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Abstract: Metal-organic frameworks—through the use of creative synthetic designs—could produce
MOF materials with excellent porosity, stability, particle microstructures, and conductivity, and
their inherent characteristics—including their porosity and controllable structure—may result in an
immense number of prospects for energy storage. In this paper, a nanosphere-like NiCo-MOF was
effectively manufactured via an ultra-fast microwave technique. Additionally, the ideal synthesis
conditions of the NiCo-MOF were investigated by adjusting the microwave output power and
microwave reaction time. Under the reaction conditions of a 600 W microwave and a 210 s microwave
reaction time, the NiCo-MOF exhibited an excellent capacitance of 1348 F/g at a current density of
1 A/g and an 86.1% capacity retention rate at 10 A/g. In addition, self-assembled NiCo-MOF/AC
asymmetric capacitors showed a splendid energy density of 46.6 Wh/kg and a power density of
8000 W/kg.

Keywords: microwave; NiCo-MOF; supercapacitor; asymmetric supercapacitors

1. Introduction

Given the rising need for renewable energy, the progression of clean and environmen-
tally friendly energy has evolved into the center of current research in light of the current
energy predicament. An innovative technique for the energy storage technology known
as supercapacitors (SCs) features an exceptional power density and cycle stability, can
efficiently convert and store energy, and has been applied to electric and hybrid electric
vehicles [1–3]. The low energy density of supercapacitors nevertheless, to some extent,
restricts their commercial viability. In accordance with the energy storage theory of superca-
pacitors [4,5], by expanding the voltage window of supercapacitors and the capacitance of
electrode materials, the energy density of supercapacitors could get further elevated [6,7].
As the core component of supercapacitors, the performance of supercapacitors as a whole
has been confirmed to be considerably affected by their electrode material [8]. Under the
current situation, innovative materials for electrodes that have greater energy and power
densities pressingly require invention to boost the practical use of supercapacitors [9,10].

Currently, carbon materials, conductive polymers, and transition metal compounds
(such as nitrides, sulfides, phosphides, and oxides) are the primary study targets for
electrode materials. The outstanding electrical conductivity of carbon materials and con-
ductive polymers has garnered a lot of intrigue, as has their good chemical stability and
low price—but their low specific capacitance limits their development. Transition metal
compounds are considered promising electrode materials, with a variety of states and high
theoretical specific capacitance. However, their lengthy production process and high costs
also limit their practical applications [11–15].
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Known as metal–organic frameworks (MOFs), transition metal ions and organic ligand
junctions make up this type of porous material. Their structural adjustability allows for
the flexible design of chemical structures, resulting in excellent MOF materials with a
large specific surface area, high porosity, and adjustable structure [16,17]. In particular, a
large number of organic functional groups from MOF materials could efficiently improve
ion transport and electrochemical performance through a donor-acceptor synergic effect,
holding one heteroatom with another and delocalizing the lone pairs of electrons in MOF
materials. In addition, abundant heteroatoms (O) can be found in MOF electrode materials,
which can be employed as the active site for electrolyte ions in the electrodes [18]. Therefore,
MOF materials containing organic functional groups are regarded as the driving force
for superior performance. Due to their considerable specific capacitance and adaptable
structural features, these materials present enormous possibilities for energy storage [19,20].
For example, Qu et al. [21] used the solvothermal approach to create a novel type of
pillared Ni-MOF; the results showed that pillared Ni-MOFs possess a value capacitance
with 552 F/g at 1 A/g. By altering the experimental temperatures, Xuan et al. [22] produced
a Co-MOF utilizing the solvothermal route; it presented an impressive capacity of 952.5 F/g
at 0.25 A/g.

