magnetic WO3 nanocomposite for use in highly selective preconcentration of Pb(II) 
prior to its quantification by FAAS. Micro-Chim Acta 2018, 185, 421–429. 

57. Croston, M.; Langston, J.; Sangoi, R.; Santhanam, S.V. Catalytic oxidation of p-toluidine at multiwalled functionalized carbon 
nanotubes. Int. J. Nanosci. Nanotechnol. 2002, 1, 277–283. 

58. Daniels, D.G.H.; Naylor, F.T.; Saunders, B.C. Studies in peroxidase action. Part VII. The oxidation of p-toluidine by hydrogen 
peroxide in the presence of ferrous sulphate. J. Chem. Soc. 1951, 3433–3435. https://doi.org/10.1039/JR9510003433 

59. Khouw, C.; Dartt, C.B.; Labinger, J.A.; Davis, M.E. Studies on the catalytic oxidation of alkanes and alkenes by titanium silicates. 
J. Catal. 1994, 149, 195–205. 

60. Sreeja, V.; Jayaprabha, K.N.; Joy, P.A. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement 
in MRI. Appl. Nanosci. 2015, 5, 435–441. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 

 

 
Scheme 1. Oxidation of p-toluidine by hydrogen peroxide using M/NTS catalyst. 
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2.6.1. Effect of Mole Ratio

The effect of the mole ratio of p-toluidine to hydrogen peroxide was studied from 0.25
to 3 by keeping the total volume constant. The results presented in Figure 5 illustrate that the
% conversion of p-toluidine increased with increasing the mole ratio, reached a maximum
of around 90% conversion at 0.75 mole ratio and then became econstant with further
increasing the mole ratio. The amount of formation of products 4,4′-dimethylazobenzene
and 4,4′-dimethylazoxybenzene varied at different molar ratios. The azo product increases
from 87 to 94% and becomes constant beyond 0.75, and the azoxy product decreases 13%
to 6% and becomes constant beyond 0.75 molar ratio. Henceforth, for further studies, the
molar ratio of p-toluidine:hydrogen peroxide to be used was 0.75:1.
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Figure 5. Effect of mole ratio of p-toluidine to hydrogen peroxide on the oxidation of p-toluidine by
hydrogen peroxide over M/NTS catalysts. (Reaction condition: TOS, 100 min.; catalyst: M/NTS;
catalyst weight: 0.15 g; reaction temperature: 25 ◦C).

2.6.2. Effect of Catalyst Quantity

The amount of M/NTS catalyst needed for the catalytic oxidation of p-toluidine by
H2O2 was optimized by studying the reaction at various amounts of catalysts in the range
0.05–0.25 g. Figure 6 presents the % conversion and % selectivity of products formed at
various catalyst weights. The results illustrate that the % conversion raises from 33.7 to 93%
when the catalyst quantity increases from 0.05 to 0.15 g and becomes constant at higher
loadings. Regarding the product selectivity, the azo product increases from 92 to 94% and
the azoxy product decreases from 8 to 6% when the catalyst quantity increases from 0.05
to 0.25 g. The increase in % conversion until 0.15 g catalyst weight represents the increase
in active sites available for the reaction. The lesser influence of catalytic activity at higher
catalyst loading signifies that additional active sites do not impact the catalytic reaction.
The optimum catalyst weight is found to be 0.15 g, which was used for further studies.
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Figure 6. Effect of catalyst quantity on the oxidation of p-toluidine by hydrogen peroxide over M/NTS
catalysts (reaction condition: TOS, 100 min.; catalyst: M/NTS; mole ratio of reactant: p-toluidine to
hydrogen peroxide, 0.75:1; reaction temperature: 25 ◦C).
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2.6.3. Reaction Mechanism

