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Abstract: A novel double Friedel–Crafts reaction of acylsilanes in water is described. This strategy
enables synthesis of bis(indolyl)methane derivatives with 1-hydroxy or 1-silyl substituents in mod-
erate to high yield. Compared to the 1-silyl-bis(indolyl)methane derivatives from indole substrate,
1-hydroxy-bis(indolyl)methane derivatives were synthesized from the 5-hydroxyindole, and the
hydrogen bonds in the 5-hydroxyindole play a crucial role in regulating the reaction selectivity.

Keywords: Friedel–Crafts reaction; bis(indolyl)methanes; hydrogen-bond; acylsilanes

1. Introduction

As an important class of indole alkaloids, bis(indolyl)methanes (BIM) broadly exist in
many bioactive natural products [1–5], such as streptindole [6], arsindoline A [7], trisin-
doline [8], and a wide range of biological activities, such as antibacterial, antitumor and
antileishmanial properties, were shown in these related compounds (Scheme 1a). There-
fore, the synthesis of a bis(indolyl)methane (BIM) type of structure has attracted broad
attention in synthetic chemistry [1,9–16]. Generally, 3-alkyl-bis(indolyl)methanes were ob-
tained easily via a Lewis or Brønsted acid-catalyzed double Friedel–Crafts reaction between
indole and carbonyl compounds (Scheme 1b). Moreover, photoredox catalysis-induced
bisindolylations were also successfully employed by C-H bond cleavage [13,14]. However,
the synthesis of bis(indolyl)methanes with 1-hydroxy or 1-silyl substituents remains chal-
lenging and less explored, probably due to the lesser stability of the hydroxy group and the
silyl group in Lewis acid or Brønsted acid reaction conditions. Therefore, the development
of an alternative synthetic method for BIM’s derivatives remains a challenging subject.

Acylsilanes are valuable organosilicon reagents in an umpolung reaction, and a C-Si
or C-O bond could be synthesized by nucleophilic addition using the proton conditions or
Brook rearrangement with high nucleophilicity of reagents [17–29]. In this regard, various
reaction types, including nucleophilic addition, the carbene reaction, the Prins reaction
and the Brook reaction were successfully achieved [17,18,29]. However, the Friedel–Crafts
reaction of acylsilanes is less explored. Considering the unique reactivity of carbonyl groups,
we wonder whether bis(indolyl)methanes with 1-silylsubstituent could be synthesized
by a double Friedel–Crafts reaction of acylsilanes. Moreover, bis(indolyl)methanes with
1-hydroxy substituent could be yielded if Brook rearrangement occurred before the second
Friedel–Crafts reaction. Herein, we disclose a novel double Friedel–Crafts reaction of
acylsilanes, generating the bis(indolyl)methanes with 1-silyl substituent products. With the
assistance of a hydrogen-bond, bis(indolyl)methanes with a 1-hydroxy substituent were
successfully obtained in moderate yields (Scheme 1c).

Molecules 2023, 28, 5685. https://doi.org/10.3390/molecules28155685 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28155685
https://doi.org/10.3390/molecules28155685
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0009-0008-0650-4484
https://doi.org/10.3390/molecules28155685
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28155685?type=check_update&version=2


Molecules 2023, 28, 5685 2 of 14

Molecules 2023, 28, x FOR PEER REVIEW 2 of 14 
 

 

products. With the assistance of a hydrogen-bond, bis(indolyl)methanes with a 1-hydroxy 
substituent were successfully obtained in moderate yields (Scheme 1c). 
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Using water as a reaction medium has been attracting considerable attention, as wa-

ter is a non-toxic, green and readily available solvent [30–35]. Compared to an organic 
solvent, significant reaction acceleration was often observed when using water as the sol-
vent [36–39]. Moreover, a reaction does not occur unless the solvent is water in some cases. 
Considering the unique ability, the Friedel–Crafts reaction of oxindole 1a and acylsilane 
2a was firstly investigated in water (Table 1). Gratifyingly, with p-toluenesulfonic acid 
(PTSA) as the catalyst, a double Friedel–Crafts reaction occurred, yielding the desired 
product (3a) in a 43% yield. Encouraged by these results, a variety of other Brønsted acids 
were examined to improve the yield (Table 1, entries 2–7). A high yield of 72% for 3a was 
achieved when the reaction was carried out using camphorsulfonic acid (CSA) as the cat-
alyst (Table 1, entry 2). Compared to the strong acidic catalyst, a suitable acidic CSA is 
beneficial to the products. Subsequently, a series of polar or nonpolar solvents, including 
CH2Cl2, toluene, DMF, THF and EtOH, were investigated and inferior yields were ob-
served (Table 1, entries 8–12). Solvent screening showed that the reaction was accelerated 
dramatically in water. Reducing the amount of catalyst leads to a decrease in the yield of 
the reaction, and even if the reaction time is extended, the yield does not increase (Table 
1, entries 13–14). 

  

Scheme 1. Strategies to access bis(indolyl)methanes derivatives via a double Friedel–Crafts reaction.

2. Results

Using water as a reaction medium has been attracting considerable attention, as water
is a non-toxic, green and readily available solvent [30–35]. Compared to an organic solvent,
significant reaction acceleration was often observed when using water as the solvent [36–39].
Moreover, a reaction does not occur unless the solvent is water in some cases. Considering
the unique ability, the Friedel–Crafts reaction of oxindole 1a and acylsilane 2a was firstly
investigated in water (Table 1). Gratifyingly, with p-toluenesulfonic acid (PTSA) as the
catalyst, a double Friedel–Crafts reaction occurred, yielding the desired product (3a) in a
43% yield. Encouraged by these results, a variety of other Brønsted acids were examined
to improve the yield (Table 1, entries 2–7). A high yield of 72% for 3a was achieved when
the reaction was carried out using camphorsulfonic acid (CSA) as the catalyst (Table 1,
entry 2). Compared to the strong acidic catalyst, a suitable acidic CSA is beneficial to
the products. Subsequently, a series of polar or nonpolar solvents, including CH2Cl2,
toluene, DMF, THF and EtOH, were investigated and inferior yields were observed (Table 1,
entries 8–12). Solvent screening showed that the reaction was accelerated dramatically in
water. Reducing the amount of catalyst leads to a decrease in the yield of the reaction, and
even if the reaction time is extended, the yield does not increase (Table 1, entries 13–14).
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Table 1. Optimization of reaction conditions a.
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Entry Catalyst Solvent Time (h) Yield (%) b

1 PTSA H2O 24 43
2 CSA H2O 10 72
3 MeSO3H H2O 24 -
4 Benzoic acid H2O 70 33
5 p-Fluorobenzoic acid H2O 69 28
6 3,5-Dinitrobenzoic acid H2O 104 37
7 CH3CO2H H2O 32 5
8 CSA CH2Cl2 10 24
9 CSA toluene 10 20

10 CSA DMF 10 11
11 CSA THF 10 28
12 CSA EtOH 10 27
13 CSA c H2O 28 53
14 CSA d H2O 32 38

a Reaction conditions: 1a (0.25 mmol), 2 (0.10 mmol) in solvent (1.0 mL) at room temperature was stirred
for the indicated time. b Isolated yield. c 20 mol% catalyst was used. d 10 mol% catalyst was used.
TBS = tert-butyldimethylsily.

