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Abstract: A mild, visible-light-induced, regioselective cascade sulfonylation-cyclization of 1,5-dienes
with sulfonyl chlorides through the intermolecular radical addition/cyclization of alkenes C(sp2)-H
was developed. This procedure proceeds well and affords a mild and efficient route to a range of
monosulfonylated pyrrolin-2-ones at room temperatures.
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1. Introduction

Pyrrolin-2-ones, which constitute one of the most prominent classes of skeletons
exhibiting unique biological activities, are prevalent in a large number of biological
pharmaceutical molecules [1,2] and natural products, like chaetogline, violacein, and
hypomycine [3–6] (Figure 1). In this context, considerable effort has been focused in estab-
lishing such valuable frameworks, but most of these methods suffer from transition metals
or harsh reaction conditions [7–12]. Therefore, developing general and effective synthetic
methods for pyrrolin-2-ones and its derivatives with mild conditions has been attracting in-
creasing attention and largely promote progress in this area [13–18]. On the other hand, the
photoinduced radical cascade cyclization reaction has become a powerful tool to construct
N-containing heterocycles because of its extremely high efficiency, inherently green, infinite
availability, safety, and ease of operation [19–24]. However, such an efficient strategy for
the synthesis of pyrrolin-2-ones has rarely been reported [25].
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Figure 1. Examples of compounds containing pyrrolin-2-ones.

Sulfones constitute an important class of functional groups in organic synthesis that
can participate in various chemical transformations [26,27] and that are found widely
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in the structures of natural products [28–30]. The introduction of sulfonyl functional
groups can cause molecules to exhibit unique biological activity [31,32]. In this regard, a
considerable amount of effort has been devoted to the development of efficient, simple,
and convenient methods for synthesizing sulfonyl-containing compounds [33–38]. Among
the many approaches, the difunctionalization of alkenes through a radical process has
been used to prepare several sulfone-containing compounds [39–48]. Sulfonyl chloride is a
readily available and easily handled source of the sulfonyl moiety and is commonly used to
generate sulfonyl radicals under visible light conditions; major advances have focused on
reactions with heteroaryl or aryl-tethered alkenes to produce sulfonyl-containing aromatic
compounds (Scheme 1a) [49–55]. Nevertheless, the reactions of vinyl-tethered alkenes
remain elusive [56,57].
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Considering the significance of pyrrolinones and the importance of sulfone moieties
in organic synthesis. Herein, we aimed to develop an unprecedented visible-light-induced
photoredox-catalyzed reaction of linear 1,5-dienes with sulfonyl chlorides via regioselective
sulfonylation and 5-endo cyclization to produce important pyrrolinones (Scheme 1b).
However, three challenges hinder the successful development of such a process: (i) The
selective addition of the sulfone radical between two carbon-carbon double bonds is
challenging. (ii) 6-Exo cyclization competes with the desired reaction and needs to be
restricted. (iii) The C=C bond in the target product continues to react with the sulfonyl
radical to afford 3,4-disulfonated pyrrolin-2-ones.

We then focused on the reaction of N-acetyl-N-(1-phenylvinyl)methacrylamide 1a and
p-toluenesulfonyl chloride 2a. To our delight, when the reaction was performed in the
presence of a catalytic amount of fac-Ir(ppy)3 and equivalent of Na2CO3 in CH2Cl2 under
irradiation with 20 W white LEDs (Light-Emitting Diodes) for 16 h, the target sulfonylated
pyrrolinone 3a could be isolated in 57% yield (Table 1, entry 1). Subsequently, other
photocatalysts, such as Ru(bpy)3Cl2 and eosin Y, were investigated, but all failed to obtain
product 3a (entries 2, 3). After examining various bases, such as Li2CO3 (59%), NaHCO3
(64%), K3PO4 (72%), and Na3PO4 (63%), K3PO4 was determined to be the best base (entries
4–8). A variety of solvents, including DCE (1,2-dichloroethane), CHCl3, acetone, toluene,
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THF (tetrahydrofuran), and EtOAc, were subsequently screened, but the yield of product
3a was not promoted (entries 9–14). Next, the amounts of K3PO4 were evaluated (entries
15, 16). Using 1.5 equiv. of K3PO4 improved the yield of product 3a by 79%. When the
light source was changed to 5 W white LEDs, product 3a was afforded in the same yield as
previously obtained (entries 15 vs. 17). The results of the control experiments showed that
visible light, photocatalyst [fac-Ir(ppy)3], and base K3PO4 were necessary for this reaction
(entries 18–20).