The oxidation of p-toluidine by hydrogen peroxide in the presence of magnetite sup-
ported nanocrystalline titanium silicalite-1 (M/NTS) zeolite produces 4,4′-dimethylazobenzene
and 4,4′-dimethylazoxybenzene. The 4,4′-dimethylazobenzene was formed through the
nitroso compound, followed by coupling between the nitroso compound and the reactant,
p-toluidine [57]. Scheme 2 illustrates the proposed reaction mechanism of oxidation of
p-toluidine with H2O2 in the presence of M/NTS catalyst.
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The oxidation of p-toluidine by hydrogen peroxide in the presence of M/NTS oc-
curs rapidly, and 4,4′-dimethylazobenzene was formed in high yield compared to 4,4′-
dimethylazoxybenzene, which shows that the coupling reaction between the nitroso com-
pound and the p-toluidine occurs efficiently on the M/NTS catalyst. However, the oxidation
of p-toluidine by hydrogen peroxide was extremely slow in the absence of M/NTS catalyst.
This product is not formed in the absence of the catalyst. It is observed that the charge
centers present in M/NTS catalyst accelerate the decomposition of hydrogen peroxide. The
iron present in zeolite material is involved in the decomposition of hydrogen peroxide into
hydroxyl radicals and hydroperoxyl radicals. In addition, the titanium silicates are used as
catalyst for the oxidation of alkanes, alkenes and aromatic hydrocarbons with hydrogen
peroxide under mild conditions [59]. The chemical structure of zeolite forms a network of
channels and cavities, allowing easy penetration of molecules, so the reactants reach the
active site and eliminate the products from the catalyst surface easily.

2.6.4. Reusability of Catalyst

The magnetite supported nanocrystalline titanium silicalite-1 (M/NTS) zeolite cat-
alyst’s reusability was studied three times, including the use of fresh catalyst. The used
catalyst was centrifuged, washed with CH2Cl2 and subsequently dried at 120 ◦C for 6 h
before being reused in subsequent batches. Table 2 presents the reusability of catalyst’s
effect on conversion of p-toluidine and product selectivity. The results indicate that there
is no appreciable change in the catalytic activity for up to three runs, including the fresh
catalysts. It is concluded that the catalyst is stable and, hence, the catalyst is reusable.

Table 2. Effect of reusability of the catalyst on conversion of p-toluidine and product distribution.

Catalyst
(M/NTS)

Conversion of
p-Toluidine

Product Distribution

4,4′-Dimethylazobenzene 4,4′-Dimethylazoxybenzene

Fresh
catalyst 90 93 7

1st reuse 88.7 93 7

2nd reuse 88 93 7

(Reaction condition: TOS, 100 min.; catalyst: 0.15 g of M/NTS; mole ratio of reactant: p-toluidine to hydrogen
peroxide, 0.75:1; reaction temperature: 25 ◦C).
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2.6.5. Comparison of Catalysts

Table 3 compares the performance of magnetite supported nanocrystalline titanium
silicalite-1 (M/NTS) zeolite catalyst and magnetite supported nanocrystalline silicalite-1
(M/NS) zeolite catalysts for the oxidation of p-tolidine. In order to compare the catalytic
activity of M/NTS and M/NS, a set of reactions were carried out at identical conditions of
0.15 g catalyst, 0.17:1 p-toluidine:H2O2 molar ratio and reaction temperature at 25 ◦C. The
results are presented in Table 3. The results indicate that M/NTS showed higher conversion
compared to M/NS catalysts due to the presence of titanium in the framework of zeolite,
N.T.S.-1.

Table 3. Comparison of catalytic activity of M/NTS and M/NS zeolite catalysts with oxidation of
p-toluidine.

Catalyst Conversion of
p-Toluidine

Product Distribution

4,4′-Dimethylazobenzene 4,4′-Dimethylazoxybenzene

M/NTS 90 93 7

M/NS 67.8 88 12

(Reaction condition: TOS, 100 min.; catalyst: 0.15 g of M/NTS; mole ratio of reactant: p-toluidine to hydrogen
peroxide, 0.75:1; reaction temperature: 25 ◦C).

The catalytic activity of oxidation of p-toluidine was compared with previously re-
ported results. In the past, few studies have been reported using conventional homogeneous
catalysts such as KMnO4, K3Fe(CN)6, K2Cr2O7, K3Fe(CN)6, enzyme peroxidase, dilute
sulfuric acid and FeCl3, and these catalysts produced trimers and tetramers [10–14]. In a
recent study, it was reported that the oxidation of p-toluidine in acetonitrile by hydrogen
peroxide in the presence of functionalized multiwalled carbon nanotubes (CNT) produced
4,4′-dimethylazobenzene and 4,4′-dimethylazoxybenzene. With functionalized multiwalled
carbon nanotubes catalyst, the azo compound was much higher than the azoxy compound,
viz. 2.5% azo and 4.2% azoxy of % product ratio [57]. But without the catalyst, only azoxy
compound was reported. These results are consistent with the present study on M/NTS
and M/NS catalysts. However, the ratio of azo and azoxy products is much higher in
M/NTS and M/NS catalysts compared to previously reported catalyst on functionalized
multiwalled carbon nanotubes (Table 3). The higher activity with high product selectivity
of azo compound with zeolite-based catalysts is due to faster adsorption of reactants and
desorption of products on porous nanocrystalline zeolite materials.

