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Abstract: An oxidant-free and highly efficient synthesis of phenolic quinazolin-4(3H)-ones was
achieved by simply stirring a mixture of 2-aminobenzamides, sulfonyl azides, and terminal alkynes.
The intermediate N-sulfonylketenimine underwent two nucleophilic additions and the sulfonyl group
eliminated through the power of aromatization. The natural product 2-(4-hydroxybenzyl)quinazolin-
4(3H)-one can be synthesized on a large scale under mild conditions with this method.
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1. Introduction

Due to their great physiological importance and pharmaceutical usefulness for fighting
tumors, quinazolin-4(3H)-ones are promising compounds for biological and medicinal
applications [1–4]. Some natural and synthetic quinazolin-4(3H)-ones with therapeutic
properties are already being tested in clinical trials as potential drugs. For instance, natural
products like deoxyvasicinone (I) [5] and tryptanthrin (II) [6–8] (Figure 1) have demon-
strated antibacterial, antidepressant, and anti-inflammatory properties. The compound
2-(4-hydroxybenzyl) quinazolin-4(3H)-one (HBQ, III) [9,10], which is obtained from a fun-
gus found in marine sediment, has been shown to have significant cytotoxic activity against
certain cancer cell lines as well as strong inhibitory effects on the replication of tobacco
mosaic virus (TMV). Given their versatile pharmacological and biological characteristics,
there is always an urgent need for the synthesis of quinazolin-4(3H)-one products.
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1. Introduction 
Due to their great physiological importance and pharmaceutical usefulness for 

fighting tumors, quinazolin-4(3H)-ones are promising compounds for biological and me-
dicinal applications [1–4]. Some natural and synthetic quinazolin-4(3H)-ones with thera-
peutic properties are already being tested in clinical trials as potential drugs. For instance, 
natural products like deoxyvasicinone (I) [5] and tryptanthrin (II) [6–8] (Figure 1) have 
demonstrated antibacterial, antidepressant, and anti-inflammatory properties. The com-
pound 2-(4-hydroxybenzyl) quinazolin-4(3H)-one (HBQ, III) [9,10], which is obtained 
from a fungus found in marine sediment, has been shown to have significant cytotoxic 
activity against certain cancer cell lines as well as strong inhibitory effects on the replica-
tion of tobacco mosaic virus (TMV). Given their versatile pharmacological and biological 
characteristics, there is always an urgent need for the synthesis of quinazolin-4(3H)-one 
products. 
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Figure 1. Natural products containing the quinazolin-4(3H)-one skeleton. 
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Figure 1. Natural products containing the quinazolin-4(3H)-one skeleton.

Traditional methods for synthesizing quinazolin-4(3H)-ones involve two main ap-
proaches. One method is the amidation of benzoxazinones with arylamines [11,12]. The
other method is the condensation of 2-aminobenzoyl derivatives with carbonyl deriva-
tives (Scheme 1a). The latter method is the primary approach; the 2-aminobenzoyl
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derivatives included are 2-aminobenzamides [13–24], 2-aminobenzoic acid [11,25–27],
2-nitrobenzamides [28,29], and methyl anthranilate [30–32], while the carbonyl deriva-
tives included are aldehydes [14,15], 1,3-diketones [16,17], orthoesters [18,19], benzyl
alcohols [20–22], benzyl halides [23,24], acetophenones [33–36], methylarenes [37], and
others [38,39]. Although most of these synthetic methods have their own merits, they
often require extreme reaction conditions such as heating, using dehydration reagents, and
adding an oxidant, which limits the synthesis of phenolic quinazolin-4(3H)-ones, or the
phenol hydroxyl group needs to be protected in advance. For example, HBQ needs to be
synthesized by oxidation from 4 (1H) quinazolinone using DDQ, which also requires high
temperatures and protection of the phenol hydroxyl group from oxidation (Scheme 1b) [15].
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Scheme 1. Strategies for the synthesis of quinazolin-4(3H)-ones.

Since it was reported by Chang’s group [40,41], the copper-catalyzed sulfonyl azide−alkyne
cycloaddition/ring cleavage reaction (CuAAC/ring cleavage reaction) has been acknowl-
edged as a gentle and effective method for synthesizing various nitrogenated compounds.
It has also been used for modifying the structure of natural products, drugs, and biological
macromolecules [42–44]. Our group has delved into this area and utilized the CuAAC/ring
cleavage reaction to synthesize pyridine derivates, fused heterocycles, coumarins, indoles,
and other nitrogenated compounds [45–49].
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Therefore, in this study, we present a highly efficient and oxidant-free approach
to synthesize phenolic quinazolin-4(3H)-ones using the CuAAC/ring cleavage reaction
(Scheme 1c). This method involves stirring a mixture of 2-aminobenzamides, sulfonyl
azides, and terminal alkynes in the presence of a copper(I) catalyst under mild conditions.