Through recent research, experts have found that, compared with monometallic
MOFs, binary MOFs could significantly enhance electrochemical behavior by virtue of the
synergistic relationship between bimetals and additional redox processes. Specifically, in
bimetal NiCo-MOFs, while the element Ni can encourage the electrochemical activity of
the electrode, the Co element can simultaneously lower the charge transfer resistance and
strengthen the stability of the compound—thereby improving the specific capacity and rate
performance [23–26]. Investigators such as Sun et al. [27] have used a solvent-controlled
technique to successfully create bimetal MOFs that are amino-functionalized with various
morphological characteristics. Compared with Ni-MOFs, NiCo-MOFs show a better specific
capacitance of 1126.7 F/g at 0.5 A/g. More particularly, the higher capacitance of NiCo-
MOF nanosheets was investigated by Wang et al. [28], who constructed extremely thin NiCo-
MOF nanosheets at natural temperatures by adopting a simple ultrasonication process.
The unique nanosheet-like structure manifested exceptional electrochemical properties,
with an excellent capacitance of 1202.1 F/g at 1 A/g. Furthermore, further research
has certified that the performance of MOF materials is significantly dependent on their
microtopography. Based on the previously reported literature, Du et al. [29] proposed a
rapid hydrothermal approach to produce NiCo-MOF particles that resemble flowers and
have a size between 5 and 12 µm, which achieved a great capacitance of 927.1 F/g at 1 A/g.
A sort of NiCo-MOF with a hollow structure resembling a dandelion was created by Gao
et al. [30] through a simple hydrothermal approach. The NiCo-MOF possessed a dandelion-
like hollow structure in the range of diameters from 3 to 10 µm, and it exhibited an attractive
specific capacitance of 758 F/g at 1 A/g. These studies proved that the performance of
MOF materials is significantly dependent on their microtopography, and that the specific
morphologies or shrinking of the size of MOFs can maximize the quantity of active sites
that are visible on the surface of MOF materials for redox reactions; furthermore, this may
simultaneously provide a shorter pathway for electrolyte ion diffusion and charge transfer.
Thus, MOF electrode materials with specific morphologies and particles of smaller sizes
are expected to show a better capacitive performance [31,32].

In recent years, more and more professionals in numerous fields have grown intrigued
with the microwave approach because of its extremely fast reaction efficiency, low experi-
mental costs, and excellent product performance. It is worth noting that the microwave
method is an effective way of synthesizing materials with smaller particle sizes and high
purities [33–38]. Hence, in this work, we successfully prepared NiCo-MOF nanospheres by
an ultra-fast microwave method, and further studied the electrochemical performance of
different synthesis routes via alteration of the microwave power and microwave reaction
time. The results indicated that NiCo-MOF nanospheres synthesized at 600 W and 210 s ex-
hibited an optimal specific capacitance of 1348 F/g at 1 A/g and 60% capacitance retention
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after 2000 cycles. In addition, the assembled asymmetric supercapacitor devices revealed
an impressive energy density of 46.6 W h/kg and power density of 8000 W/kg.

2. Results and Discussion
2.1. Characterization

The infrared spectrum for the Ni-MOF, CO-MOF, and NiCo-MOF are displayed in
Figure 1a. A stretching vibration of an -OH functional group was represented by a broad
peak at 3400 cm−1. The peaks at 1369 cm−1 and 1621 cm−1 matched to the vs. (-COO)
and vas (-COO) of carboxyl from H3BTC, certifying that -COO groups were able to effec-
tively coordinate with the metal center in bidentate mode. A series of characteristic peaks
at 1065 cm−1, 761 cm−1, and 1551 cm−1 were related to the stretching vibrations of the
aromatic ring. For the low wave-number region, the positions located at 441 cm−1 and
542 cm−1 were derived from stretching vibrations caused by Ni–O and Co–O bonds. This
result is strong evidence for the formation of NiCo-MOF [39,40]. Furthermore, the XRD pat-
tern in Figure 1b makes it perfectly obvious that there was almost no diffraction peak in the
Ni-MOF, NiCo-MOF, or Co-MOF—indicating their amorphous nature. Based on previously
reported work, amorphous MOFs have displayed excellent electrochemical performance; it
has been confirmed that amorphous materials are advantageous for the deeper diffusion of
their electrolyte ions—therefore, this can effectively improve the electrochemical properties
of MOF electrodes [41,42].
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Figure 1. (a) FT−IR spectra, (b) XRD patterns for Ni-MOF, NiCo-MOF, and Co-MOF.