Table 1. Optimization of the reaction conditions a.
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11 fac-Ir(ppy)3 K3PO4 (1.0) Acetone 67%
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2. Results and Discussion

After obtaining the optimal reaction conditions, we embarked upon exploring the
substrate scope of 1,5-dienes. Different R1, R2, R3 and R4 groups of 1,5-dienes were tested
with p-toluenesulfonyl chloride 2a; the results are shown in Figure 2. Substrates with
halogen atoms (F, Cl, Br, and I) and electron-donating groups (Me and MeO) at the para-
positions of the benzene ring proceeded well to give target products 3b–3g and 3g–3h in
medium to good yields. Gratifyingly, the CO2Et group at the para-position of the benzene
ring furnished product 3f in an acceptable yield. The reactivity of substituents at the
meta- or ortho-position was also tested, achieving yields of products 3i–3l from 46% to
82%. Notably, substrates with an ethyl group at the β-position of the enamide moiety or
an n-butyl group at the α-position of the acrylamide moiety smoothly converted to the
corresponding product 3m or 3n in 85% yield or 62% yield. In addition, using propionyl
or isobutyryl as the nitrogen-protecting groups was viable for this reaction to give target
products 3o and 3p in considerable yields.
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(1 mol%) in CH2Cl2 (1 mL) were irradiated with 5 W white LEDs at room temperature under N2 for
16 h. The yields were isolated yields.

Next, we moved on to explore the generality of various sulfonyl chlorides (Figure 3).
Arylsulfonyl chlorides bearing electron-rich (Me, MeO, and t-Bu) groups at different posi-
tions worked well, giving corresponding sulfones 4b–4e in 66–84% yield. Electron-poor
arylsulfonyl chlorides, such as Br, I, CN, CF3, and NO2 groups on the benzene ring, allowed
the formation of product 4f–4j in 41% to 78% yield with the need for 20 W white LEDs
as the light source. It is noteworthy that arylsulfonyl chlorides having substituents at
the ortho-position were inferior to those at the para- or meta-position, mainly because
of the large steric hindrance of the ortho-position (4b vs. 4e and 4k vs. 4l). Remarkably,
2-thiophenesulfonyl chloride survived under the current conditions to achieve product
4m in 62% yield. Moreover, alkyl-substituted sulfonyl chlorides, such as cyclopropyl and
ethyl, were applicable for this reaction and transferred to 4n and 4o in 68% and 62% yield,
respectively.
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room temperature under N2 for 16 h. The yields were isolated yields. c 20 W white LEDs were used.

In order to further expand the practicality of the reaction, a gram scale reaction and
removal of OAc group of compound 4a were conducted. We were delighted to obtain the
sulfonylated pyrrolinone 4a in 78% yield with a prolonged time when the reaction was
taken on 1 mmol scale (Scheme 2, (1)). Furthermore, with the addition of n-BuLi in THF at
−78 ◦C, the compound 4a could smoothly remove the OAc group, which generated the
product 4aa in 84% yield (Scheme 2, (2)).
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To shed the possible mechanism of this visible-light-induced sulfonylation-cyclization
of 1,5-dienes, some control experiments were carried out (Scheme 3). When 2.0 equiv-
alents of TEMPO or 1,1-diphenylethylene was added to the reaction of 1,5-diene and
p-toluenesulfonyl chloride under standard conditions, the transformation was completely
suppressed, suggesting that a free-radical pathway may be involved in this sulfonylation-
cyclization reaction. In addition, visible-light irradiation on/off experiments were per-
formed on the model reaction, and the results show that a long-chain process was unlikely
to be involved in this reaction (see Supplementary Materials).

Molecules 2023, 28, 5473 6 of 14 
 

 

To shed the possible mechanism of this visible-light-induced sulfonylation-cycliza-
tion of 1,5-dienes, some control experiments were carried out (Scheme 3). When 2.0 equiv-
alents of TEMPO or 1,1-diphenylethylene was added to the reaction of 1,5-diene and p-
toluenesulfonyl chloride under standard conditions, the transformation was completely 
suppressed, suggesting that a free-radical pathway may be involved in this sulfonylation-
cyclization reaction. In addition, visible-light irradiation on/off experiments were per-
formed on the model reaction, and the results show that a long-chain process was unlikely 
to be involved in this reaction (see Supplementary Materials). 

 
Scheme 3. Mechanistic studies. (1): TEMPO (2.0 equiv.) was added; (2): 1,1-diphenylethylene (2.0 
equiv.) was added. 