2. Results

Our investigations began with an examination of the synthesis of the parent and
previously unreported system 3-benzyl-2-(3-hydroxybenzyl)quinazolin-4(3H)-one 4a via
2-amino-N-benzylbenzamide 1a, 3-ethynylphenol 2a, and tosyl azide 3a (Table 1). After
an initial screening using CuI as a catalyst with the additive Et3N in a variety of solvents,
we found that the desired conversion was affected by different solvents (Table 1, entries
1−10). The results revealed that MeCN generated product 4a in the highest yield of 85%,
the other solvents gave comparable yields, and EtOH generated product 4a with the lowest
yield of 34%. Encouraged by these promising results, a variety of catalysts were then
evaluated, as shown in Table 1 (entries 11–17). Among the copper catalysts used, CuI

catalysts (Table 1, entries 11–12) exhibited higher catalytic reactivity than CuII catalysts
(Table 1, entries 13–16), and Cu(OTf)2 (Table 1, entry 17) was the least efficient for this
reaction. Additional screening revealed that the other additives used were less efficient
than Et3N (Table 1, entries 18–20). It is worth noting that the other sulfonyl azides such as
MsN3 or PhSO2N3 were also suitable for this reaction (Table 1, entry 21).

Table 1. Optimization of catalytic conditions a.
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Entry Cat.
(10 mol%)

Base
(0.11 mmol)

Solvent
(2 mL)

Yield
(%) b

1 CuI Et3N CHCl3 71
2 CuI Et3N DCE 74
3 CuI Et3N DCM 67
4 CuI Et3N Toluene 63
5 CuI Et3N MeCN 89
6 CuI Et3N THF 70
7 CuI Et3N DMSO 58
8 CuI Et3N DMF 63
9 CuI Et3N Dioxane 52

10 CuI Et3N EtOH 34
11 CuCl Et3N MeCN 85
12 CuBr Et3N MeCN 82
13 CuBr2 Et3N MeCN 72
14 CuCl2·2H2O Et3N MeCN 68
15 Cu(OAc)2 Et3N MeCN 74
16 Cu(acac)2 Et3N MeCN 44
17 Cu(OTf)2 Et3N MeCN 22
18 CuI DAMP MeCN 21
19 CuI DIPEA MeCN 86
20 CuI NaOH MeCN 12
21 CuI Et3N MeCN 89 c

a Reaction conditions: 1a (0.10 mmol), 2a (0.11 mmol), and the catalyst (10 mol%) and base (0.11 mmol) in the
solvent (2 mL) were added with 3a (0.11 mmol) and stirred at room temperature for 12 h. b Isolated yields. c MsN3
or PhSO2N3 was used instead of TsN3.
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After the optimized reaction condition was established (Table 1, entry 5), the capacity
of these reactions to affect the coupling of a range of different 2-aminobenzamides 1
was investigated. As shown in Scheme 2, the electronic effects of the substituents 2-
aminobenzamides 1 had an obvious influence. For example, the substrate bearing a –Me
group was examined, and an 82% yield of 4b was isolated, which is the same efficiency as 4a.
When 2-aminobenzamides 1 carried halogen substituents including Cl or Br, the anticipated
products (4c–4f) were also obtained in good yields ranging from 80% to 92%. However, the
strong electron-donating substituent gave the corresponding product 4g with a moderate
yield of 76%, while the strongly electron-withdrawing substituent did not obtain the target
product 4h due to the weak nucleophilic activity of the amino group. Finally, when the
–NH2 group was replaced by –NHMe, the target product 4i was not obtained.
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The scope and limitations of different substrates with 2-aminobenzamides 1 and ter-
minal alkynes 2 were also tested. As shown in Scheme 3, 2-aminobenzamides 1 exhibit
the same electronic effect when 1-(benzyloxy)-4-ethynylbenzene is involved as a terminal
alkyne in this reaction. The effect of the –Me group on the reaction is relatively small (4j–4l),
the halogen groups are the most effective (4m–4q), and the strong electron-donating group
is poor (4r). Expectedly, with R2 bearing an n-butyl or R3 bearing a –Me group, the corre-
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sponding quinazolin-4(3H)-one derivatives 4s or 4t are formed in an excellent yield of 98%
and 93%, respectively. Disappointingly, the natural product 2-(4-hydroxybenzyl)quinazolin-
4(3H)-one (HBQ, Figure 1, III) was not obtained when the R2 group changed to H of 1a,
which shows that the proton in this situation interferes with the reaction.
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Although the natural product HBQ cannot be directly obtained by the above method,
it can be obtained by a simple reduction of product 4j and can also be prepared in large
quantities under mild conditions (Scheme 4).
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What is interesting to us is that there was no sulfonyl group in the target products,
and we could detect the other undesired product TsNH2, which we compared with stan-
dard samples by thin-layer chromatography (TLC) and confirmed by NMR. Moreover,
unlike the other products, compound 4i, which was difficult to synthesize (Scheme 2),
was unaromatized. Therefore, we concluded that the product had aromatic properties. To
confirm this fact and elucidate the mechanism, an intermolecular control experiment was
performed under the optimized reaction condition (Table 1, entry 5). As shown in Scheme 5,
N-Phenylbenzamide 5 and benzylamine 6 were tested for the intermolecular reaction. After
being detected by TLC and confirmed by NMR, the N-sulfonylamidine product, which has
been reported previously [41], was formed instead of the desired compound 7. The above
experiments show that aromaticity is indispensable.
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Based on the above experiments, a possible reaction pathway for the synthesis of
quinazolin-4(3H)-one 4a was proposed (Scheme 6). According to the previous proposal [41–50],
N-sulfonylketenimine A was generated first by the reaction of TsN3 and 2a. Then, A under-
went a nucleophilic addition reaction with 1a to generate the intermediate B. Subsequently,
intermediate B underwent an intramolecular cascade addition to generate the intermediate
C. Lastly, the desired product 4a and product TsNH2 were obtained by aromatization of
intermediate C. We could not detect intermediates B and C during the experiment, which
indicated that the procedure from B to 4a was fast and almost simultaneous. The sulfonyl
group was eliminated through the power of aromatization and activated the decomposition
of the terminal alkynes into TsNH2 and N2.
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3. Experimental Procedure
3.1. General Information