The SEM photograph in Figure 2a,b depicts the morphology of NiCo-MOF, which
displayed uniform NiCo-MOF nanospheres of approximately 500 nm in diameter on
average. The microstructure of the NiCo-MOF sample was further analyzed via TEM,
and the corresponding pictures are displayed in Figure 2c,d. What can be seen is that
NiCo-MOF was formed by the nanospheres of particle sizes that ranged between 300
and 800 nm. Specifically, the nanospheres were solid and uniformly distributed. The
SAED diagram is shown in Figure 2e; the electron diffraction diagram presented a wide
and diffused halo ring—indicating the amorphous nature of the NiCo-MOF, which also
corresponded with the XRD results. The concentration of elements and EDS spectrum
of the NiCo-MOF sample are presented in Figure 2f–k. The results indicated that NiCo-
MOF is free of additional elements and only comprises the components Ni, Co, C, and O;
these elements were distributed evenly throughout the NiCo-MOF, further supporting the
viability of NiCo-MOF synthesis via the microwave method.
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The valence states of the elements in the NiCo-MOF material were analyzed via the
XPS test, and results appear in Figure 3. The survey spectrum for the NiCo-MOF sample
is presented in Figure 3a. The results indicate that the elements C, O, Co, and Ni were
detected on the surface of the NiCo-MOF—Table 1 states each element content level (At %).
This demonstrates that Ni/Co has an atomic ratio of roughly 1.89. The elements C 1 s, O
1 s, Ni 2p, and Co 2p were further fitted and analyzed. As shown in Figure 3b, the Ni 2p
spectrum showed its principal peaks at 855.2 eV and 872.8 eV with a spin-energy separation
of 17.6 eV, related to the spin orbits of Ni 2p3/2 and Ni 2p1/2, respectively. Additionally, two
broad peaks at 861 eV and 879.1 eV were attributed to shake-up satellites (Sat.) of Ni 2p3/2
and Ni 2p1/2, indicating the characteristic bands of Ni2+. Similarly, Figure 3c shows the Co
2p spectrum; the strong peaks located at around 781 eV and 796.8 eV with a spin-energy
separation of 15.8 eV can be assigned to Co 2p3/2 and Co 2p1/2, and were accompanied by
a group of broad peaks centered at 802.7 eV and 785.4 eV that corresponded to shake-up
satellites characteristic of Co2+. These above analyses fully proved that the valence states
of Ni2+ and Co2+ were present in the NiCo-MOF nanospheres. In Figure 3d, two main
peaks of the C 1 s spectrum are seen at 284.6 eV and 288.3 V—corresponding to the binding
energy that exists in C–C=C and O–C=O bonds, respectively. In Figure 3e, the spectrum
with the binding energy for O 1 s was connected with M–OH and -OH bonds at 531.1 eV
and 533.3 eV [28,30,31].
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Table 1. Element content obtained from XPS of the sample.

Sample
Element Content (At %)

C O Ni Co

NiCo-MOF 56.23% 32.83% 7.16% 3.78%

2.2. Electrochemical Properties

The electrochemical performance of the NiCo-MOF was further explored by adjusting
the microwave time and power, and is shown in Table 2. Through the conventional three-
electrode exam, the electrochemical performance of the produced electrodes was evaluated
through a 2 M KOH electrolyte, and the corresponding picture can be viewed in Figure 4.
The synthesized NiCo-MOF at 600 W and 210 s presented the maximum CV sealing area
and discharge time. When the reaction duration was 270 s or the microwave reaction power
reached 800 W, the specific capacitance reduction may have been attributable to the higher
energy in the reaction system causing the faster formation of nanoparticles—resulting in
the poor uniformity and agglomeration of nanoparticles. Inversely, a lower microwave
power and microwave time may be detrimental to particle integrity due to inadequate
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reactions occurring; as such, the NiCo-MOF would have fewer active sites for electron
transport and thus a lower capacitance [9,43].

Table 2. NiCo-MOF list with different reaction parameters.

Sample Microwave Power (W) Microwave Time (s)

