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Abstract: A chitosan/poly(vinyl alcohol)-stabilized copper nanoparticle (CP@Cu NPs) was used as
a heterogeneous catalyst for the borylation of α, β-unsaturated ketones, MBH alcohols, and MBH
esters in mild conditions. This catalyst not only demonstrated remarkable efficiency in synthesizing
organoboron compounds but also still maintained excellent reactivity and stability even after seven
recycled uses of the catalyst. This methodology provides a gentle and efficient approach to synthesize
the organoboron compounds by efficiently constructing carbon–boron bonds.

Keywords: chitosan/PVA-stabilized copper nanoparticles; copper catalysis; heterogeneous catalyst;
aqueous phase; recycle and reuse

1. Introduction

Organoboron compounds are a significant class of organic intermediates that are
capable of reacting with various nucleophilic reagents and could be conveniently converted
into various chemical bonds, such as C–C, C–O, and C–N bonds, which are very important
in organic synthesis [1–3]. For this reason, in the past decades, various transition metals, in-
cluding rhodium [4], palladium [5,6], platinum [7], cobalt [8], nickel [9], and copper [10–12],
have been used as catalysts to synthesize the organoboron compounds. Recently, metal
nanoparticles have received much attention because of their large surface area, which
could increase catalytic efficiency [13,14]. However, metal nanoparticles sometimes have
some drawbacks in the aqueous phase; for example, they are prone to aggregation and
precipitation. To overcome these problems, an appropriate carrier was considered to load
these metal nanoparticles, which could make these loaded nano-catalytic materials have
several good advantages, including easy recovery and uniform dispersion [15,16].

Montmorillonite [17–19], activated carbon [20–22], and chitosan [23–26] are commonly
used as carriers for heterogeneous catalytic materials in organic synthesis. Among these
materials, chitosan is especially preferred due to its numerous amino and hydroxyl groups.
These functional groups could coordinate well with various metals to perform a good
catalytic activity. So far, several transition metals have been reported using chitosan as a
support, including gold [27], silver [28], ruthenium [29], palladium [30–32], platinum [33],
and copper [34–36]. Compared with these precious metals, copper has received more
attention for its low price and lower toxicity.

In our previous research, we found that the borylation reactions of chalcone deriva-
tives could be carried out smoothly, and the corresponding target products could also be
obtained in good yields when CS@Cu(OH)2 [37], Cell-CuI NPs [38], or CP@Cu NPs [39]
were used as catalysts (Scheme 1a). Under oxidative conditions, the resulting organoborons
could give rise to the desired β-hydroxy-substituted carbonyl compounds, which are widely
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found in active molecules [40–42]. Compared with other supports, chitosan has inherent
advantages due to its green property, abundance, stability, and ability of chelation [26].
With our continuous efforts in exploring applications of chitosan-supported metal catalysts,
we were interested in developing a chitosan composite film of stabilized copper nanoparti-
cles and its application for the synthesis of useful organoboron compounds. In particular,
chitosan/poly(vinyl alcohol) composite films loaded with copper nanoparticles (CP@Cu
NPs) were found to exhibit high reactivity, as well as excellent reusability and stability. Not
only did α, β-unsaturated ketones have good reactivity in borylation reactions, but also α,
β-unsaturated esters and amides could react smoothly when CP@Cu NPs was used as a
catalyst in the reactions, and even after the catalyst was reused seven times, it still showed
very good catalytic activity. However, in our previous work, the CP@Cu NPs were limited
to the borylation reactions of 1,2-disubstituted α, β-unsaturated compounds, whereas
the borylation reactions of 1,1-disubstituted unsaturated compounds were not explored,
including the borylation reactions of MBH alcohols, and esters were also not involved.
Morita-Baylis-Hillman alcohols or esters have aroused much attention in organic synthesis
as valuable synthons and intermediates for the preparation of many important cyclic and
acyclic compounds. Thus, their ready availability and condensed functional groups make
them particularly attractive. In recent years, considering the importance of MBH alcohols
and esters in organic synthesis, more and more research groups pay attention to their appli-
cations, especially as electrophilic reagents in borylation reactions [43–53]. These methods
still have some shortcomings; for instance, the precious metal palladium as a catalyst is
needed in reactions [43,51–53]. Even with copper as a catalyst, the reaction substrate range
is quite limited, and only MBH alcohols or esters are compatible in these methods [44–50].
And more importantly, because all of the above methods are homogeneous reactions, the
catalysts in reactions are difficult to be separated and reused after the reactions, which
resulted in waste and heavy metal residues. Herein, in this work, we used CP@Cu NPs as
a heterogeneous catalyst and 1,1-disubstituted α, β-unsaturated compounds (including α,
β-unsaturated ketones, MBH alcohols, and esters) as substrates. The borylation reactions
of these compounds could be achieved under mild conditions. Considering that some
organoboron compounds are not very stable, the corresponding β-hydroxy-substituted
carbonyl compounds were obtained via direct oxidation. Finally, the activity and stability
of the catalysts were proved by the recovery experiments (Scheme 1b).
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Scheme 1. Copper-catalyzed borylation reactions of α, β-unsaturated compounds.