The 1H NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer in CDCl3.
Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard.
The spectra were interpreted as s, singlet; bs, broad singlet; d, doublet; t, triplet; q, quartet;
m, multiplet; dd, double doublet; ddd, double double doublet; dt, double triplet; ddt,
double double triplet; tt, triple triplet; td, triple doublet. Coupling constant(s) J are reported
in Hz and relative integrations are reported. The 13C NMR (100 MHz) spectra were recorded
on a Bruker DPX 400 MHz spectrometer in CDCl3. Chemical shifts are reported in ppm
with the internal chloroform signal at 77.16 ppm as a standard and HBQ using CD3OD
residual nondeuterated solvent as internal standard (CD3OD: δ 3.31 for 1H and 49.00 ppm
for 13C). Melting points were obtained in open capillary tubes using the SGW X-4 micro
melting point apparatus and were uncorrected. IR spectra were obtained with the Bruker
Tensor-27 FT-IR spectrometer. Mass spectra were recorded on a TOF mass spectrometer.
The starting materials, 2-amino-N-benzylbenzamide derivatives 1, were all known and
prepared according to the literature procedures [50,51]. Terminal alkynes 2, TsN3 3a, and
other reagents were purchased from Adamas-beta and other suppliers and used without
further purification.

3.2. Compound Characterization and Preparations

At room temperature, to a solution of 2-amino-N-benzylbenzamides 1 (0.1 mmol,
1.0 equiv.), phenyl acetylenes 2 (0.11 mmol, 1.1 equiv.), CuI (1.9 mg, 10 mol%), TsN3 3a
(21.7 mg, 0.11 mmol, 1.1 equiv.), and Et3N (11.1 mg, 0.11 mmol, 1.1 equiv.) in MeCN
(2 mL) was added. The reaction mixture was stirred for 12 h. After completion of the
reaction as indicated by TLC, the solvent was removed by evaporation in a vacuum. The
residue was directly purified by flash column chromatography on silica gel (eluting with
hexanes/EtOAc = 2:1) to form the corresponding product 4. Some products contained the
impurity sulfonamide which is difficult to separate when generated in this reaction.

3-Benzyl-2-(3-hydroxybenzyl)quinazolin-4(3H)-one (4a). White solid, 30.5 mg, yield: 89%, m.p:
180–182 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.86 (s, 1H), 8.08–7.93 (m, 1H), 7.59–7.52 (m, 1H),
7.42 (dt, J = 9.6, 4.7 Hz, 2H), 7.36–7.20 (m, 4H), 7.10 (d, J = 7.2 Hz, 2H), 6.82 (d, J = 5.4 Hz,
2H), 6.74 (d, J = 7.7 Hz, 1H), 5.13 (s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 161.8,
158.3, 156.8, 145.2, 135.8 (2C), 134.9, 131.0, 129.2 (2C), 128.0, 127.9, 127.5, 126.4 (2C), 124.9,
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119.8, 119.7, 115.4, 113.6, 46.3, 41.5; IR νmax (KBr): 3308, 2928, 1682, 1591, 1456, 1265, 1165,
976, 775, 731 cm−1; HRMS (ESITOF) m/z calcd for C22H18N2O2, [M + H]+ 343.1441, found
343.1443.