NiCo-MOF 600 210
NiCo-MOF 150 s 600 150
NiCo-MOF 270 s 600 270
NiCo-MOF 400 w 400 210
NiCo-MOF 800 w 800 210
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In order to further evaluate their electrochemical performance, NiCo-MOF, Ni-MOF,
and Co-MOF were prepared under identical circumstances and utilized as comparison
electrodes. The CV, GCD, and EIS are summarized in Figure 5. In Figure 5a, the CV curves
of the Ni-MOF, Co-MOF and NiCo-MOF electrodes are compared by employing a 30 mV/s
scan rate. It was evident that all the CV curves showed a pair of strong redox peaks,
which were derived from the redox reactions of Co2+/Co3+ and Ni2+/Ni3+ in the KOH
electrolytes. Apparently, the biggest CV curve area was visible in the NiCo-MOF electrode
CV curve, which means that it had a larger charge storage capacity—convincingly proving
that the excellent synergism between Ni–Co bimetals could greatly improve electrochemical
behavior. Figure 5b displayed all the CV curves between a potential range of 0 and 0.7 V at
various scan rates. It was found that the shape of the CV curves remained mostly unaltered
as the scanning rate increased, and there was still an obvious redox peak at scan rates of up
100 mV/s—indicating exceptional rate capabilities and reversibility for the NiCo-MOF.
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Figure 5. (a) Comparison of CV curves of NiCo-MOF, Co-MOF, and Ni-MOF at 30 mV/s; (b) CV
curves of NiCo-MOF with varied scan rates; (c) GCD curves of NiCo-MOF at different current
densities; (d) specific capacitance of NiCo-MOF, Co-MOF, and Ni-MOF at different current densities;
(e) cycling stability of NiCo-MOF at 10 A/g, and (f) Nyquist plots of NiCo-MOF, Co-MOF, and
Ni-MOF.

Figure 5c presents the GCD curves of the NiCo-MOF at current densities of 1 to
10 A/g with a potential window of 0 to 0.5 V. At all current densities, the approximately
symmetric features of the GCD curves indicated that the NiCo-MOF electrode possessed
outstanding reversible electrochemical behavior. Next, according to the test results of
the GCD, calculations were carried out to determine each electrode’s specific capacities
at various current densities, and the results are illustrated in Figure 5d. The NiCo-MOF
electrode had the highest specific capacities, which were 1348 F/g, 1328 F/g, 1284 F/g,
1230 F/g, and 1160 F/g at the current densities of 1–10 A/g, respectively—which was much
higher than the Ni-MOF and Co-MOF electrodes. In addition, at a high current density
of 10 A g−1, the NiCo-MOF, Ni-MOF, and CO-MOF electrodes still maintained desirable
capacitances of 1160 F/g, 637 F/g, and 100 F/g respectively—which was about 86.1%,
80.8%, and 83.3% of their capacitance at 1 A/g. Moreover, in comparison to earlier reports
of Ni/CO-MOF supercapacitor electrodes in Table 3, these results also proved that the
synergistic action of Ni-Co bimetals could considerably boost the rate capacity and charge
storage capacity of electrodes.
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Table 3. Capacitance of Ni/Co-MOF materials.

Sample Electrolyte Specific Capacitance Ref

Flower-like NiCo MOF 3 M KOH 927 F/g at 1 A/g Ref [29]
Dandelion-like NiCo MOF 2 M KOH 758 F/g at 1 A/g Ref [30]

Ultrathin nanosheets NiCo MOF 2 M KOH 1202.2 F/g at 1 A/g Ref [28]
Hydrangea-like NiCo MOF 2 M KOH 1056.6 F/g at 0.5 A/g Ref [40]

Pillar Ni MOF 2 M KOH 552 F/g at 1 A/g Ref [21]
Urchin-like Co-MOF 3 M KOH 952.5 F/g at 0.25 A/g Ref [22]
Spherical NiCo-MOF 6 M KOH 715 F/g at 1 A/g Ref [44]

Nanosphere-like NiCo-MOF 2 M KOH 1348 F/g at 1 A/g This work

Furthermore, the impedance of NiCo-MOF, Ni-MOF, and Co-MOF were analyzed via
the EIS impedance test; the corresponding Nyquist diagram is shown in Figure 5f. In the
high-frequency region, the intercept on the real axis represented the internal resistance (Rs);
the Rs value of the NiCo-MOF was 0.80 Ω, which was lower than the Ni-MOF (0.89 Ω)
and Co-MOF (0.90 Ω). The semicircle diameter represented the Faraday charge transfer
impedance (Rct) at the interface of the electrode and electrolyte; no sample exhibited a
significant semicircle, implying a small charge transfer resistance—this was mainly because
amorphous structures are able to generate abundant free holes and reduce the charge
transfer resistance [41]. The slope of the line in the low-frequency range was directly
connected to the diffusion of electrolyte ions. The NiCo-MOF electrode was closer to a
vertical slope than the other electrodes, which means that it had a quicker ion diffusion
rate. The electrochemical stability of the NiCo-MOF electrodes was then assessed by
employing charge–discharge tests at 10 A/g. In accordance with Figure 5e, after 2000 cycles,
the capacity retention rates of the NiCo-MOF electrodes remained at 60% of the initial
capacitance.