With the optimized conditions in hand, we explored the scope of various silyl glyoxy-
lates under standard reaction conditions, and various silicon-containing BIMs compounds
were successfully obtained (Scheme 2). Generally, the double Friedel–Crafts reaction be-
tween indole and silyl glyoxylate containing different ester groups worked well (3a–3o).
For example, a substrate with 1-naphthalenyl ester group was applicable, generating the
desired product 3e in 75% yield. However, a lower yield of 22% (3d) was observed when
the substrate with tert-butyl ester product was employed. We speculate that the steric
hindrance effect of the bulk of tert-butyl affects the reaction yield. Next, indoles bear-
ing the alkyl and halogen substituents, such as Me, tert-butyl, F and Cl, were competent
in this reaction, generating the corresponding products in moderate yield (3f–3h). Both
electron-withdrawing (NO2) and electron-donating (MeO) groups attached to the indole
could afford the desired products (3l–3n) in high yields. Interestingly, a new product of
bis(indolyl)methanes with 1-hydroxy substituent (3o’) was formed when 5-hydroxyindole
was employed as the substrate. To our delight, the hydrogen bonds from 5-hydroxyindole
have a regulating effect on the generation of two products of 3o and 3o’. It should be noted
that the desilication product of bis(indolyl)methanes with 1-hydroxy substituent products
(3o’) was not easy to obtain by a common strategy. Moreover, no reaction was observed
when 2-methylindole and 1-methylindole were used as the substrate (3p and 3q) (details
appear in Supplementary Materials).

To further broaden the substrate scope, the less reactive acylsilanes were investigated.
However, no desired product of 5aa’–5aa”’ was obtained when the reaction of indole (1a)
and acylsilanes (4a’–4a”’) was carried out under the optimized conditions (Scheme 3a).
Considering the bulk steric hindrance effect of silyl substituents (TIPS, TBS and TES), the
small size of TMS (4a) was employed to explore the possibility of the reactions. However,
two desired products of 5ab and 5ab’ were obtained in low yield (Scheme 3b). Based
on a regulating effect of hydrogen bonds [40–42] (see Scheme 3c or Scheme 2), the reac-
tion of 5-hydroxyindole was employed as the substrate under the optimized conditions.
Fortunately, the desilication product of bis(indolyl)methanes with 1-hydroxy substituent
product (5a) was obtained, and bis(indolyl)methanes with 1-silyl substituent product (5a’)
were completely suppressed. These results clearly indicated that hydrogen bonds from
the 5-hydroxyindole are a crucial factor in controlling reaction selectivity (Scheme 3d).
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Moreover, the hydroxyl group at different positions on indole, including 4-hydroxyindole,
6-hydroxyindole and 7-hydroxyindole, was employed as the substrate; however, a trace
amount of the desired product was obtained. These results showed that 5-hydroxyindole
is benefit to the desilication product. However, the exact mechanism was unclear (see
SI for details).
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recovery of starting materials.

Under the optimal reaction conditions, we further applied other less reactive acyl-
silanes to this reaction (Scheme 4). As shown in Scheme 3, the acylsilanes with an alkyl
substituent, including Me, Et, tBu on the benzene ring, were amenable to this reaction,
generating the desired products (5a–5e) in moderate yields. Moreover, the biphenyl and
naphthyl substituted acylsilanes were performed smoothly with 5-hydroxyindole, afford-
ing the corresponding products (5f and 5g) in good yields. Similarly, the acylsilanes with F
and Cl atom on the benzene ring were also efficiently transformed into the desired products
(5i–5j) in high yields. Both electron-withdrawing groups and electron-donating groups
were also compatible with the developed protocol, yielding the corresponding products
(5l–5m) in moderate yield. Interestingly, the thienyl-substituted acylsilane is also suitable
to the reaction, and the desired product (5n) was obtained in moderate yield (details appear
in Supplementary Materials).

Based on the experimental results, two possible reaction pathways were proposed to
understand the unusual reaction selectivity. As shown in Scheme 5, the carbonyl group of
acylsilanes could also be activated by CSA, and the hydrogen bond from water and the
5-hydroxyindole (1l) could react with the activated carbonyl group to afford the generate
alkoxide intermediate I. Because the small size of TMS group is beneficial for Brook rear-
rangement, and the silyl enol ether intermediate II could be obtained from the intermediate
I. These results indicate that it is more possible that the 5-hydroxyindole (1l) acts as a proton
acid (OH) and the process occurs as an intermolecular process. Finally, another equivalent
of 5-hydroxyindole (1l) reacts with silyl enol ether intermediate II to generate the desired
product 5 after desilylation under the acid conditions. However, the role of the hydrogen
bonding of 5-hydroxyindole is unclear in this transformation. Similarly, the carbonyl group
could be activated by CSA and the hydrogen bond from water, and the indole could react
with the activated carbonyl group to afford the tetrahedral intermediate III. Subsequently,
the dehydration process is faster than the Brook rearrangement, and the azafulvene inter-
mediate IV was generated by losing an equivalent amount of water. Another equivalent of
1a reacts with intermediate IV to afford the final product 3.
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3. Materials and Methods

The detailed procedures for the synthesis and characterization of the products are
given in Appendix A.

4. Conclusions

In summary, we developed a new strategy to synthesize bis(indolyl)methane deriva-
tives with 1-hydroxy or 1-silyl substituents in moderate to high yield via double Friedel–
Crafts reactions of acylsilanes in water. Hydrogen bonds from the 5-hydroxyindole are a
crucial factor in controlling reaction selectivity between 1-silyl-bis(indolyl)methane deriva-
tives and 1-hydroxy-bis(indolyl)methane derivatives. A variety of acylsilanes and indols
were well tolerated under mild conditions. Further studies of new reactions of acylsilanes
are currently underway in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28155685/s1. Characterization data for product 3 and 5,
including 1H- and 13C-NMR spectroscopies, are available online: 1. The reaction of acylsilane with
indole containing hydroxy groups at different positions; 1. 1H and 13C NMR spectra of the products.