3-Benzyl-2-(3-hydroxybenzyl)-7-methylquinazolin-4(3H)-one (4b). White solid, 30.6 mg, yield:
86%, m.p: 184–186 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.86 (s, 1H), 7.90 (dd, J = 8.5, 2.9 Hz,
1H), 7.38–7.28 (m, 3H), 7.27–7.20 (m, 2H), 7.15 (d, J = 2.5 Hz, 1H), 7.13–7.08 (m, 2H), 6.80
(d, J = 4.9 Hz, 2H), 6.73 (d, J = 7.6 Hz, 1H), 5.12 (s, 2H), 3.97 (s, 2H), 2.37 (s, 3H); 13C NMR
(100 MHz, CDCl3) δ 161.7, 158.4, 156.8, 146.4, 145.4, 136.0, 135.9, 130.9, 129.9, 129.2, 129.0,
128.0, 127.8, 126.6, 126.4, 124.6, 119.7, 117.3, 115.3, 113.6, 46.0, 41.4, 22.1; IR νmax (KBr):
3055, 1682, 1592, 1456, 1342, 1265, 1163, 974, 879, 737 cm−1; HRMS (ESITOF) m/z calcd for
C23H20N2O2, [M + H]+ 357.1598, found 357.1599.

3-Benzyl-6-chloro-2-(3-hydroxybenzyl)quinazolin-4(3H)-one (4c). white solid, 34.2 mg, yield:
91%, m.p: 197–199 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.23 (s, 1H), 8.11 (d, J = 2.6 Hz, 1H),
7.50 (dt, J = 8.3, 2.5 Hz, 1H), 7.37–7.21 (m, 5H), 7.10 (dd, J = 7.7, 3.2 Hz, 2H), 6.81 (d,
J = 8.5 Hz, 1H), 6.78–6.72 (m, 2H), 5.15 (s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz, CDCl3) δ
160.9, 158.1, 157.2, 143.9, 135.7, 135.5, 135.4, 133.5, 131.1, 129.3 (2C), 128.2, 127.0, 126.7, 126.5
(2C), 120.9, 120.0, 115.5, 113.5, 46.5, 41.5; IR νmax (KBr): 3034, 2947, 1688, 1587, 1473, 1277,
1155, 980, 764, 717 cm−1; HRMS (ESITOF) m/z calcd for C22H17ClN2O2, [M + H]+ 377.1051,
found 377.1056.

3-Benzyl-7-chloro-2-(3-hydroxybenzyl)quinazolin-4(3H)-one (4d). white solid, 32.7 mg, yield:
87%, m.p: 190–192 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.23 (s, 1H), 8.14–8.03 (m, 1H), 7.47 (d,
J = 2.7 Hz, 1H), 7.44–7.38 (m, 1H), 7.37–7.29 (m, 3H), 7.28–7.22 (m, 1H), 7.13 (d, J = 7.1 Hz,
2H), 6.81 (d, J = 8.3 Hz, 1H), 6.75 (d, J = 15.3 Hz, 2H), 5.17 (s, 2H), 4.00 (s, 2H); 13C NMR
(100 MHz, CDCl3) δ 161.3, 156.0, 157.7, 146.8, 141.3, 135.8, 135.7, 131.0, 129.3 (2C), 129.2,
128.1 (2C), 126.4 (2C), 125.3, 120.2, 118.5, 115.4, 113.9, 46.5, 41.7; IR νmax (KBr): 2924,
1684, 1601, 1456, 1331, 1232, 1265, 1159, 974, 731 cm−1; HRMS (ESITOF) m/z calcd for
C22H17ClN2O2, [M + H]+ 377.1051, found 377.1056.

3-Benzyl-8-chloro-2-(3-hydroxybenzyl)quinazolin-4(3H)-one (4e). white solid, 30.1 mg, yield:
80%, m.p: 197–199 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.21 (dd, J = 8.1, 3.0 Hz, 1H), 7.75 (dd,
J = 7.9, 3.0 Hz, 1H), 7.42–7.27 (m, 4H), 7.18 (td, J = 7.7, 7.2, 4.2 Hz, 1H), 7.13 (d, J = 7.5 Hz,
2H), 6.83 (s, 1H), 6.75 (t, J = 9.9 Hz, 2H), 5.98 (s, 1H), 5.25 (s, 2H), 4.09 (s, 2H); 13C NMR
(100 MHz, CDCl3) δ 162.2, 156.9, 156.7, 143.9, 136.5, 135.8, 134.9, 131.4, 130.5, 129.2 (2C),
128.0, 127.1, 126.3 (2C), 126.2, 122.2, 120.5, 115.1, 114.8, 46.6, 41.9; IR νmax (KBr): 3007,
1676, 1580, 1445, 1389, 1275, 1159, 980, 849, 764 cm−1; HRMS (ESITOF) m/z calcd for
C22H17ClN2O2, [M + H]+ 377.1051, found 377.1056.