To further estimate the actual applications of NiCo-MOF electrodes for electrochem-
ical energy storage devices, the NiCo-MOF was employed as the positive electrode and
activated carbon (AC) was deployed as the negative electrode to fabricate an asymmetric
supercapacitor (ASC), and its electrochemical performance in 2 M KOH electrolyte was
investigated. The coating mass of the positive and negative electrode should be determined
via the following equation in accordance with the positive and negative charge balance
principle:

m+

m− =
C−∆V−

C+∆V+
(1)

where C+, C−, ∆V+, and ∆V− stand for the specific capacitance (F/g) and discharge
voltage (∆V) of the positive and negative electrodes, respectively. In accordance with
the calculations, the mass ratio of the materials for the positive/negative electrodes was
approximately 1:2. The coating mass of the final positive electrode was about 1.2 mg cm−1

and the coating mass of the negative activated carbon was about 2.4 mg cm−1, which was
close to the calculated result.

To confirm the usable potential window of the NiCo-MOF//AC device, measurements
were performed on the NiCo-MOF and AC with a scanning rate of 30 mv/s. Figure 6a
demonstrates that the potential window range for the AC electrode was between −1.0 V
and 0 V, whereas the range for the NiCo-MOF electrode was between 0 and 0.7 V; these
results indicated that the possible voltage window of the NiCo-MOF//AC device may be
1.7 V. Moreover, the CV curve of the NiCo-MOF had obvious redox peaks, which represent
a battery-type electrode material. The shape of the AC was nearly a rectangle, which
belongs to the typical electric double layer-type electrode material. Figure 6b exhibits the
CV curves for the ASC device with scan rates ranging from 5 to 100 mv/s. The CV curves
included double layer capacitances and Faradaic redox behavior and the corresponding
potential window could be further enlarged to 1.7 V. With the increase of the scanning rate,
the CV curve for the ASC device did not significantly change in shape, indicating its ability
to quickly charge and discharge.
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The GCD curves for ASC at varying current densities (1–10 A/g) are displayed in
Figure 6c. As indicated by the approximately symmetric GCD curves, the GCD curves
indicated that asymmetric supercapacitors possess a favorable excellent electrochemical
reversibility. Figure 6d displays a calculation of the specific capacitances—remarkably,
the ASC device with NiCo-MOF//AC presented an outstanding capacitance of 131 F/g
at 1 A g−1, and maintained 78 F/g at 10 A/g. Computing the GCD curve, which can be
obtained by adopting the formulae that are listed below, the values of the energy density
and power density were able to be calculated:

E =
C × (∆V)2

7.2
(2)

P =
3600 × E

∆t
(3)

In which E is the energy density (Wh/kg), C is the specific capacitance of ASC (F/g),
∆V is the discharge potential window (V), P is the power density (W/kg), and ∆t is the
discharge time (s); detailed numerical values are shown in Figure 6e. The power density
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can be maintained at 800 W/kg when the energy density reaches 46.6 Wh/kg; the energy
density remains at 27.73 Wh/kg even though the power density reaches up to 8000 W/kg.
This result is superior to most recent reports of Ni/CO-MOF electrode materials, indicating
that they have an extensive number of practical application possibilities. In addition, for
the purpose of evaluating the cyclic stability of the ASC, 1000 cycles were carried out under
conditions of 10 A/g. The specific capacitance of the ASC device ultimately stayed at 67%
of the original level over 1000 cycles, as illustrated in Figure 6f—suggesting an exceptional
cycle stabilization performance.

3. Materials and Methods
3.1. Materials

Cobalt chloride hexahydrate (CoCl2·6H2O), nickel chloride hexahydrate (NiCl2·6H2O),
trimesic acid, 1,3,5-Benzenetricarboxylic acid (H3BTC), and N-N-Dimethyformamide (DMF)
were obtained from MACKLIN chemical reagent Co., Ltd. (Shanghai, China). The sources
of the ethylene glycol and potassium hydroxide were Taicang Hu Test reagent Co., Ltd.
(Suzhou, China). and the acetylene black and polyvinylidene fluoride were supplied by
Tian Jin Chemical Technology Co., Ltd. (Tianjin, China). No additional processing was
done to any of these products before usage.