2. Results and Discussion
2.1. Catalysis of CP@Cu NPs in the Borylation Reaction of α, β-Unsaturated Ketones

The initial experiments commenced with α, β-unsaturated ketone II-1 (0.2 mmol)
as a model substrate. CP@Cu NPs (10.0 mg, 9.0 mol%) was used as a catalyst by using
B2(pin)2 (0.4 mmol, 2.0 equiv) as a boron source in 2.0 mL of solvents. First, various organic
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solvents were investigated, and no additives were added (Table 1, entries 1–7). When
THF and toluene were used as solvents in this reaction, no reaction happened (Table 1,
entries 1–2). Surprisingly, when ether was used as a solvent, the reaction occurred, and
the target product was obtained in 8% yield (Table 1, entry 3). We continued to explore
other solvents, such as MeOH, acetone, and H2O; the reaction could still happen, but the
yields increased not obviously (Table 1, entries 4–6). In our previous work, we found that
when we used mixed solvents in the reaction, excellent yields could be gained [37–39].
Considering the role of protons in this reaction, we used MeOH and H2O as mixed solvents
(MeOH/H2O = 3:1), and the yield was increased to 28% yield (Table 1, entry 7). Next, we
intended to examine the effects of additives in the reactions, mainly various organic bases,
including 2,2-bipyridine, DMAP, 2-cyanopyridine, 2-chloropyridine, 2-bromopyridine,
2,6-dibromopyridine, and 4-picoline (Table 1, entries 8–14). We found that when we used
4-picoline as an additive in the reaction, the reaction worked very well, and the yield could
obviously increase to 60% yield (Table 1, entry 14). Inspired by this result, we considered
that the ratio of MeOH and H2O may have some contribution to these reactions. When we
changed the ratio of the mixed solvents, different results were observed (Table 1, entries
15–18). In particular, when the ratio of MeOH to H2O was 1:1, the best result 92% yield
could be obtained (Table 1, entry 16). In the organic synthesis, the reaction time is also
one of the important factors that would affect the yield; therefore, we carried out the
examination of the reaction time (Table 1, entries 19–21 vs. 16), and it was found that the
reaction efficiency was still the highest when the reaction time was 12 h (Table 1, entry
16) and the yield was decreased whether the reaction time was shortened or prolonged.
In order to study the effect of the amounts of additives on the reactions, we reduced or
increased the amounts of additives and found that it actually had an effect on the reaction,
and the yields were reduced to a certain extent (Table 1, entries 22–23 vs. 16). Finally, we
investigated the catalyst loading in the reactions. When the catalyst loading was reduced
to 4.5 mol%, the yield was still 92% (Table 1, entry 24), but when the amount of catalyst
was increased to 13.5 mol%, the yield decreased to 90% (Table 1, entry 25). Therefore,
we chose to use 4.5 mol% of catalyst loading to carry out the reactions from the view of
economy. Thus, by a series of optimizations of the conditions, the optimal conditions of this
research were 4.5 mol% CP@Cu NPs as a catalyst, 2.0 equiv of B2(pin)2 as a boron source,
and 6.0 mol% of 4-picoline as an additive, and the whole reaction was conducted in 2.0 mL
of mixed solvents (MeOH/H2O = 1:1) at room temperature for 12 h (Table 1, entry 24).