3-Benzyl-6-bromo-2-(3-hydroxybenzyl)quinazolin-4(3H)-one (4f). white solid, 38.6 mg, yield:
92%, m.p: 176–178 ◦C. 1H NMR (400 MHz, CDCl3) δ 9.33 (s, 1H), 8.30 (q, J = 2.2 Hz, 1H),
7.68–7.57 (m, 1H), 7.38–7.21 (m, 5H), 7.10 (d, J = 7.2 Hz, 2H), 6.81 (d, J = 8.4 Hz, 1H), 6.75
(d, J = 10.2 Hz, 2H), 5.15 (s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 160.7, 158.2,
157.4, 144.2, 138.2, 135.6, 135.5, 131.1, 130.3, 129.3 (2C), 128.2, 126.7, 126.5 (2C), 121.3, 121.2,
120.0, 115.5, 113.4, 46.5, 41.5; IR νmax (KBr): 3026, 1684, 1587, 1456, 1389, 1277, 1153, 966,
831, 750 cm−1; HRMS (ESITOF) m/z calcd for C22H17BrN2O2, [M + H]+ 421.0546, found
421.0551.

3-Benzyl-2-(3-hydroxybenzyl)-6-methoxyquinazolin-4(3H)-one (4g). White solid, 28.3 mg, yield:
76%, m.p: 183–185 ◦C. 1H NMR (400 MHz, CDCl3) δ 10.06 (s, 1H), 7.42 (q, J = 2.7 Hz, 1H),
7.37–7.19 (m, 5H), 7.11 (td, J = 5.6, 2.7 Hz, 3H), 6.81 (d, J = 2.8 Hz, 2H), 6.73 (d, J = 7.6 Hz,
1H), 5.13 (s, 2H), 3.99 (s, 2H), 3.97 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 161.7, 158.5, 158.4,
154.4, 139.6, 136.1, 136.0, 130.9, 129.8, 129.2, 128.0, 126.6, 126.4 (2C), 124.1, 120.8, 119.7, 115.4,
113.6, 108.1, 55.8, 46.4, 41.2; IR νmax (KBr): 3005, 1670, 1593, 1495, 1456, 1362, 1275, 1155,
1028, 750 cm−1; HRMS (ESITOF) m/z calcd for C23H20N2O3, [M + H]+ 373.1547, found
373.1549.
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3-Benzyl-2-(4-(benzyloxy)benzyl)quinazolin-4(3H)-one (4j). Oil, 40.6 mg, yield: 94%. 1H NMR
(400 MHz, CDCl3) δ 8.33 (dd, J = 8.1, 2.8 Hz, 1H), 7.82–7.70 (m, 2H), 7.50 (d, J = 8.1 Hz,
1H), 7.44–7.21 (m, 8H), 7.17–7.11 (m, 4H), 6.93 (dd, J = 7.8, 3.1 Hz, 2H), 5.26 (s, 2H), 5.04 (s,
2H), 4.02 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 162.8, 158.2, 155.9, 147.4, 136.9, 136.3, 134.6,
129.3 (2C), 129.1 (2C), 128.7 (2C), 128.1, 127.7, 127.6 (2C), 127.5, 127.4, 127.3, 127.0, 126.3
(2C), 120.6, 115.6 (2C), 70.2, 46.3, 41.6; IR νmax (KBr): 3032, 1672, 1591, 1508, 1454, 1240, 1172,
1013, 750, 694 cm−1; HRMS (ESITOF) m/z calcd for C29H24N2O2, [M + H]+ 433.1911, found
433.1910.

3-Benzyl-2-(4-(benzyloxy)benzyl)-6-methylquinazolin-4(3H)-one (4k). White solid, 41.1 mg,
yield: 92%, m.p: 137–139 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.12 (s, 1H), 7.64 (dd, J = 8.3,
2.8 Hz, 1H), 7.61–7.57 (m, 1H), 7.45–7.22 (m, 8H), 7.13 (d, J = 7.3 Hz, 4H), 6.92 (dd, J = 8.3,
3.0 Hz, 2H), 5.26 (s, 2H), 5.04 (s, 2H), 4.01 (s, 2H), 2.50 (s, 3H); 13C NMR (100 MHz, CDCl3)
δ 162.9, 158.2, 155.0, 145.5, 137.2, 137.0, 136.4, 136.0, 129.2 (2C), 129.1 (2C), 128.7 (2C), 128.1,
127.7 (2C), 127.6 (2C), 127.2, 126.7, 126.3 (2C), 120.4, 115.6 (2C), 70.2, 46.2, 41.5, 21.5; IR νmax
(KBr): 3032, 1670, 1591, 1508, 1454, 1340, 1275, 1013, 831, 750 cm−1; HRMS (ESITOF) m/z
calcd for C30H26N2O2, [M + H]+ 447.2067, found 447.2069.