3. Materials and Methods
3.1. Chemicals

Tetraethoxysilane (TEOS), tetrabutylorthotitanate (TBOT), tetrapropylammonium
hydroxide (TPAOH, 40%aq), ferric chloride (FeCl3·6H2O), sodium carbonate, ascorbic acid,
p-toluidine, acetonitrile and hydrogen peroxide 30% were commercial samples from Merck
and were used without further purification.

3.2. Synthesis of Magnetite Nanoparticles

The hydrophilic magnetite nanoparticles were prepared from hydrated ferric chloride
(FeCl3.6H2O) by dissolving 0.55 g in 25 mL H2O with continuous stirring [60]. Then, 10 mL
of Na2CO3(0.6M) was added drop by drop to the ferric chloride solution with continuous
stirring for 10 min. To the above solution, ascorbic acid (12 g) was added while stirring.
The autoclave was kept at 160 ◦C for 3 h and then allowed to cool in air naturally. The solid
was rinsed thoroughly by three subsequent steps: washing in deionized water/washing
in alcohol/centrifugation. The final products were separated from the reaction medium
by centrifugation and dried overnight at 60 ◦C in an oven. The dried magnetite sample is
denoted as M.
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3.3. Synthesis of Nanocrytalline TS-1

To prepare nanocrystalline TS-1, a clear solution of TPAOH-TiO2-SiO2-H2O was pre-
pared at room temperature as described in the literature [55]. In typical procedure, 10.4 g
Tetraethylorthosilicate and 12.62 g tetrabutylorthotitanate were taken in a polypropylene
bottle and stirred at 25 ◦C until a homogeneous mixture was formed. This solution is de-
noted as solution A. About 6.4 g tetrapropylammonium hydoxide (TPAOH) (40 wt%) was
taken in a beaker and dissolved in 8.5 g water. This solution is denoted as solution B. Solu-
tion B was added slowly into solution A at a rate of 1.5 mL/min while stirring continuously
for about 2 h in order to obtain a clear solution. To this solution mixture, 8.5 g of water was
added, so the final molar composition obtained was 0.25TPAOH:0.06TiO2:1.00SiO2:20H2O,
and the pH of this solution was 11.8. This solution was concentrated using rotary evapo-
rator at 80 ◦C. The concentrated precursor sol (TCP-0) was kept aside at RT, and the rest
was poured into PP vial and aged at 80 ◦C for 30 h. The product of aged treatment was
translucent and denoted as NTS.

3.4. Synthesis of Nanocrytalline Silicalite-1

The clear sol of silicalite-1 (3 g oxide) was prepared as follows: 10.4 g of TEOS
(tetraethoxysilane, Merck, Mumbai, India) was added to a 250 mL PP (polypropylene)
bottle containing 6.34 g of TPAOH (40% aq. Merck), followed by the addition of 16 g of
DI water, and the solution was stirred in a magnetic stirrer for about 2 h to hydrolyze
TEOS so that a clear solution was formed. The molar composition of the resulting sol was
1 SiO2/4 EtOH/0.25 TPAOH/15 H2O. The pH of the final solution was 11.7. The clear
sol was concentrated to transparent viscous sol (SCP-0) in a rotary evaporator at 80 ◦C
for 50 min. The mole ratio of water to silica after concentration was 4.01. The pH of the
final concentrated NPs solution was 12.9. The concentrated transparent viscous sol was
heated at low temperature (80 ◦C) in an air oven for 6 h. The product of aged treatment
was translucent and denoted as NS.