With the optimal experimental conditions in hand, we continued to investigate the
universality of the reaction, and the results are summarized in Scheme 2. We mainly
examined the effects of the substituents on the benzene ring of 1,1-disubstituted α, β-
unsaturated ketones on the yields (Scheme 2). We first investigated the para-substituted
functional groups on the benzene ring Ar1; when the substituents were methoxyl and
methyl, the yields of the borylation were slightly decreased, and the possible reason was
that both methoxyl and methyl were electron-donating groups that had an effect on the
electrophilicity of the substrates (II-2a-II-3a, 81–85% yields). When the substituents were
changed to fluorine and bromine, the yields were very good (II-4a, 90% yield; II-6a, 93%
yield). However, when chlorine was used as a substituent, the yield was decreased to 80%
yield (II-5a), mainly because it had less electron absorption than fluorine and bromine.
Next, we examined the ortho-substituents on the benzene ring Ar1; the electron-donating
group methoxyl had a better yield than the electron-withdrawing group bromine (II-7a,
90% yield, vs. II-8a, 57% yield). We also investigated the reactivity of meto-position of
the benzene ring Ar1, and the yields of the reactions were still good (II-9a-II-10a, 80–92%
yields). Last, we found that the substituents on the para-position of the benzene ring Ar2
had little effect on the yields; neither was it the electron-donating group methyl, nor the
electron-withdrawing group fluorine (II-11a-II-12a, 81–88% yields, vs. II-3a, 81% yield).
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Table 1. Optimization of CP@Cu NPs in the borylation reaction of α, β-unsaturated ketones a.
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Entries CP@Cu
NPs Solvents (2.0 mL) Additives Time

(h)
NMR

Yields (%)

1 (9.0 mol%) THF - 12 N.R.
2 (9.0 mol%) Toluene - 12 N.R.
3 (9.0 mol%) Et2O - 12 8
4 (9.0 mol%) MeOH - 12 16
5 (9.0 mol%) Acetone - 12 8
6 (9.0 mol%) H2O - 12 19
7 (9.0 mol%) MeOH/H2O = 3:1 - 12 28
8 (9.0 mol%) MeOH/H2O = 3:1 2,2-bipyridine 12 35
9 (9.0 mol%) MeOH/H2O = 3:1 DMAP 12 33

10 (9.0 mol%) MeOH/H2O = 3:1 2-cyanopyridine 12 54
11 (9.0 mol%) MeOH/H2O = 3:1 2-chloropyridine 12 57
12 (9.0 mol%) MeOH/H2O = 3:1 2-bromopyridine 12 50
13 (9.0 mol%) MeOH/H2O = 3:1 2,6-dibromopyridine 12 48
14 (9.0 mol%) MeOH/H2O = 3:1 4-picoline 12 60
15 (9.0 mol%) MeOH/H2O = 2:1 4-picoline 12 72

16 b (9.0 mol%) MeOH/H2O = 1:1 4-picoline 12 92
17 (9.0 mol%) MeOH/H2O = 1:2 4-picoline 12 89
18 (9.0 mol%) MeOH/H2O = 1:4 4-picoline 12 80
19 (9.0 mol%) MeOH/H2O = 1:1 4-picoline 4 79
20 (9.0 mol%) MeOH/H2O = 1:1 4-picoline 8 87