3-Benzyl-2-(4-(benzyloxy)benzyl)-7-methylquinazolin-4(3H)-one (4l). Oil, 40.2 mg, yield: 90%.
1H NMR (400 MHz, CDCl3) δ 8.21 (dd, J = 8.5, 3.0 Hz, 1H), 7.54 (s, 1H), 7.44–7.23 (m, 9H),
7.13 (d, J = 7.2 Hz, 4H), 6.95–6.89 (m, 2H), 5.25 (s, 2H), 5.03 (s, 2H), 4.00 (s, 2H), 2.51 (s, 3H);
13C NMR (100 MHz, CDCl3) δ 162.8, 158.2, 155.9, 147.5, 145.6, 137.0, 136.5, 129.3 (2C), 129.1
(2C), 128.7 (2C), 128.5, 128.1, 127.7, 127.6, 127.5 (2C), 127.1, 127.0, 126.3 (2C), 118.2, 115.6
(2C), 70.2, 46.1, 41.6, 22.0; IR νmax (KBr): 3032, 1672, 1593, 1508, 1454, 1259, 1173, 1011, 750,
696 cm−1; HRMS (ESITOF) m/z calcd for C30H26N2O2, [M + H]+ 447.2067, found 447.2069.
3-Benzyl-2-(4-(benzyloxy)benzyl)-6-chloroquinazolin-4(3H)-one (4m). White solid, 44.7 mg,
yield: 96%, m.p: 174–176 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.20 (s, 1H), 7.66–7.55 (m, 2H),
7.38–7.15 (m, 8H), 7.04 (dd, J = 8.1, 2.9 Hz, 4H), 6.85 (dd, J = 8.7, 3.0 Hz, 2H), 5.17 (s, 2H),
4.96 (s, 2H), 3.93 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 161.9, 158.3, 156.2, 146.0, 136.9,
136.0, 135.0, 132.7, 129.3 (2C), 129.2 (2C), 129.1, 128.7 (2C), 128.2, 127.9, 127.6 (2C), 127.2,
126.6, 126.3 (2C), 121.7, 115.6 (2C), 70.2, 46.4, 41.5; IR νmax (KBr): 3034, 1676, 1591, 1508,
1472, 1335, 1275, 1013, 835, 750 cm−1; HRMS (ESITOF) m/z calcd for C29H23ClN2O2, [M +
H]+ 467.1521, found 467.1528.

3-Benzyl-2-(4-(benzyloxy)benzyl)-7-chloroquinazolin-4(3H)-one (4n). Oil, 43.4 mg, yield: 93%.
1H NMR (400 MHz, CDCl3) δ 8.24 (dd, J = 9.0, 3.1 Hz, 1H), 7.73 (d, J = 3.0 Hz, 1H), 7.47–7.23
(m, 9H), 7.13 (d, J = 6.8 Hz, 4H), 6.93 (dd, J = 8.1, 3.2 Hz, 2H), 5.25 (s, 2H), 5.04 (s, 2H), 4.00
(s, 2H); 13C NMR (100 MHz, CDCl3) δ 162.3, 158.3, 157.3, 148.4, 140.8, 136.9, 136.1, 129.3
(2C), 129.2 (2C), 128.8, 128.7 (2C), 128.2, 127.9, 127.6 (2C), 127.5, 127.2, 127.0, 126.3 (2C),
119.1, 115.6 (2C), 70.2, 46.3, 41.5; IR νmax (KBr): 3034, 1676, 1591, 1508, 1454, 1383, 1240, 1013,
748, 694 cm−1; HRMS (ESITOF) m/z calcd for C29H23ClN2O2, [M + H]+ 467.1521, found
467.1528.