3.5. Synthesis of Magnetite Supported Nanocrystalline Zeolite

Magnetite (Fe3O4) nanoparticles were dispersed in water (10 wt%) and added to
the aged zeolite precursor solutions individually (MNTS and MNS) in the molar ratio
of 1:1 under stirring. The mixture was hydrothermally treated at 175 ◦C for 30 min.
The product was collected using a magnet. The samples were calcined in air at 550 ◦C
(5 h, 2 ◦C/min) and coded as M/NTS and M/NS. The elemental compositions of the
M/NTS sample include O (70.91%), Ti (0.55%), Si (5.35%) and Fe (6.58%) as determined by
ICP-AES analysis.

3.6. Characterization Methods

X-ray Diffraction (XRD) analysis was performed to determine the crystallinity and
identity of zeolite MFI structure and iron oxide phases. XRD patterns were obtained with
a Rigaku 2000 diffractometer (Tokyo, Japan) using Cu-Ka radiation with a wavelength of
1.5418 A◦. The scans were taken from 2.5 to 80◦ at a scanning speed of 2◦ deg/min. The
particle size distribution and Zeta potential were analyzed by dynamic light scattering
(DLS, ZetaSizer-3000 with a 10 Mw He-Ne Laser from Malvern Instrument Co., (Malvern
Instruments, Malvern, UK)). Morphology and particle size examinations of the samples
were carried out using field emission scanning microscope (FESEM) JEOL SM-6500f and
TEM (JEM-2010, 200 kV). Nitrogen adsorption measurements were carried out at 77.4 K on
a Micromeritics ASAP 2010 instrument (Norcross, GA, USA). The elemental composition
of the M/NTS material was obtained using inductively coupled plasma–atomic emission
spectroscopy (ICP-AES).

3.7. Catalytic Studies

Oxidation of p-toluidine by hydrogen peroxide in the presence of magnetite supported
nanaocrystalline titanium silicalite-1 (M/NTS) zeolite catalysts was carried out in a magnet-
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ically stirred glass reactor (capacity 100 cm3) fitted with a thermometer for measuring the re-
action temperature. The reactor was kept in a constant-temperature water bath. In a typical
experiment, the reaction mixture consisted of 0.75 M p-toluidine solution in acetonitrile and
equal concentration of hydrogen peroxide solution, which were taken in a round-bottomed
flask. Freshly activated catalyst (0.15 g) was added, and the flask with its contents was kept
at ambient temperature (25 ◦C) in a water bath for 100 min and stirred magnetically. The
progress of the reaction was monitored by withdrawing samples from the reactor and ana-
lyzed by gas chromatographic analysis (Hewlett-Packard 5890), using a DB-1 column and
a FID detector. The products, 4,4′-dimethylazobenzene and 4,4′-dimethylazoxybenzene,
were detected by gas chromatography–mass spectroscopy (GC-MS).

4. Conclusions

The catalytic activity of magnetite supported nanocrystalline titanium silicalite-1
(M/NTS) zeolite and magnetite supported nanocrystalline silicalite-1 (M/NS) catalysts for
the liquid phase oxidation of p-toluidine by hydrogen peroxide was studied at ambient
temperature. The environmental hazards resulting from the conventional manufactur-
ing procedures using classical catalysis have forced us to seek less polluting catalytic
processes for the oxidation of p-toluidine by hydrogen peroxide for the production of
4,4′-dimethylazobenzene. The oxidation of p-toluidine by hydrogen peroxide without
catalyst is a very slow reaction that produces only 4,4′-dimethylazoxybenzene, whereas
magnetite supported on nanocrystalline titanium silicalite-1 (M/NTS) zeolite catalyst under
identical conditions produces 4,4′-dimethylazobenzene as major product (~85–95%) and
4,4′-dimethylazoxybenzene as minor product (~5–15%). Optimizing the reaction parame-
ters indicates that the nanocrystalline titanium silicalite-1 (M/NTS) zeolite catalyst plays
a significant role because, in addition to large surface for dispersing metal species, it also
modifies the electronic and geometrical behavior of the metal nanoparticles via strong
metal−support interactions [27,28]. Comparison of M/NTS and M/NS catalysts for the
oxidation of p-toluidine by hydrogen peroxide showed that the M/NTS catalyst displayed
higher activity than the M/NS catalyst. The higher activity with high product selectivity of
azo compound was due to faster adsorption of reactants and desorption of products on
porous nanocrystalline titanium silicalite-1 materials.
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