21 b (9.0 mol%) MeOH/H2O = 1:1 4-picoline 16 90
22 b,c (9.0 mol%) MeOH/H2O = 1:1 4-picoline 12 90
23 b,d (9.0 mol%) MeOH/H2O = 1:1 4-picoline 12 90
24 b (4.5 mol%) MeOH/H2O = 1:1 4-picoline 12 92
25 b (13.5 mol%) MeOH/H2O = 1:1 4-picoline 12 90

Reaction conditions: a II-1 (0.2 mmol), B2Pin2 (0.4 mmol), CP@Cu NPS (10.0 mg, 9.0 mol%), additives (6.0 mol%,
0.012 mmol), solvents (2.0 mL) at room temperature. b Isolated yield. c 4-picoline (5.0 mol%). d 4-picoline
(7.0 mol%). N.R. = no reaction.
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ketones. Reaction conditions: II (0.2 mmol), B2(pin)2 (2.0 equiv), CP@Cu NPs (5.0 mg, 4.5 mol%),
4-picoline (6.0 mol%) in 2.0 mL of mixed solvents (MeOH/H2O =1:1) at room temperature for 12 h.
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2.2. Catalysis of CP@Cu NPs in the Borylation Reaction of MBH Alcohols and Esters

MBH alcohols and esters are very important intermediates in organic synthesis, and
there is not much research on the borylation reactions of these compounds at present.
Therefore, in this work, we planned to use them as reaction substrates for condition
optimization. The same as the above condition optimizations, we selected MBH alcohols
III-1 (0.2 mmol) or MBH esters IV-1 (0.2 mmol) as a model substrate, CP@Cu NPs (5.0 mg,
4.5 mol%) as a catalyst, and B2(pin)2 (0.4 mmol, 2.0 equiv) as a boron source in 2.0 mL of
solvents; the whole reaction was conducted at room temperature for 12 h, and no additives
were needed (Table 2). According to the above experimental results we achieved, we
believed that proton solvents were beneficial to this reaction, so we just chose methanol
and water as the solvents for screening. First, when we used methanol as a solvent, both
MBH alcohol III-1 and IV-1 could react smoothly, and considering that the intermediates
III-1a and IV-1a were not very stable in these conditions, we directly further oxidized
these intermediates to the corresponding β-hydroxy substituted products using excessive
NaBO3•4H2O as an oxidant (entry1, 31% yield; entry 2, 45% yield). And when H2O was
used as a solvent, both reaction yields were not improved (entry 3, 33% yield; entry 4, 20%
yield). Then, based on our previous experiment results, the mixed solvents were beneficial
to this reaction, and we considered using methanol and water as the mixed solvents for
conditional screening. We investigated the ratio of methanol to water in a mixed solvent
and found that the highest yield could be obtained while the ratio of methanol to water was
2:1, and the target products could be obtained in 93% (entry 7 for III-1b) and 92% (entry 8
for IV-1b) isolated yields. Finally, we investigated the catalyst loading and found that the
yields of the reactions did not change much. From the economic point of view, 4.5 mol% of
catalyst loading was still the best choice in the reactions. Therefore, the optimal conditions
for this reaction were MBH alcohols III-1 (0.2 mmol) or MBH esters IV-1 (0.2 mmol) as
a model substrate, CP@Cu NPs (5.0 mg, 4.5 mol%) as a catalyst, and B2(pin)2 (0.4 mmol,
2.0 equiv) as a boron source in 2.0 mL of mixed solvent (MeOH/H2O = 2:1), and the whole
reaction was conducted at room temperature for 12 h (entry 7 for III-1b, entry 8 for IV-1b).