3-Benzyl-2-(4-(benzyloxy)benzyl)-8-chloroquinazolin-4(3H)-one (4o). White solid, 38.2 mg,
yield: 82%, m.p: 111–113 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 8.0, 2.8 Hz, 1H),
7.84 (dd, J = 7.9, 2.8 Hz, 1H), 7.44–7.35 (m, 5H), 7.34–7.26 (m, 4H), 7.16 (d, J = 7.8 Hz, 2H),
7.12 (d, J = 6.7 Hz, 2H), 6.93 (dd, J = 8.0, 2.6 Hz, 2H), 5.26 (s, 2H), 5.04 (s, 2H), 4.07 (s, 2H);
13C NMR (100 MHz, CDCl3) δ 162.3, 158.3, 156.8, 144.2, 137.0, 135.9, 134.8, 129.5 (2C), 129.2
(2C), 128.91, 128.7 (2C), 128.1, 127.9, 127.6 (2C), 127.3, 126.9, 126.3 (2C), 126.1, 122.2, 115.6
(2C), 70.2, 46.5, 41.7; IR νmax (KBr): 3030, 1676, 1591, 1508, 1445, 1261, 1163, 987, 748, 696
cm−1; HRMS (ESITOF) m/z calcd for C29H23ClN2O2, [M + H]+ 467.1521, found 467.1528.
3-Benzyl-2-(4-(benzyloxy)benzyl)-6-bromoquinazolin-4(3H)-one (4p). White solid, 49.5 mg,
yield: 97%, m.p: 167–169 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.45 (t, J = 2.4 Hz, 1H), 7.83 (dd,
J = 8.7, 2.6 Hz, 1H), 7.59 (dd, J = 9.4, 3.0 Hz, 1H), 7.44–7.29 (m, 8H), 7.12 (d, J = 6.8 Hz, 4H),
6.93 (dd, J = 7.8, 2.8 Hz, 2H), 5.25 (s, 2H), 5.04 (s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz,
CDCl3) δ 161.7, 158.3, 156.3, 146.3, 137.7, 136.9, 136.0, 129.8, 129.3 (2C), 129.2, 129.1 (2C),
128.7 (2C), 128.2, 127.9, 127.6 (2C), 127.2, 126.3 (2C), 122.0, 120.4, 115.6 (2C), 70.2, 46.4, 41.5;
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IR νmax (KBr): 2905, 1676, 1589, 1510, 1467, 1333, 1275, 985, 750, 692 cm−1; HRMS (ESITOF)
m/z calcd for C29H23BrN2O2, [M + H]+ 511.1016, found 511.1021.

3-Benzyl-2-(4-(benzyloxy)benzyl)-7-bromoquinazolin-4(3H)-one (4q). Oil, 45.4 mg, yield: 89%.
1H NMR (400 MHz, CDCl3) δ 8.16 (dd, J = 8.8, 3.0 Hz, 1H), 7.91 (s, 1H), 7.58 (dd, J = 8.6,
2.7 Hz, 1H), 7.45–7.23 (m, 8H), 7.13 (d, J = 6.9 Hz, 4H), 6.97–6.90 (m, 2H), 5.25 (s, 2H), 5.04
(s, 2H), 4.00 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 162.4, 158.3, 157.3, 148.4, 136.9, 136.0,
130.3, 130.2, 129.4 (2C), 129.3, 129.2 (2C), 128.8, 128.7 (2C), 128.2, 127.9, 127.6 (2C), 127.2,
126.3 (2C), 119.5, 115.6 (2C), 70.2, 46.4, 41.5; IR νmax (KBr): 3032, 1676, 1591, 1508, 1454, 1259,
1013, 883, 750, 694 cm−1; HRMS (ESITOF) m/z calcd for C29H23BrN2O2, [M + H]+ 511.1016,
found 511.1021.

3-Benzyl-2-(4-(benzyloxy)benzyl)-6-methoxyquinazolin-4(3H)-one (4r). Oil, 37.9 mg, yield: 82%.
1H NMR (400 MHz, CDCl3) δ 7.72–7.64 (m, 2H), 7.44–7.25 (m, 9H), 7.13 (dd, J = 8.3, 3.0 Hz,
4H), 6.96–6.90 (m, 2H), 5.27 (s, 2H), 5.03 (s, 2H), 4.01 (s, 2H), 3.91 (s, 3H); 13C NMR (100 MHz,
CDCl3) δ 162.7, 158.5, 158.2, 153.5, 142.1, 137.0, 136.4, 129.2 (2C), 129.1 (2C), 129.0, 128.7
(2C), 128.1, 127.8, 127.7, 127.6 (2C), 126.3 (2C), 124.9, 121.4, 115.5 (2C), 106.5, 70.2, 55.9, 46.4,
41.4; IR νmax (KBr): 3032, 1667, 1591, 1489, 1360, 1240, 1026, 837, 750, 694 cm−1; HRMS
(ESITOF) m/z calcd for C30H26N2O3, [M + H]+ 463.2016, found 463.2022.

2-(4-(Benzyloxy)benzyl)-3-butylquinazolin-4(3H)-one (4s). Oil, 39.0 mg, yield: 98%. 1H NMR
(400 MHz, CDCl3) δ 8.26 (dd, J = 8.1, 2.9 Hz, 1H), 7.72 (tt, J = 8.3, 5.3 Hz, 2H), 7.49–7.43 (m,
1H), 7.43–7.28 (m, 5H), 7.18 (d, J = 7.7 Hz, 2H), 6.93 (dd, J = 7.9, 2.8 Hz, 2H), 5.04 (s, 2H), 4.18
(s, 2H), 4.01–3.88 (m, 2H), 1.60–1.49 (m, 2H), 1.36 (q, J = 7.5 Hz, 2H), 0.92 (td, J = 7.8, 2.5 Hz,
3H); 13C NMR (100 MHz, CDCl3) δ 162.5, 158.2, 155.6, 147.4, 137.0, 134.3, 129.4 (2C), 128.7
(2C), 128.1, 127.8, 127.6 (2C), 127.2, 126.9, 126.7, 120.9, 115.5 (2C), 70.2, 44.4, 41.8, 30.9, 20.4,
13.8; IR νmax (KBr): 3034, 1672, 1589, 1510, 1474, 1259, 1175, 1022, 750, 696 cm−1; HRMS
(ESITOF) m/z calcd for C26H26N2O2, [M + H]+ 399.2067, found 399.2065.