Author Contributions: Conceptualization, M.-Y.H.; methodology, Q.L. and X.-X.L.; formal analysis,
Q.L. and X.-X.L.; investigation, Q.L. and W.Z.; data curation, Q.L. and X.-X.L.; writing—original draft
preparation, Q.L.; writing—review and editing, M.-Y.H.; supervision, M.-Y.H.; project administration,
M.-Y.H. All authors have read and agreed to the published version of the manuscript.

Funding: We gratefully acknowledge the University Natural Science Research Project of Anhui
Province (KJ2021ZD0057) and the Young Scholars in WanJiang Scholars Program of Anhui Province
(03106032) for financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

Appendix A. Experimental Section

Chemicals and analytical-grade solvents were purchased from commercial suppliers
and used without further purification unless otherwise stated. Flash column chromatogra-
phy was performed on silica gels (200–300 mesh). General 1H and 13C NMR spectra were
recorded on a Bruker 600 MHz NMR spectrometer. Chemical shifts were reported in ppm,
and the coupling constants J are given in Hz. Tetramethylsilane (TMS, δ = 0.00 ppm) or
CHCl3 (δ = 7.27 ppm) served as an internal standard for 1H NMR, while CDCl3 was used
as an internal standard (δ = 77.0 ppm) for 13C NMR. HRMS data were obtained on a Bruker
Apex II mass instrument (ESI) or an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF
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LC/MS (ESI). Silyl glyoxylates were prepared according to the literature procedure [41–43].
Acylsianes were prepared according to the literature procedure [28,44–46].

General procedure for Friedel–Crafts reaction of silyl glyoxylates. A mixture of
indole derivative 1 (0.25 mmol), silyl glyoxylate 2 (0.10 mmol), and CSA (30 mol%) in H2O
(1.0 mL) was stirred at room temperature for the indicated reaction time. The reaction
mixture was extracted twice with 15 mL of ethyl acetate; combined organic phases were
washed with brine, dried (Na2SO4), and evaporated. The residue was further purified
by silica gel chromatography (petroleum ether/EtOAc as eluent) to afford the desired
product 3.

Benzyl 2-(tert-butyldimethylsilyl)-2,2-di(1H-indol-3-yl)acetate (3a); isolated by column chro-
matography (EtOAc/petroleum ether = 1:6); (35.6 mg, 72% yield); red amorphous solid; 1H
NMR (600 MHz, CDCl3) δ 8.06 (s, 2H), 7.52 (d, J = 2.6 Hz, 2H), 7.25 (d, J = 7.2 Hz, 2H), 7.17
(t, J = 7.2 Hz, 1H), 7.12 (t, J = 7.5 Hz, 2H), 6.98 (t, J = 7.5 Hz, 2H), 6.91 (d, J = 7.5 Hz, 2H), 6.80
(d, J = 8.1 Hz, 2H), 6.65 (t, J = 7.5 Hz, 2H), 5.07 (s, 2H), 0.71 (s, 9H), 0.29 (s, 6H); 13C NMR
(150 MHz, CDCl3): δ 175.0, 136.0, 135.8, 128.1, 127.9, 127.8, 127.6, 124.1, 121.4, 121.3, 118.8,
115.2, 110.6, 66.4, 44.6, 28.0, 20.1, −3.2; IR (cm−1) 3301, 3057, 2931, 2857, 1706, 1591, 1520,
1458, 1418; HRMS (ESI) m/z calcd for C31H35N2O2Si (M + H)+ 495.2468, found 495.2468.

Ethyl 2-(tert-butyldimethylsilyl)-2,2-di(1H-indol-3-yl)acetate (3b); isolated by column chro-
matography (EtOAc/petroleum ether = 1:8); (29.8 mg, 69% yield); red amorphous solid;
1H NMR (600 MHz, CDCl3) δ 8.08 (s, 2H), 7.48 (s, 2H), 7.24 (d, J = 7.8 Hz, 2H), 6.98 (t,
J = 7.2 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 6.68 (t, J = 7.2 Hz, 2H), 4.13–4.09 (m, 2H), 1.05 (t,
J = 7.2 Hz, 3H) 0.73 (s, 9H), 0.35 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 175.2, 135.8, 127.8,
124.1, 121.4, 121.3, 118.7, 115.4, 110.6, 60.6, 44.4, 28.0, 20.0, 14.0, −3.1; HRMS (ESI) m/z
calcd for C26H32N2O2SiNa (M + Na)+ 455.2125, found 455.2125.

Cyclohexyl 2-(tert-butyldimethylsilyl)-2,2-di(1H-indol-3-yl)acetate (3c); isolated by column chro-
matography (EtOAc/petroleum ether = 1:6); (25.8 mg, 53% yield); red amorphous solid; 1H
NMR (600 MHz, CDCl3) δ 8.07 (s, 2H), 7.46 (s, 2H), 7.24 (d, J = 8.4 Hz, 2H), 6.97 (t, J = 7.2
Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 6.67 (t, J = 7.2 Hz, 2H), 4.84–4.85 (m, 1H), 1.58–1.68 (m, 2H),
1.28–1.37 (m, 4H), 1.13–1.21 (m, 4H), 0.70 (s, 9H), 0.39 (s, 6H); 13C NMR (150 MHz, CDCl3):
δ 174.6, 135.8, 127.8, 124.1, 121.2, 118.6, 115.5, 110.5, 72.7, 44.6, 31.2, 27.9, 23.2, 20.0, −2.9;
IR (cm−1) 3351, 3054, 2931, 2856, 1694, 1455, 1415, 1338, 1205; HRMS (ESI) m/z calcd for
C30H38N2O2SiNa (M + Na)+ 509.2595, found 509.2597.

tert-Butyl 2-(tert-butyldimethylsilyl)-2,2-di(1H-indol-3-yl)acetate (3d); isolated by column chro-
matography (EtOAc/petroleum ether = 1:5); (10.1 mg, 22% yield); red amorphous solid; 1H
NMR (600 MHz, CDCl3) δ 8.04 (s, 2H), 7.38 (s, 2H), 7.26 (d, J = 1.4 Hz, 2H), 7.25 (s, 1H), 6.98
(t, J = 7.5 Hz, 2H), 6.89 (d, J = 8.0 Hz, 1H), 6.68 (t, J = 7.6 Hz, 2H), 1.25 (s, 9H), 0.61 (s, 9H),
0.42 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 174.0, 135.9, 127.8, 124.0, 122.0, 121.2, 118.6,
115.8, 110.5, 80.4, 45.3, 27.9, 27.8, 19.9, −2.8; HRMS (ESI) m/z calcd for C28H36N2O2SiNa
(M + Na)+ 483.2444, found 483.2444.