Table 2. Optimization of CP@Cu NPs in the borylation reaction of MBH alcohols and esters a.
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Entries Substrates CP@Cu NPs Solvents (2.0 mL) NMR Yields (%)

1 III-1 5.0 mg MeOH 31
2 IV-1 5.0 mg MeOH 45
3 III-1 5.0 mg H2O 33
4 IV-1 5.0 mg H2O 20
5 III-1 5.0 mg MeOH/H2O =3:1 94
6 IV-1 5.0 mg MeOH/H2O =3:1 90

7 b III-1 5.0 mg MeOH/H2O =2:1 93
8 b IV-1 5.0 mg MeOH/H2O =2:1 92
9 III-1 5.0 mg MeOH/H2O =1:1 90

10 IV-1 5.0 mg MeOH/H2O =1:1 86
11 III-1 5.0 mg MeOH/H2O =1:2 89
12 IV-1 5.0 mg MeOH/H2O =1:2 83
13 III-1 5.0 mg MeOH/H2O =1:3 88
14 IV-1 5.0 mg MeOH/H2O =1:3 85
15 III-1 10.0 mg MeOH/H2O =2:1 93
16 IV-1 10.0 mg MeOH/H2O =2:1 91

Reaction conditions: a III-1 and IV-1 (0.2 mmol), B2(pin)2 (0.4 mmol), CP@Cu (5.0 mg, 4.5 mol%), solvents (2.0 mL)
at room temperature for 12 h. b Isolated yields.
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With the optimized conditions in hand, we investigated the universality of the borylation
reactions of MBH alcohols and esters, and the results are summarized in Scheme 3. We
first examined the reactions as group R1 was different; when R1 was 4-methylphenyl, 4-
ethylphenyl, 4-isopropylphenyl, 4-tert-butylphenyl, and 4-methoxyphenyl, the effect of the
substituent on the reaction was not significant, whether they were MBH alcohols (III-2b-III-
6b, 85–98% yields) or esters (IV-2b-IV-6b, 80–91% yields). However, when group R1 was
4-fluorophenyl, 4-chlorophenyl, 4-bromophenyl, and 4-trifluoromethylphenyl, the reaction
results were not very good compared with the model reaction. Especially for MBH alcohols,
when R1 was 4-bromophenyl, the target product was not detected (III-9b), and when R1 was
4-trifluoromethylphenyl, the yield was not good because of its strong electron absorption
(III-10b, 53% yield). When R1 consisted of 3-substituted benzene rings, the electronic effect
of the benzene ring had a great influence on the reactions. When the benzene ring was
connected with electron-donating groups, such as 3-methyl and 3-methoxy, the yields were
better, but for the electron-deficient group, for example, 3-bromophenyl, the yield had a
great influence (III-13b, 50% yield; IV-13b, 39% yield). However, when R1 was 2-substituted
phenyl, the electronic effect of the aromatic rings had no effect on the reactions, no matter
whether they were electron-absorbing substituents or electron-giving substituents (III-14b-III-
16b, 93–98% yields; IV-14b-IV-16b, 87–95% yields). For the disubstituted benzenes of R1, no
matter whether they were electron-absorbing substituents or electron-giving substituents, the
reactions could still have good yields (III-17b-III-20b, 71–97% yields; IV-17b-IV-20b, 67–80%
yields). To our delight, when R1 was the 2-thiophene substituent, the reactions could still take
place, and the target products could be obtained in medium yields (III-21b, 43% yield; IV-21b,
62% yield). Next, we continued to investigate the reactions when R1 consisted of alkyl groups.
From the reaction results, we found that the alkyl substituents could occur smoothly, and the
target products could be synthesized in medium to excellent yields (III-22b-III-27b, 48–99%
yields; IV-22b-IV-27b, 40–66% yields). Finally, we investigated the reaction of R2 and found
that when R2 was ethyl, the reaction activity was still very good, and the corresponding target
product could be obtained with good yields (III-28b, 86% yield; IV-28b, 99% yield).