3-Benzyl-2-(4-methoxybenzyl)quinazolin-4(3H)-one (4t). Oil, 33.1 mg, yield: 93%. 1H NMR
(400 MHz, CDCl3) δ 8.33 (dd, J = 8.1, 3.0 Hz, 1H), 7.75 (td, J = 9.6, 8.2, 3.9 Hz, 2H), 7.50 (t,
J = 7.1 Hz, 1H), 7.37–7.23 (m, 3H), 7.16–7.12 (m, 4H), 6.86 (dt, J = 8.8, 2.1 Hz, 2H), 5.26 (s,
2H), 4.03 (s, 2H), 3.79 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 162.9, 159.0, 155.9, 147.5, 136.3,
134.6, 129.2 (2C), 129.1 (2C), 127.7, 127.4, 127.3, 127.2, 127.0, 126.3 (2C), 120.7, 114.7 (2C),
55.4, 46.3, 41.6; IR νmax (KBr): 3032, 1672, 1593, 1510, 1454, 1246, 1175, 1030, 750, 694 cm−1;
HRMS (ESITOF) m/z calcd for C23H20N2O2, [M + H]+ 357.1598, found 357.1599.

Gram-Scale Synthesis and Synthesis of HBQ

3-Benzyl-2-(4-(benzyloxy)benzyl)quinazolin-4(3H)-one (4j). CuI (48 mg, 10 mol%) was added to
an oven-dried 50 mL round-bottomed flask containing a mixture of 2-amino-N-benzylbenzamide
1a (678 mg, 3.0 mmol, 1.0 equiv.), 1-(benzyloxy)-4-ethynylbenzene 2b (686 mg, 3.3 mmol, 1.1
equiv.), TsN3 3a (650 mg, 3.3 mmol, 1.1 equiv.), and Et3N (333 mg, 3.3 mmol, 1.1 equiv.)
in MeCN (20 mL). The reaction mixture was stirred for 12 h. After completion of the
reaction as indicated by TLC, the solvent was removed by evaporation in a vacuum. The
residue was directly purified by flash column chromatography on silica gel (eluting with
hexanes/EtOAc = 2:1) to obtain 4j (1.22 g, 94% yield) as oil.

2-(4-Hydroxybenzyl)quinazolin-4(3H)-one (HBQ). To a stirred solution of 4j (0.86 g, 2.0 mmol,
1.0 equiv.) in dry EtOAc (15 mL) was added palladium (10%) on carbon (15.0 mg). Then, the
reaction mixture was stirred under an atmosphere of H2 at room temperature for 3 h. The
reaction mixture was then filtered on a silica pad and rinsed with EtOAc. After evaporation
of the solvent, the residue was purified by flash column chromatography on silica gel
(eluting with petroleum ether/EtOAc = 1:1) to obtain HBQ as a white solid, 460 mg, yield:
92%, m.p: 210–212 ◦C (literature [15], m.p: no report). 1H NMR (400 MHz, CD3OD) δ 8.17
(dd, J = 8.2, 2.9 Hz, 1H), 7.84–7.76 (m, 1H), 7.71–7.65 (m, 1H), 7.50 (td, J = 7.8, 2.9 Hz, 1H),
7.22–7.15 (m, 2H), 6.75 (dt, J = 8.7, 2.1 Hz, 2H), 4.57 (s, 1H), 3.90 (s, 2H); 13C NMR (100 MHz,
CD3OD) δ 164.4, 158.4, 157.8, 150.1, 136.0, 130.9 (2C), 127.8, 127.7, 127.6, 127.1, 121.8, 116.6
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(2C), 41.5; IR νmax (KBr): 3383, 2492, 1682, 1609, 1452, 1269, 1119, 972, 827, 756 cm−1; HRMS
(ESITOF) m/z calcd for C15H12N2O2, [M + H]+ 253.0972, found 253.0969.

4. Conclusions

We have developed an oxidant-free and highly effective approach to synthesize phe-
nolic quinazolin-4(3H)-ones via the CuAAC/ring cleavage reaction. N-sulfonylketenimine,
generated by TsN3 and terminal alkynes, undergoes two nucleophilic additions by ben-
zamides and anilines, and the sulfonyl group is eliminated through aromatization. More
importantly, the protocol can be used to synthesize the natural product 2-(4-hydroxybenzyl)
quinazolin-4(3H)-one and scaled up under mild conditions. Moreover, we expect that this
methodology can be applied to building phenolic quinazolin-4(3H)-one block facility.
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