According to the above experimental results and previous literature reports 
[13–18], we propose a possible mechanism for visible-light-induced regioselective 
cascade sulfonylation-cyclization of 1,5-dienes (Scheme 4). First, the photocatalyst 
[fac-Ir(ppy)3] under visible light irradiation is excited to form the strongly reducing 
state *[fac-Ir(ppy)3]. A single electron transfer between *[fac-Ir(ppy)3] and p-tol-
uenesulfonyl chloride produces the p-toluenesulfonyl radical and oxidation state 
[fac-Ir(ppy)3]+. Second, the p-toluenesulfonyl radical was selectively added to the 
terminal carbon-carbon double bond of acrylamide of 1,5-diene, followed by a 5-
endo cyclization to produce radical species II [58,59]. Although 5-endo cyclizations 
are often less favorable kinetically than their 4-exo cyclizations, the switch from 4-
exo to 5-endo mode can be achieved through specific properties of the Ts radical 
[60,61]. The high regioselectivity can be explained by the reason that the rate of 
sulfonyl radical addition to the carbo–carbon double bond of acrylamide is much 
greater than to the enamine carbon–carbon double bond. Third, radical species II 
loses an electron by the oxidation of photocatalyst [fac-Ir(ppy)3]+ to forge tertiary 
cation intermediate III and to regenerate photocatalyst [fac-Ir(ppy)3] for the next 
turnover. Last, deprotonation of cation intermediate III occurs in the presence of 
K3PO4, giving sulfonylated pyrrolinone 3a. However, since the presence of base is im-
portant for the reaction, it cannot be ruled out that the radical II is directly deprotonated 
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Scheme 3. Mechanistic studies. (1): TEMPO (2.0 equiv.) was added; (2): 1,1-diphenylethylene
(2.0 equiv.) was added.

According to the above experimental results and previous literature reports [13–18], we
propose a possible mechanism for visible-light-induced regioselective cascade sulfonylation-
cyclization of 1,5-dienes (Scheme 4). First, the photocatalyst [fac-Ir(ppy)3] under visible
light irradiation is excited to form the strongly reducing state *[fac-Ir(ppy)3]. A single
electron transfer between *[fac-Ir(ppy)3] and p-toluenesulfonyl chloride produces the p-
toluenesulfonyl radical and oxidation state [fac-Ir(ppy)3]+. Second, the p-toluenesulfonyl
radical was selectively added to the terminal carbon-carbon double bond of acrylamide of
1,5-diene, followed by a 5-endo cyclization to produce radical species II [58,59]. Although
5-endo cyclizations are often less favorable kinetically than their 4-exo cyclizations, the
switch from 4-exo to 5-endo mode can be achieved through specific properties of the Ts
radical [60,61]. The high regioselectivity can be explained by the reason that the rate of
sulfonyl radical addition to the carbo–carbon double bond of acrylamide is much greater
than to the enamine carbon–carbon double bond. Third, radical species II loses an electron
by the oxidation of photocatalyst [fac-Ir(ppy)3]+ to forge tertiary cation intermediate III
and to regenerate photocatalyst [fac-Ir(ppy)3] for the next turnover. Last, deprotonation of
cation intermediate III occurs in the presence of K3PO4, giving sulfonylated pyrrolinone
3a. However, since the presence of base is important for the reaction, it cannot be ruled
out that the radical II is directly deprotonated by the base to form radical anion, which is
oxidized by the photocatalyst [fac-Ir (ppy)3]+ [62]. It is notable that arylsulfonyl radicals are
prone to loss of SO2 to form aryl radicals, which could induce the cyclization of 1,5-dienes
in the same way as arylsulfonyl radicals, but the corresponding products have not been
found in this system [63–68].



Molecules 2023, 28, 5473 7 of 14
Molecules 2023, 28, 5473 7 of 14 
 

 

 
Scheme 4. Proposed reaction mechanism. 

3. Materials and Methods 
3.1. General Considerations 

All the reagents purchased from Leyan company were directly used. 1H-NMR and 
13C-NMR spectra of the products were recorded on a Bruker FT-NMR 400M or 600M spec-
trometer (Bruker Beijing Scientific Technology Co., Ltd, Beijing, China). Chemical shifts 
spectra are given as δ in the units of parts per million (ppm) with reference to tetrame-
thylsilane (TMS). Multiplicities were indicated as follows: d (doublet); s (singlet); t (tri-
plet); q (quartet); m (multiplets); etc. Coupling constants are reported as a J value in Hz. 
High-resolution mass spectral analysis (HRMS) of the products were collected on an Ag-
ilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS (ESI) instrument (Beijing Ag-
ilent Technologies Co., Ltd, Beijing, China). 