Molecules 2023, 28, x FOR PEER REVIEW 7 of 12 
 

 

corresponding target product could be obtained with good yields (III-28b, 86% yield; IV-

28b, 99% yield).  

 

Scheme 3. Screening substrate expansion scope of CP@Cu NPs in the borylation reaction of MBH 

alcohols and esters. Reaction conditions: III-1 and IV-1 (0.2 mmol), B2Pin2 (0.4 mmol), CP@Cu (5.0 

mg), 2.0 mL of mixed solvents with MeOH/H2O =3:1 for III-1 reaction and MeOH/H2O =2:1 for IV-

1 reaction, at room temperature for 12 h. N.D. = no detection. 

2.3. Recycling Experiments of CP@Cu NPs in Borylation Reactions 

The main advantage of heterogeneous catalysis in organic synthesis was that the cat-

alyst in the system could be easily recovered and reused. Such a type of operation could 

not only increase the catalytic efficiency of the catalyst and reduce the cost of the reactions 

but also avoid the heavy metal residue to the environment. In this work, to assess the 

reusability and stability of the CP@Cu NPs in borylation reactions, we used MBH alcohols 

III-1 as a substrate and CP@Cu NPs as a catalyst. After the completion of the reaction, the 

catalyst CP@Cu NPs could be recycled with a simple operation. The results showed that 

the activity of the catalyst stayed very well, and the yield of the product could also still be 

up to 84% even in the seventh experiment, which confirmed that the catalyst could be 

recyclable (Figure 1). Notably, the yields of the eighth and ninth cycles were still 83% and 

82%, respectively. The slight decrease in the yields that was observed in the recycling ex-

periments was probably due to the formation of a byproduct, which may be absorbed onto 

the surface of CP@Cu NPs. It must also be mentioned that the catalyst could be reactivated 

by washing with 10% aq. NaOH solution and dried again after the reaction. By using this 

process, an average of ~90% yield could be obtained after each cycle. Furthermore, ICP 

tests of recycled catalyst were carried out, and almost no detectable copper leaching was 

observed. These results strongly indicated that the CP@Cu NPs was a highly active heter-

ogeneous catalyst for this borylation process. 

Scheme 3. Screening substrate expansion scope of CP@Cu NPs in the borylation reaction of MBH
alcohols and esters. Reaction conditions: III-1 and IV-1 (0.2 mmol), B2Pin2 (0.4 mmol), CP@Cu
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2.3. Recycling Experiments of CP@Cu NPs in Borylation Reactions

The main advantage of heterogeneous catalysis in organic synthesis was that the
catalyst in the system could be easily recovered and reused. Such a type of operation
could not only increase the catalytic efficiency of the catalyst and reduce the cost of the
reactions but also avoid the heavy metal residue to the environment. In this work, to
assess the reusability and stability of the CP@Cu NPs in borylation reactions, we used
MBH alcohols III-1 as a substrate and CP@Cu NPs as a catalyst. After the completion
of the reaction, the catalyst CP@Cu NPs could be recycled with a simple operation. The
results showed that the activity of the catalyst stayed very well, and the yield of the product
could also still be up to 84% even in the seventh experiment, which confirmed that the
catalyst could be recyclable (Figure 1). Notably, the yields of the eighth and ninth cycles
were still 83% and 82%, respectively. The slight decrease in the yields that was observed in
the recycling experiments was probably due to the formation of a byproduct, which may
be absorbed onto the surface of CP@Cu NPs. It must also be mentioned that the catalyst
could be reactivated by washing with 10% aq. NaOH solution and dried again after the
reaction. By using this process, an average of ~90% yield could be obtained after each
cycle. Furthermore, ICP tests of recycled catalyst were carried out, and almost no detectable
copper leaching was observed. These results strongly indicated that the CP@Cu NPs was a
highly active heterogeneous catalyst for this borylation process.
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3. Materials and Methods
3.1. Materials