3.2. Preparation for NiCo-MOF Electrodes

As shown in Figure 7, NiCo-MOF were prepared by the ultra-fast microwave method:
1.14 g CoCl2·6H2O, 1.14 g NiCl2·6H2O, and 0.7 g H3BTC were dissolved into 200 mL of
mixed solution, in which the volume ratio of DMF to ethylene glycol was 1:1. The mixture
was then stirred for an additional hour until it formed a homogenous solution. After this,
the combination was placed in a microwave oven (PANASONIC NN-GF352 M, 2450 MHz,
Shanghai, China), where it was heated for 210 s at a power of 600 W. The suspension
was filtered, then alternately cleaned with DMF and deionized water until the filtrate was
colorless for a long time. Then, the collected product was transferred to a vacuum oven,
drying for 12 h at 80 ◦C and named NiCo-MOF. Aside from this, a series of NiCo-MOFs
with different variables were created under similar procedures.
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The following procedure was employed to prepare the working electrodes: nickel
foam (1 × 1 cm2) was used as the collector fluid of working electrode, the acetylene black
as a conductive agent, and the PVDF particles were dissolved in NMP as a PVDF adhesive
solution. First, the synthesized electrode material (NiCo-MOF) was combined with PVDF
and acetylene black at a 1:1:8 mass ratio, and the resulting slurry was then evenly coated
onto the nickel foam and allowed to dry for 24 h at 80 ◦C. About 0.8 to 1.0 mg/cm2 of the
active substance was coated on the nickel foams, and finally, the electrodes were pressed
by a tablet press.

3.3. Characterization

The Fourier transform infrared spectrum (FT-IR) method, using a THERMO FISHER
NICOLET 6700 from USA, was used to measure the functional groups of the NiCo-MOF.
The crystal structure of the NiCO-MOF was analyzed using X-Ray Diffraction (XRD) with
a Rigaku ULTIMAIV from Japan. The morphologies of the NiCo-MOFs prepared under
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different conditions were collected by a scanning electron microscope (SEM, Hitachi-SU-
8100, Tokyo, Japan). The composition and valence state of the samples were measured
by X-ray photoelectron spectroscopy (XPS, ESCALAB 250XI, Waltham, MA, USA). The
transmission electron microscopy (TEM) and energy dispersive spectrum (EDS) were
analyzed using a TECNAI G2 F30 from USA.

The electrochemical performance of the NiCo-MOFs was examined by applying a
CHI660E electrochemical workstation in 2 M KOH electrolyte. In a three-electrode system,
the NiCo-MOF electrodes were employed as the working electrodes; platinum electrodes
and Hg/HgO electrodes were used as counter electrodes and reference electrodes, respec-
tively. The cyclic voltammetry (CV) curves scanned across 0 to 0.7 V, and electrochemical
impedance spectral (EIS) measurements were conducted in the frequency range of 100 khz–
1 hz; the galvanostatic charge–discharge (GCD) was recorded from 1 to 10 A g−1, and their
specific values were calculated according to the following equation:

C =
I∆t

m∆V
(4)

where C represents the specific capacitance (F/g), m represents the mass of the active
material (mg), ∆t represents the discharge time (s), ∆V represents the potential window
(V), and I represents the charge/discharge current (A).

4. Conclusions

In summary, nano-spherical NiCo-MOF was successfully prepared using the ultra-fast
microwave method. The optimum electrochemical performance of the NiCo-MOF was
achieved by adjusting the microwave power and reaction time. With the microwave power
set at 600 W and the microwave time at 210 s, the NiCo-MOF electrode showed the highest
specific capacity (1348 F/g at 1 A/g), as well as an excellent rate capability (86.1% capacity
retention rate at 10 A g−1) and cyclic stability (60% capacity retention rate over 2000 cycles
at 10 A/g). Besides this, the electrochemical performance of the asymmetric supercapacitor
devices were investigated in detail; the asymmetric supercapacitor based on NiCo-MOF as
the positive electrode and activated carbon as the negative electrode exhibited an excellent
energy density of 46.6 Wh/kg and power density of 8000 W/kg. These results can further
expand the applications for amorphous NiCo-MOF materials in supercapacitors.
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