Naphthalen-1-yl 2-(tert-butyldimethylsilyl)-2,2-di(1H-indol-3-yl)acetate (3e); isolated by column
chromatography (EtOAc/petroleum ether = 1:6); (39.8 mg, 75% yield); red amorphous
solid; 1H NMR (600 MHz, CDCl3) δ 8.01 (s, 2H), 7.72 (dd, J = 17.6, 8.2 Hz, 2H), 7.49 (s, 2H),
7.35 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 8.1 Hz, 3H), 7.21 (d, J = 8.5 Hz, 1H), 7.18 (d, J = 7.0 Hz,
1H), 7.05 (t, J = 7.6 Hz, 1H), 6.99 (t, J = 7.5 Hz, 2H), 6.86 (d, J = 8.2 Hz, 2H), 6.66 (t, J = 7.6 Hz,
2H), 5.48 (s, 2H), 0.69 (s, 9H), 0.23 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 175.3, 135.8,
133.3, 131.5, 131.4, 128.8, 128.1, 127.8, 127.0, 125.9, 125.5, 124.9, 124.1, 123.7, 121.33, 121.27,
118.8, 115.1, 110.6, 65.2, 44.6, 27.9, 20.0, −3.3; HRMS (ESI) m/z calcd for C35H36N2O2SiNa
(M + Na)+ 567.2438, found 567.2442.

Ethyl 2-(tert-butyldimethylsilyl)-2,2-bis(6-methyl-1H-indol-3-yl)acetate (3f); isolated by column
chromatography (EtOAc/petroleum ether = 1:5); (34.0 mg, 74% yield); red amorphous
solid; 1H NMR (600 MHz, CDCl3) δ 7.92 (s, 2H), 7.38 (d, J= 2.4 Hz, 2H), 7.02–7.00 (s, 2H),
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6.74 (d, J = 8.4 Hz, 2H), 6.52 (dd, J = 7.8 Hz, 1.8 Hz, 2H), 4.10 (q, J = 7.2 Hz, 2H), 1.06 (t,
J = 7.2 Hz, 3H), 0.73 (s, 9H), 0.34 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 175.2, 136.3, 130.8,
125.7, 123.5, 121.1, 120.6, 115.3, 110.6, 60.6, 44.4, 28.0, 21.5, 20.0, 14.1, −3.0; HRMS (ESI) m/z
calcd for C28H36N2O2SiNa (M + Na)+ 483.2438, found 483.2435.

Ethyl 2-(tert-butyldimethylsilyl)-2,2-bis(7-methyl-1H-indol-3-yl)acetate (3g); isolated by column
chromatography (EtOAc/petroleum ether = 1:5); (21.6 mg, 47% yield); red amorphous
solid; 1H NMR (600 MHz, CDCl3) δ 7.99 (s, 2H), 7.49 (d, J = 3.0 Hz, 2H), 6.78 (d, J = 4.8 Hz,
2H), 6.70 (d, J = 2.4 Hz, 2H), 6.61 (dd, J = 7.2 Hz, 6.6 Hz, 2H), 4.10 (q, J = 7.2 Hz, 2H), 2.43
(s, 6H), 1.06 (t, J =7.2 Hz, 3H), 0.73 (s, 9H), 0.34 (s, 6H); 13C NMR (150 MHz, CDCl3): δ
175.2, 135.4, 127.3, 123.9, 121.9, 119.4, 119.3, 118.8, 116,0, 60.6, 44.6, 28.1, 20.0, 16.5, 14.1, −3.0;
HRMS (ESI) m/z calcd for C28H36N2O2Si (M + H)+ 461.2624, found 461.2622.

Ethyl 2,2-bis(5-(tert-butyl)-1H-indol-3-yl)-2-(tert-butyldimethylsilyl)acetate (3h); isolated by col-
umn chromatography (EtOAc/petroleum ether = 1:6); (18.5 mg, 34% yield); red amorphous
solid; 1H NMR (600 MHz, CDCl3) δ 7.98 (s, 2H), 7.54 (d, J = 2.4 Hz, 2H), 7.15 (d, J = 8.4 Hz,
2H), 7.00 (dd, J = 8.4 Hz, 1.8 Hz, 2H), 6.67 (s, 2H), 4.11 (q, J = 7.2 Hz, 2H), 1.08 (t, J = 7.2 Hz,
3H), 0.98 (s, 18H), 0.77 (s, 9H), 0.35 (s, 6H); 13C NMR (150 MHz, CDCl3) δ 175.4, 140.8, 134.1,
127.8, 124.11, 119.0, 118.0, 115.2, 109.5, 60.5, 44.4, 34.1, 31.6, 28.2, 20.1, 14.1, −3.1; HRMS
(ESI) m/z calcd for C34H48N2O2SiNa (M + Na)+ 567.3377, found 567.3379.

Benzyl 2-(tert-butyldimethylsilyl)-2,2-bis(4-fluoro-1H-indol-3-yl)acetate (3i); isolated by column
chromatography (EtOAc/petroleum ether = 1:5); (38.8 mg, 69% yield); red amorphous
solid; 1H NMR (600 MHz, CDCl3) δ 8.15 (s, 2H), 7.76 (s, 2H), 7.13–7.16 (m, 1H), 7.08–7.11
(m, 2H), 7.03 (d, J = 7.8 Hz, 2H), 6.90–6.86 (m, 4H), 6.35 (q, J = 7.8 Hz, 2H), 5.11 (s,2H), 0.94
(s, 9H), 0.26 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 175.1, 156.2 (d, JC-F = 246 Hz), 138.8 (d,
JC-F = 12 Hz), 135.9, 128.0, 127.6, 127.4, 124.8 (d, JC-F = 3 Hz), 121.5 (d, JC-F = 9 Hz), 116.1 (d,
JC-F = 19.5 Hz), 115.6 (d, JC-F = 4.5 Hz), 106.9 (d, JC-F = 12 Hz), 104.9 (d, JC-F = 22.5 Hz), 66.6,
44.9, 28.7, 20.3, −3.5; IR (cm−1) 3469, 3034, 2931, 2858, 1698, 1574, 1498, 1471, 1223; HRMS
(ESI) m/z calcd for C31H33F2N2O2Si (M + H)+ 531.2279, found 531.2276.

Benzyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-fluoro-1H-indol-3-yl)acetate (3j); isolated by column
chromatography (EtOAc/petroleum ether = 1:6); (34.5 mg, 65% yield); red amorphous
solid; 1H NMR (600 MHz, CDCl3) δ 8.12 (s, 2H), 7.50 (d, J = 2.5 Hz, 2H), 7.20–7.16 (m, 1H),
7.16–7.12 (m, 2H), 6.94–6.90 (m, 4H), 6.64 (dd, J = 9.0, 5.4 Hz, 2H), 6.64–6.38 (m, 2H), 5.08 (s,
2H), 0.72 (s, 9H), 0.27 (s, 6H); 13C NMR (150 MHz, CDCl3): δ 174.8, 159.4 (d, JC-F = 237 Hz),
154.2 (d, JC-F = 64.5 Hz), 135.8, 128.0 (d, JC-F = 28.5 Hz), 127.7, 124.3 (d, JC-F = 3 Hz), 124.2,
122.0 (d, JC-F = 9 Hz), 115.1, 107.7 (d, JC-F = 24 Hz), 96.8 (d, JC-F = 25.5 Hz), 66.5, 66.5, 44.4,
27.9, 20.0, 1.0, −3.3; HRMS (ESI) m/z calcd for C31H33F2N2O2Si (M + H)+ 531.2279, found
531.2274.

Benzyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-chloro-1H-indol-3-yl)acetate (3k); isolated by column
chromatography (EtOAc/petroleum ether = 1:5); (44.4 mg, 79% yield); red amorphous solid;
1H NMR (600 MHz, CDCl3) δ 8.15 (s, 2H), 7.57 (s, 2H), 7.20–7.13 (m, 5H), 6.97 (d, J = 7.3 Hz,
2H), 6.93 (d, J = 8.7 Hz, 2H), 6.69 (s, 2H), 5.10 (s, 2H), 0.75 (s, 9H), 0.28 (s, 6H); 13C NMR
(150 MHz, CDCl3): δ 174.7, 135.6, 134.2, 128.6, 128.2, 128.1, 127.9, 125.5, 124.5, 121.9, 120.4,
114.6. 111.9, 66.8, 44.2, 28.0, 20.1, −3.3; IR (cm−1) 3468, 3032, 2933, 2858, 1705, 1565, 1463,
1412, 1257, 1189; HRMS (ESI) m/z calcd for C31H32Cl2N2O2SiNa (M + Na)+ 585.1502, found
585.1508.

Benzyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-cyano-1H-indol-3-yl)acetate (3l); isolated by column
chromatography (EtOAc/petroleum ether = 1:6); (33.7 mg, 62% yield); red amorphous
solid; 1H NMR (600 MHz, DMSO-d6) δ 11.65 (d, J = 1.8 Hz, 2H), 7.79 (d, J = 2.4 Hz,
2H), 7.50 (d, J = 8.4 Hz, 2H), 7.23 (dd, J = 8.4 Hz, 1.8 Hz, 2H), 7.22–7.18 (m, 1H), 7.15
(t, J = 7.8 Hz, 2H), 7.00–6.93 (m, 2H), 6.75 (s, 2H), 5.09 (s, 2H), 0.66 (s, 9H), 0.24 (s, 6H);
13C NMR (150 MHz, DMSO-d6): δ 173.8, 137.8, 135.7, 128.1, 127.94, 127.91, 127.6, 126.8,
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125.3, 123.3, 120.6, 114.2, 113.0, 100.0, 66.2, 43.6, 27.7, 19.7, −3.6; HRMS (ESI) m/z calcd for
C33H32N4O2SiNa (M + Na)+ 567.2192, found 567.2193.

Dimethyl 3,3’-(2-((2-bromobenzyl)oxy)-1-(tert-butyldimethylsilyl)-2-oxoethane-1,1-diyl)bis(1H-indole-
6-carboxylate) (3m); isolated by column chromatography (EtOAc/petroleum ether = 1:6);
(51.6 mg, 75% yield); red amorphous solid; 1H NMR (600 MHz, CDCl3) δ 8.83 (d, J = 2.4 Hz,
2H), 8.06 (d, J = 1.2 Hz, 2H), 7.79 (d, J = 2.4 Hz, 2H), 7.32 (dd, J = 1.2, 7.8 Hz, 1H), 7.26
(dd, J = 1.2, 7.8 Hz, 2H), 6.95 (td, J = 1.8, 7.2 Hz, 1H), 6.86 (td, J = 1.8, 7.2 Hz, 1H), 6.67
(d, J = 9.0 Hz, 2H), 6.63 (dd, J = 1.8, 7.8 Hz, 1H), 5.16 (s 2H), 3.83 (s, 6H), 0.72 (s, 9H), 0.31
(s, 6H); 13C NMR (150 MHz, CDCl3): δ 174.5, 168.2, 135.2, 134.9, 132.3, 131.2, 129.4, 129.2,
127.7, 127.0, 122.9, 122.8, 120.5, 119.8, 115.2, 113.4, 65.9, 51.8, 44.4, 27.9, 20.0, −3.4; HRMS
(ESI) m/z calcd for C31H33BrN2O2SiNa (M + Na)+ 595.1387, found 595.1389.

Ethyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-methoxy-1H-indol-3-yl)acetate (3n); isolated by col-
umn chromatography (EtOAc/petroleum ether = 1:6); (28.0 mg, 57% yield); red amorphous
solid; 1H NMR (600 MHz, DMSO-d6) δ 10.66 (s, 2H), 7.33 (d, J = 2.4 Hz, 2H), 6.74 (d,
J = 1.8 Hz, 2H), 6.43 (d, J = 9.0 Hz, 2H), 6.29 (dd, J = 9.0 Hz, 2.4 Hz, 2H), 3.99 (q, J = 7.2 Hz,
2H), 3.65 (s, 6H), 1.00 (t, J = 7.2 Hz, 3H), 0.65 (s, 9H), 0.25 (s, 6H); 13C NMR (150 MHz,
DMSO-d6): δ 174.5, 154.7, 136.5, 123.2, 121.8, 121.0, 113.6, 107.8, 94.0, 59.9, 54.8, 43.7,
27.8, 19.7, 14.0, −3.3; HRMS (ESI) m/z calcd for C28H36N2O4SiNa (M + Na)+ 515.2337,
found 515.2339.

Ethyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-hydroxy-1H-indol-3-yl)acetate (3o); isolated by col-
umn chromatography (EtOAc/petroleum ether = 1:8); (7.9 mg, 17% yield); red amorphous
solid; 1H NMR (600 MHz, DMSO-d6) δ 10.53 (s, 2H), 8.16 (s, 2H), 7.30 (s, 2H), 7.03 (d,
J = 8.4 Hz, 2H), 6.40 (d, J = 8.4 Hz, 2H), 6.08 (s, 2H), 4.00 (q, J = 7.2 Hz, 2H), 1.02 (t, J = 7.2 Hz,
3H), 0.63 (s, 9H), 0.26 (s, 6H); 13C NMR (150 MHz, DMSO-d6): δ 174.5, 149.0, 130.5, 128.2,
125.2, 112.6, 111.0, 110.7, 105.2, 59.8, 43.7, 27.9, 19.7, 14.0, −2.9; HRMS (ESI) m/z calcd for
C26H32N2O4SiNa (M + Na)+ 487.2024, found 487.2026.

Ethyl 2-(tert-butyldimethylsilyl)-2,2-bis(5-hydroxy-1H-indol-3-yl)acetate (3o’); isolated by col-
umn chromatography (EtOAc/petroleum ether = 1:5); (9.2 mg, 25% yield); red amorphous
solid; 1H NMR (600 MHz, DMSO-d6) δ 10.62 (s, 2H), 8.59 (s, 2H), 7.13 (d, J = 8.6 Hz, 2H),
7.03 (s, 2H), 6.81 (s, 2H), 6.58 (d, J = 8.4 Hz, 2H), 5.14 (s, 1H), 4.10 (q, J = 7.2 Hz, 2H), 1.18 (t,
J = 7.2 Hz, 3H); 13C NMR (150 MHz, DMSO-d6): δ 172.8, 150.2, 130.9, 127.1, 124.1, 111.8,
111.4, 111.3, 102.9, 60.2, 40.6, 14.2; HRMS (ESI) m/z calcd for C20H18N2O5 (M-(H2O) + H)+

349.1188, found 349.1184.

3,3’-(Phenyl(trimethylsilyl)methylene)bis(1H-indole) (5ab); isolated by column chromatogra-
phy (EtOAc/petroleum ether = 1:6); (6.3 mg, 16% yield); red amorphous solid; 1H NMR
(600 MHz, CDCl3) δ 7.96 (s, 2H), 7.37 (d, J = 7.8 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.23 (t,
J = 7.6 Hz, 2H), 7.16 (t, J = 7.2 Hz, 1H), 7.08 (t, J = 7.6 Hz, 2H), 7.00 (d, J = 8.2 Hz, 2H), 6.89
(s, 2H), 6.80 (t, J = 7.6 Hz, 2H), 0.14 (s, 9H); 13C NMR (150 MHz, CDCl3): δ 146.1, 136.7,
129.4, 127.6, 127.4, 125.1, 123.8, 122.9, 121.4, 121.3, 118.5, 110.9, 1.0; HRMS (ESI) m/z calcd
for C26H26N2SiNa (M + Na)+ 417.1758, found 417.1755.

Di(1H-indol-3-yl)(phenyl)methanol (5ab’); isolated by column chromatography (EtOAc/
petroleum ether = 1:8); (10.1 mg, 30% yield); red amorphous solid; 1H NMR (600 MHz,
CDCl3) δ 7.87 (s, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34–7.36 (m, 4H), 7.29 (t, J = 7.5 Hz, 2H),
7.21–7.23 (m, 1H), 7.16–7.19 (m, 2H), 7.01 (t, J = 7.5 Hz, 2H), 6.64 (s, 2H), 5.90 (s, 1H);
13C NMR (150 MHz, CDCl3):δ 144.0, 136.7, 128.7, 128.2, 127.0, 126.1, 123.6, 121.9, 119.9,
119.7, 119.2, 111.0, 40.2; HRMS (ESI) m/z calcd for C23H17N2 (M-(H2O) + H)+ 321.1391,
found 321.1395.

General procedure for Friedel–Crafts reaction of acylsilanes. A mixture of acyl-
sianes 3 (0.10 mmol), 5-hydroxyindole 1l (0.25 mmol) and CSA (30 mol%) in H2O (1.0 mL)
was stirred at room temperature for the indicated time. Then, the mixture was extracted
twice with EtOAc (10 mL), and the combined organic phases were washed with brine, dried
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(Na2SO4) and evaporated. The residue was further purified by silica gel chromatography
(petroleum ether/EtOAc as eluent) to afford the desired product 5.

3,3’-(Hydroxy(phenyl)methylene)bis(1H-indol-5-ol) (5a); isolated by column chromatography
(EtOAc/petroleum ether = 1:5); (14.1 mg, 83% yield); red amorphous solid; 1H NMR
(600 MHz, acetone-d6) δ 9.70 (s, 2H), 7.61 (s, 2H), 7.41–7.39 (m, 2H), 7.28 (t, J = 7.6 Hz, 2H),
7.23 (d, J = 8.7 Hz, 2H), 7.19 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 2.3 Hz, 2H), 6.72 (dd, J = 8.3,
2.5 Hz, 4H), 5.73 (s, 1H); 13C NMR (150 MHz, acetone-d6):δ 151.2, 145.8, 132.8, 129.5, 128.79,
128.76, 126.6, 125.2, 118.9, 112.5, 112.2, 104.5, 41.2; HRMS (ESI) m/z calcd for C23H17N2O2
(M-(H2O) + H)+ 353.1289, found 353.1285.

3,3’-(Hydroxy(p-tolyl)methylene)bis(1H-indol-5-ol) (5b); isolated by column chromatography
(EtOAc/petroleum ether = 1:5); (23.0 mg, 60% yield); red amorphous solid; 1H NMR
(600 MHz, acetone-d6) δ 9.68 (s, 2H), 7.53 (s, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz,
2H), 7.08 (d, J = 7.8 Hz, 2H), 6.76 (d, J = 2.4 Hz, 2H), 6.70 (t, J = 1.8 Hz, 3H), 6.68 (d, J = 2.4 Hz,
1H), 5.66 (s, 1H), 2.29 (s, 3H); 13C NMR (150 MHz, acetone-d6):δ 151.2, 142.9, 135.7, 132.8,
129.4, 128.8, 125.2, 119.1, 112.5, 112.2, 104.5, 40.8, 21.1; IR (cm−1) 3378, 2922, 2856, 1704,
1584, 1459, 1362, 1184; HRMS (ESI) m/z calcd for C24H19N2O2 (M-(H2O) + H)+ 367.1441,
found 367.1441.