3.2. Typical Procedure for the Preparation of 3a 
1,5-dienes 1a (0.1 mmol), sulfonyl chlorides 2a (0.2 mmol), fac-Ir(ppy)3 (1 mol%), 

K3PO4 (1.5 equiv.), and CH2Cl2 (1 mL) were added into a dry 25 mL Schlenk tube contain-
ing a magnetic stirring bar under nitrogen atmosphere, Then the mixture was stirred and 
irradiated with 5 W white LEDs at room temperature for 16 h. After completing, the reac-
tion mixture was directly subjected to flash column chromatography (10–40% EtOAc/Pe-
troleum ether) to obtain the desired product 3a as a white solid (79% yield). 

3.3. Procedure for the Synthesis of the Coupling Product 4aa 
n-BuLi (2.5 M, 0.24 mmol) was slowly added to the solution of compound 4a (0.2 

mmol) and THF (8 mL) at −78 °C. After 15 min, the reaction increased to room tempera-
ture. After completing, 8 mL water was added to quench the reaction and the mixture was 
extracted with 10 mL dichloromethane 3 times. The combined dichloromethane phases 
were dried over CaCl2, concentrated in vacuo and purified by flash column chromatog-
raphy (30–40% EtOAc/petroleum ether) to furnish the desired product 4aa as a white solid 
(84% yield). 

1-Acetyl-3-methyl-5-phenyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3a): 1H NMR (600 MHz, 
CDCl3) δ 7.71 (d, J = 8.3 Hz, 2H), 7.37–7.34 (m, 3H), 7.27 (d, J = 8.1 Hz, 2H), 7.24 (dd, J = 6.6, 
3.0 Hz, 2H), 5.51 (s, 1H), 3.69 (d, J = 14.4 Hz, 1H), 3.46 (d, J = 14.4 Hz, 1H), 2.49 (s, 3H), 2.42 
(s, 3H), 1.39 (s, 3H). δ 13C NMR (151 MHz, CDCl3) δ 179.60, 169.23, 145.06, 142.87, 136.57, 
129.89, 128.50, 128.21, 127.88, 126.78, 115.54, 62.17, 47.76, 26.01, 24.57, 21.61. 

II
1a

I

Ph

N
Ac

Ph

N
Ac

O

O

Ts

N Ph

Ac

O
Ts

Ts

III

N Ph

Ac

O
Ts base

H+ N Ph

Ac

O
Ts

3a

Ir(III)

Ir(IV)Ir(III)*

TsCl Ts
2a

hv
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3. Materials and Methods
3.1. General Considerations

All the reagents purchased from Leyan company were directly used. 1H-NMR and
13C-NMR spectra of the products were recorded on a Bruker FT-NMR 400M or 600M
spectrometer (Bruker Beijing Scientific Technology Co., Ltd., Beijing, China). Chemical
shifts spectra are given as δ in the units of parts per million (ppm) with reference to
tetramethylsilane (TMS). Multiplicities were indicated as follows: d (doublet); s (singlet);
t (triplet); q (quartet); m (multiplets); etc. Coupling constants are reported as a J value in
Hz. High-resolution mass spectral analysis (HRMS) of the products were collected on an
Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS (ESI) instrument (Beijing
Agilent Technologies Co., Ltd, Beijing, China).

3.2. Typical Procedure for the Preparation of 3a

1,5-dienes 1a (0.1 mmol), sulfonyl chlorides 2a (0.2 mmol), fac-Ir(ppy)3 (1 mol%),
K3PO4 (1.5 equiv.), and CH2Cl2 (1 mL) were added into a dry 25 mL Schlenk tube containing
a magnetic stirring bar under nitrogen atmosphere, Then the mixture was stirred and
irradiated with 5 W white LEDs at room temperature for 16 h. After completing, the reaction
mixture was directly subjected to flash column chromatography (10–40% EtOAc/Petroleum
ether) to obtain the desired product 3a as a white solid (79% yield).

3.3. Procedure for the Synthesis of the Coupling Product 4aa

n-BuLi (2.5 M, 0.24 mmol) was slowly added to the solution of compound 4a (0.2 mmol)
and THF (8 mL) at −78 ◦C. After 15 min, the reaction increased to room temperature. After
completing, 8 mL water was added to quench the reaction and the mixture was extracted
with 10 mL dichloromethane 3 times. The combined dichloromethane phases were dried
over CaCl2, concentrated in vacuo and purified by flash column chromatography (30–40%
EtOAc/petroleum ether) to furnish the desired product 4aa as a white solid (84% yield).