Chitosan/poly(vinyl alcohol) composite film-supported copper nanoparticles (CP@Cu
NPs) were prepared, according to the procedures reported [39]. The characterization
of CP@Cu NPs was described in the supplementary materials. Bis(pinacolato)diboron
(B2(pin)2, AR), methanol (MeOH, AR), ethanol (EtOH, AR), acetone (AR), tetrahydrofuran
(THF, AR), ether (Et2O, AR), 2,2-bipyridine (AR), 4-dimethylaminopyridine (DMAP, AR),
2-cyanopyridine (AR), 2-chloropyridine (AR), 2-bromopyridine (AR), and 4-picoline (AR)
were obtained commercially from Energy Chemical (Shanghai, China).

3.2. Synthesis of α, β-Unsaturated Ketones II

In step 1, a mixture of substituted phenylacetonitrile (10 mmol), substituted phenyl-
boronic acid (20 mmol), Pd (OAc)2 (112.3 mg, 0.5 mmol), 2,2′-dipyridine (156.2 mg,
1.0 mmol), TFA (11.4 g, 100 mmol), and H2O (4 mL) were added into THF (20 mL). Then the
mixture was refluxed under nitrogen atmosphere for 2–3 days. The residue was extracted
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with EtOAc (20 mL) three times. After evaporation of solvent, the crude mixture was
purified by flash column chromatograph to afford the intermediate compounds.

In step 2, to the compounds (5 mmol) obtained from step 1, formaldehyde (0.60 g,
20 mmol), piperidine (42.1 mg, 0.5 mmol), AcOH (60.1 mg, 1.0 mmol), and MeOH (5 mL)
were added. The mixture was then refluxed for 6 h. After the completion of this reaction,
evaporation was carried out to remove MeOH. The residue was washed with CH2Cl2 to
collect the organic layer, which was washed with brine, dried over Na2SO4, and concen-
trated in vacuo. The desired ketones II [54,55] were obtained by further purification by
silica gel chromatography.

3.3. Synthesis of MBH Alcohols III

Different substituted benzaldehyde (10 mmol), methyl acrylate (1.72 g, 20 mmol) or ethyl
acrylate (2.00 g, 20 mmol), and DABCO (1.12 g,10 mmol) were successively added into a
50 mL flask under air. After stirring for 3–7 days at room temperature, the reaction mixture
was filtered, and the filtrate was extracted with EtOAc (20 mL) three times. The crude mixture
was purified by silica gel chromatography to afford the desired MBH alcohols III [56].

3.4. Synthesis of MBH Esters IV

Different substituted MBH alcohols III (10 mmol), acetic anhydride (1.23 g, 12 mmol),
4-DMAP (122.2 mg, 1 mmol), and DCM (10 mL) were successively added to a 50 mL flask
under air. The reaction was monitored by TLC. After completion of reaction, the mixture was
filtered, and the filtrate was extracted with EtOAc (20 mL) three times. Then the crude mixture
was purified by silica gel chromatography to afford the corresponding MBH esters IV [56].

3.5. Analytical Methods

The purification of products was accomplished by using flash column chromatography
on silica gel (200–300 mesh) or preparative TLC. Nuclear magnetic resonance (NMR) spectra
were recorded on a Bruker Avance III 400 MHz spectrometer (Karlsruhe, Germany) operating
at 400 MHz for 1H and 100 MHz for 13C NMR in CDCl3 unless otherwise noted. CDCl3
served as the internal standard (δ = 7.26 ppm) for 1H NMR and (δ = 77.0 ppm) for 13C NMR.

3.6. Copper-Catalyzed Borylation Reactions

The reaction procedure is depicted in Scheme 1b. Nano-sized copper loaded onto the
membrane material could enable the borylation reaction of α, β-unsaturated ketones, MBH
alcohols, and esters under very mild conditions. Because of the difference in reactivity,
the borylation of α, β-unsaturated ketones with B2(pin)2 required the additional bases,
whereas the borylation of MBH alcohols and esters could be conducted smoothly without
the bases.