3,3’-(Hydroxy(m-tolyl)methylene)bis(1H-indol-5-ol) (5c); isolated by column chromatography
(EtOAc/petroleum ether = 1:6); (23.4 mg, 61% yield); red amorphous solid; 1H NMR
(600 MHz, acetone-d6) δ 9.68 (s, 2H), 7.52 (s, 2H), 7.23 (d, J = 1.8 Hz, 1H), 7.21 (d, J = 8.7 Hz,
2H), 7.17–7.13 (m, 2H), 7.01–6.99 (m, 1H), 6.76 (d, J = 2.4 Hz, 2H), 6.70–6.69 (m, 3H), 6.68
(d, J = 2.4 Hz, 1H), 5.66 (s, 1H), 2.26 (s, 3H); 13C NMR (150 MHz, acetone-d6): δ 151.2,
145.9, 138.0, 132.8, 130.2, 128.9, 128.7, 127.3, 126.6, 125.2, 119.1, 112.5, 112.2, 104.5, 41.2, 21.6;
HRMS (ESI) m/z calcd for C24H19N2O2 (M-(H2O) + H)+ 367.1441, found 367.1442.

3,3’-((4-ethylphenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5d); isolated by column chromatog-
raphy (EtOAc/petroleum ether = 1:5); (21.9 mg, 55% yield); red amorphous solid; 1H NMR
(600 MHz, acetone-d6) δ 9.68 (s, 2H), 7.50 (s, 2H), 7.29–7.27 (m, 2H), 7.21 (d, J = 8.4 Hz, 2H),
7.12–7.11(m, 2H), 6.75 (d, J = 2.4 Hz, 2H), 6.70 (dd, J = 0.9, 2.4 Hz, 2H), 6.68 (d, J = 2.4 Hz,
1H), 6.67 (d, J = 2.4 Hz, 1H), 5.66 (s, 1H), 2.61 (q, J = 7.5 Hz, 2H), 1.20 (t, J = 7.8 Hz, 3H);
13C NMR (150 MHz, acetone-d6):δ 151.2, 143.2, 142.3, 132.9, 129.5, 128.9, 128.2, 125.2, 119.2,
112.5, 112.2, 104.5, 40.9, 16.1; IR (cm−1) 3305, 2964, 2929, 2869, 1704, 1584, 1458, 1361, 1168;
HRMS (ESI) m/z calcd for C25H21N2O2 (M-(H2O) + H)+ 381.1598, found 381.1597.

3,3’-((4-(tert-Butyl)phenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5e); isolated by column chro-
matography (EtOAc/petroleum ether = 1:6); (15.3 mg, 36% yield); red amorphous solid;
1H NMR (600 MHz, acetone-d6) δ 9.69(s, 2H), 7.52 (s, 1H), 7.29 (d, J = 2.1 Hz, 5H), 7.19 (d,
J = 8.4 Hz, 3H), 6.75 (d, J = 2.4 Hz, 2H), 6.69 (d, J = 1.8 Hz, 2H), 6.67 (d, J = 2.4 Hz, 1H), 6.65
(d, J = 2.4 Hz, 1H), 5.65 (s, 1H), 1.28 (s, 9H); 13C NMR (150 MHz, acetone-d6): δ 151.3, 149.1,
142.9, 132.8, 129.1, 128.9, 125.6, 125.2, 119.2, 112.5, 112.2, 104.5, 40.7, 34.9, 31.8; HRMS (ESI)
m/z calcd for C27H25N2O2 (M-(H2O) + H)+ 409.1911, found 409.1911.

3,3’-([1,1’-Biphenyl]-4-yl(hydroxy)methylene)bis(1H-indol-5-ol) (5f); isolated by column chro-
matography (EtOAc/petroleum ether = 1:6); (8.5 mg, 52%) yield); red amorphous solid;
1H NMR (600 MHz, acetone-d6) δ 9.74 (s, 2H), 7.66–7.65 (m, 2H), 7.58 (d, J = 8.4 Hz, 2H),
7.52 (s, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.43 (t, J =7.2 Hz, 2H), 7.32 (t, J = 7.8 Hz, 1H), 7.23 (d,
J = 2.4 Hz, 2H), 6.77 (dd, J = 1.8, 9.6 Hz, 4H), 6.69 (dd, J = 2.4, 8.4 Hz, 2H), 5.76 (s, 1H); 13C
NMR (150 MHz, acetone-d6): δ 151.3, 145.3, 141.8, 139.3, 132.9, 130.1, 129.7, 128.9, 127.9,
127.6, 127.3, 125.3, 118.8, 112.5, 112.3, 104.5, 40.9; HRMS (ESI) m/z calcd for C29H21N2O2
(M-(H2O) + H)+ 429.1598, found 429.1600.

3,3’-(Hydroxy(naphthalen-2-yl)methylene)bis(1H-indol-5-ol) (5g); isolated by column chro-
matography (EtOAc/petroleum ether = 1:5); (23.9 mg, 83% yield); red amorphous solid;
1H NMR (600 MHz, acetone-d6) δ 9.75 (s, 2H), 7.86–7.83 (m, 2H), 7.80 (d, J = 8.4 Hz, 1H),
7.77–7.74 (m, 1H), 7.58 (dd, J = 1.8, 8.4 Hz, 1H), 7.51 (s, 2H), 7.44–7.41 (m, 2H), 7.23 (d,
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J = 8.4 Hz, 2H), 6.77 (dd, J = 2.4, 10.2 Hz, 4H), 6.69 (dd, J = 2.4, 8.4 Hz, 2H), 5.89 (s, 1H); 13C
NMR (150 MHz, acetone-d6): δ 151.3, 143.6, 134.6, 133.3, 132.9, 128.9, 128.8, 128.5, 128.4,
128.2, 127.3, 126.6, 126.0, 125.4, 118.7, 112.6, 112.3, 104.5, 41.4; HRMS (ESI) m/z calcd for
C27H19N2O2 (M-(H2O) + H)+ 403.1441, found403.1442.

3,3’-((4-fluorophenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5h); isolated by column chro-
matography (EtOAc/petroleum ether = 1:5); (20.6 mg, 70% yield); red amorphous solid;
1H NMR (600 MHz, acetone-d6) δ 9.73 (s, 2H), 7.57 (s, 2H), 7.40–7.36 (m, 2H), 7.23 (d,
J = 8.4 Hz, 2H), 7.05–7.01 (m, 2H), 6.75 (d, J = 2.4 Hz, 2H), 6.71 (dd, J = 8.6, 2.4 Hz, 4H),
5.72 (s, 1H); 13C NMR (150 MHz, acetone-d6): δ 162.1 (d, JC-F = 240 Hz),151.3, 141.9 (d,
JC-F = 3 Hz), 132.8, 131.1 (d, JC-F = 7.5 Hz), 128.7, 125.2, 118.8, 115.3 (d, JC-F = 21 Hz), 112.4
(d, JC-F = 39 Hz), 104.4, 40.5; HRMS (ESI) m/z calcd for C23H16FN2O2 (M-(H2O) + H)+

371.1190, found 371.1190.

3,3’-((3-Fluorophenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5i); isolated by column chro-
matography (EtOAc/petroleum ether = 1:5); (20.2 mg, 52% yield); red amorphous solid;
1H NMR (600 MHz, acetone-d6) δ 9.76 (s, 2H), 7.56 (s, 2H), 7.32–7.29 (m, 1H), 7.23 (d,
J = 9.0 Hz, 3H), 7.12–7.09 (m, 1H), 6.96–6.93 (m, 1H), 6.76 (s, 4H), 6.70 (dd, J = 2.4, 6.0 Hz,
2H), 5.75 (s, 1H); 13C NMR (150 MHz, acetone-d6):δ 163.7 (d, JC-F = 241.5 Hz), 151.4, 149.1
(d, JC-F = 6 Hz), 132.8, 130.5 (d, JC-F = 7.5 Hz), 128.7, 125.5 (d, JC-F = 3 Hz), 125.3, 118.3, 116.1
(d, JC-F = 21 Hz), 113.2 (d, JC-F = 21 Hz), 112.5 (d, JC-F = 36 Hz), 104.3, 41.0; HRMS (ESI)
m/z calcd for C23H16FN2O2 (M-(H2O) + H)+ 371.1190, found 371.1191.

3,3’-((3-Chlorophenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5j); isolated by column chro-
matography (EtOAc/petroleum ether = 1:3); (24.6 mg, 61% yield); red amorphous solid; 1H
NMR (600 MHz, acetone-d6) δ 9.81 (s, 2H), 7.60 (d, J = 9.0 Hz, 2H), 7.38 (s, 1H), 7.34–7.28
(m, 2H), 7.22 (d, J = 8.4 Hz, 4H), 6.73 (s, 4H), 6.69–6.67 (m, 2H), 5.72 (s, 1H); 13C NMR
(150 MHz, acetone-d6):δ 151.4, 148.6, 134.2, 132.8, 130.5, 129.4, 128.6, 128.1, 126.7, 125.3,
118.2, 112.6, 112.4, 104.3, 40.9; IR (cm−1) 3304, 2921, 2851, 1697, 1585, 1463, 1423, 1363, 1187;
HRMS (ESI) m/z calcd for C23H16ClN2O2 (M-(H2O) + H)+ 387.0895, found 387.0894.

3,3’-((4-Chlorophenyl)(hydroxy)methylene)bis(1H-indol-5-ol) (5k); isolated by column chro-
matography (EtOAc/petroleum ether = 1:5); (23.8 mg, 59% yield); red amorphous solid;
1H NMR (600 MHz, acetone-d6) δ 9.75 (s, 2H), 7.55 (s, 2H), 7.38–7.35 (m, 2H), 7.31– 7.28
(m, 2H), 7.23 (d, J = 6.0 Hz, 1H), 6.75–6.71 (m, 4H), 6.70 (dd, J = 2.4, 9.0 Hz, 2H), 5.71 (s,
1H); 13C NMR (150 MHz, acetone-d6):δ 151.3, 144.9, 132.8, 131.8, 131.2, 128.8, 128.7, 125.3,
118.4, 112.6, 112.4, 104.4, 40.6; HRMS (ESI) m/z calcd for C23H16ClN2O2 (M-(H2O) + H)+

387.0895, found 387.0895.

3,3’-(Hydroxy(3-methoxyphenyl)methylene)bis(1H-indol-5-ol) (5l); isolated by column chro-
matography (EtOAc/petroleum ether = 1:5); (24.4 mg, 61% yield); red amorphous solid;
1H NMR (600 MHz, acetone-d6) δ 9.70 (s, 2H), 7.53 (s, 2H), 7.17–7.22 (m, 3H), 6.96–6.98 (m,
2H), 6.77 (d, J = 6.0 Hz, 2H), 6.74 (d, J = 6.0 Hz, 2H), 6.68 (dd, J = 8.4 Hz, 2.4 Hz, 2H), 5.68 (s,
1H), 3.71 (s, 3H); 13C NMR (150 MHz, acetone-d6): δ 160.5, 151.1, 147.5, 132.7, 128.7, 125.1,
121.8, 118.7, 115.6, 112.4, 111.4, 104.4, 55.1, 41.2; HRMS (ESI) m/z calcd for C24H21N2O4
(M + H)+ 401.14958, found 401.14975.

1-(4-(Hydroxybis(5-hydroxy-1H-indol-3-yl)methyl)phenyl)pentan-1-one (5m); isolated by col-
umn chromatography (EtOAc/petroleum ether = 1:5); (24.5 mg, 55% yield); red amorphous
solid; 1H NMR (600 MHz, acetone-d6) δ 9.76 (s, 2H), 7.92 (d, J = 8.4 Hz, 2H), 7.55 (s, 2H),
7.49 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 6.75 (d, J = 1.8 Hz, 4H), 6.70 (dd, J = 2.4,
8.4 Hz, 2H), 5.79 (s, 1H), 2.99 (t, J = 7.2 Hz, 2H), 1.69–1.64 (m, 2H), 1.42–1.36 (m, 2H), 0.92
(t, J = 7.2 Hz, 3H); 13C NMR (150 MHz, acetone-d6):δ 200.1, 151.42, 151.37, 136.1, 132.9,
128.8, 125.4, 118.2, 112.7, 112.4, 104.3, 41.4, 38.6, 27.3, 23.1, 14.3; HRMS (ESI) m/z calcd for
C28H25N2O3 (M-(H2O) + H)+ 437.1865, found 437.1868.

3,3’-(Hydroxy(thiophen-2-yl)methylene)bis(1H-indol-5-ol) (5n); isolated by column chromatog-
raphy (EtOAc/petroleum ether = 1:3); (15.0 mg, 40% yield); red amorphous solid; 1H NMR
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(600 MHz, acetone-d6) δ 9.74 (s, 2H), 7.56 (s, 2H), 7.24–7.22 (m, 3H), 6.92–6.91 (m, 4H),
6.86 (d, J = 2.4 Hz, 2H), 6.72(dd, J = 2.4, 6.0 Hz, 2H), 6.01 (s, 1H); 13C NMR (150 MHz,
acetone-d6): δ 151.3, 150.6, 132.7, 128.5, 127.0, 125.5, 124.8, 124.1, 119.0, 112.6, 112.1, 104.4,
36.3; HRMS (ESI) m/z calcd for C21H15N2O2S (M-(H2O) + H)+ 359.0854, found 359.0852.
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