3.6.1. Borylation Reactions of α, β-Unsaturated Ketones

At room temperature, 0.2 mmol of α, β-unsaturated ketones II, 0.4 mmol of B2(pin)2,
6 mol% of base, 10.0 mg of CP@Cu NPs as a catalyst, and 2.0 mL of solvent were added in
the reaction system. The whole reactions were stirred at room temperature for 12 h, and
after completion of the reaction, the mixture was filtered, and the desired products II-a
were obtained by being purified with column chromatography and characterized by 1H
NMR and 13C NMR (see supplementary materials).

3.6.2. Borylation Reactions of MBH Alcohols and Esters

At room temperature, a reaction mixture containing 0.2 mmol of MBH alcohols or
esters (III or IV), 0.4 mmol of B2(pin)2, 10.0 mg of CP@Cu NPs, and 2.0 mL of solvent were
prepared, and the whole reactions were stirred at room temperature. After the completion
of the reactions, the organic phase was separated, and the crude intermediates III-a or IV-a
were added to a mixture of THF-H2O containing an excess of sodium perborate, and the
mixture continued to be stirred for 4 h. When the reaction finished, the desired products
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III-b or IV-b were obtained, purified by column chromatography, and characterized by 1H
NMR and 13C NMR (see supplementary materials).

3.7. General Procedure for ICP Test of CP@Cu NPs

Chitosan/poly(vinyl alcohol) composite film supported copper nanoparticles (CP@Cu
NPs) (~20 mg) were placed in a clean test tube and heated with H2SO4 (1 mL) at 200 ◦C. After
30 min, several drops of concentrated HNO3 were added carefully, and the tube was shaken
occasionally. HNO3 was continuously added until a clear solution was obtained, and the
excess amount of HNO3 was allowed to evaporate under heating. After the solution was
cooled to room temperature, 1 mL of aqua regia was added carefully. The effervescence of
gas was observed, and the solution became clearer. The solution was then transferred to a
volumetric flask and increased up to 50 mL with water, which was submitted for ICP analysis.

3.8. General Procedure for the Sample Preparation for ICP Analysis to Determine Metal Leaching

After the reaction was finished, the reaction mixture was filtered. The filtrate obtained
was concentrated and diluted with 10 mL of THF. Then, 50% v/v of the crude THF solution
(5 mL) was then passed through a membrane filter (0.25 or 0.45 µm) into a clean test tube.
After the evaporation of the solvent, the solid obtained in the test tube was heated to
200 ◦C, and 1.0 mL of concentrated H2SO4 was added. Following a procedure similar to
that described above, concentrated HNO3 was added at regular intervals until the resulting
solution was clear. After the solution was cooled to room temperature, 1 mL of aqua regia
was added carefully. The effervescence of the gas was observed, and the solution became
clearer. The solution was then transferred to a volumetric flask and increased up to 50 mL
with water, which was submitted for ICP analysis.

4. Conclusions

In summary, we reported the preparation of a chitosan-loaded copper catalyst (CP@Cu
NPs) and its application in the borylation of α, β-unsaturated ketones, MBH alcohols,
and esters with B2(pin)2 as a boron source. The whole reaction conditions were very
mild, and no additives were even needed in the borylation of the MBH alcohols and
esters. It demonstrated that the substrate scope of this newly developed method was
very broad (more than 40 examples) with very high activity of the catalyst (up to 99%
yield). Remarkably, a single heterogeneous catalyst could efficiently catalyze three types
of substrates including the borylation of α, β-unsaturated ketones, MBH alcohols, and
esters. Moreover, this newly developed strategy could largely solve the recovery of copper
catalysts, providing a green and economic way for the efficient synthesis of organoboron
compounds in the aqueous phase.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28145609/s1.
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