1-Acetyl-3-methyl-5-phenyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3a): 1H NMR (600 MHz,
CDCl3) δ 7.71 (d, J = 8.3 Hz, 2H), 7.37–7.34 (m, 3H), 7.27 (d, J = 8.1 Hz, 2H), 7.24 (dd, J = 6.6,
3.0 Hz, 2H), 5.51 (s, 1H), 3.69 (d, J = 14.4 Hz, 1H), 3.46 (d, J = 14.4 Hz, 1H), 2.49 (s, 3H), 2.42
(s, 3H), 1.39 (s, 3H). δ 13C NMR (151 MHz, CDCl3) δ 179.60, 169.23, 145.06, 142.87, 136.57,
129.89, 128.50, 128.21, 127.88, 126.78, 115.54, 62.17, 47.76, 26.01, 24.57, 21.61.

1-Acetyl-5-(4-fluorophenyl)-3-methyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3b): 1H NMR
(400 MHz, CDCl3) δ 7.71 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 7.26–7.20 (m, 2H),
7.05 (t, J = 8.7 Hz, 2H), 5.53 (s, 1H), 3.69 (d, J = 14.3 Hz, 1H), 3.45 (d, J = 14.3 Hz, 1H), 2.50 (s,
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3H), 2.43 (s, 3H), 1.39 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 179.56, 169.33, 162.72 (J = 252 Hz),
145.15, 142.02, 136.61, 129.94, 128.85, 128.77, 128.14, 115.66, 115.06, 114.85, 62.22, 47.69, 26.05,
24.53, 21.63. 19F NMR (565 MHz, CDCl3) δ-112.68.

1-Acetyl-5-(4-chlorophenyl)-3-methyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3c): 1H NMR
(600 MHz, CDCl3) δ 7.70 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.0 Hz,
2H), 7.19 (d, J = 8.5 Hz, 2H), 5.56 (s, 1H), 3.68 (d, J = 14.3 Hz, 1H), 3.45 (d, J = 14.3 Hz, 1H), 2.50
(s, 3H), 2.43 (s, 3H), 1.39 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 179.46, 169.26, 145.16, 141.90,
136.55, 134.39, 131.26, 129.94, 128.23, 128.13, 128.13, 116.05, 62.19, 47.74, 25.97, 24.48, 21.62.

1-acetyl-5-(4-bromophenyl)-3-methyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3d). 1H NMR
(600 MHz, CDCl3) δ 7.70 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz,
2H), 7.13 (d, J = 8.4 Hz, 2H), 5.56 (s, 1H), 3.68 (d, J = 14.3 Hz, 1H), 3.44 (d, J = 14.3 Hz, 1H), 2.50
(s, 3H), 2.43 (s, 3H), 1.39 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 179.45, 169.27, 145.19, 141.95,
136.53, 131.74, 131.08, 129.96, 128.49, 128.14, 122.60, 116.10, 62.18, 47.77, 25.99, 24.47, 21.65.

1-Acetyl-5-(4-iodophenyl)-3-methyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3e). 1H NMR
(400 MHz, CDCl3) δ 7.69 (dd, J = 8.0, 2.4 Hz, 4H), 7.29 (d, J = 7.9 Hz, 2H), 6.99 (d, J = 7.6 Hz,
2H), 5.56 (s, 1H), 3.69 (d, J = 14.2 Hz, 1H), 3.45 (d, J = 14.3 Hz, 1H), 2.50 (s, 3H), 2.43 (s, 3H),
1.38 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 179.41, 169.24, 145.16, 141.99, 136.97, 136.44, 132.28,
129.93, 128.55, 128.11, 116.10, 94.28, 62.12, 47.75, 25.95, 24.44, 21.63.

Methyl-4-(1-acetyl-4-methyl-5-oxo-4-(tosylmethyl)-4,5-dihydro-1H-pyrrol-2-yl)benzoate (3f).
1H NMR (600 MHz, CDCl3) δ 8.03 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 5.61 (s, 1H),
3.93 (s, 3H), 3.70 (d, J = 14.4 Hz, 1H), 3.48 (d, J = 14.4 Hz, 1H), 2.52 (s, 3H), 2.42 (s, 3H), 1.40
(s, 3H). 13C NMR (151 MHz, CDCl3) δ 179.34, 169.17, 166.61, 145.19, 142.05, 137.21, 136.50,
129.95, 129.20, 128.14, 126.77, 116.93, 62.17, 52.20, 47.90, 25.85, 24.43, 21.62.

1-Acetyl-3-methyl-5-p-tolyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3g). 1H NMR (400 MHz,
CDCl3) δ 7.71 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 7.13 (d,
J = 8.3 Hz, 2H), 5.49 (s, 1H), 3.69 (d, J = 14.4 Hz, 1H), 3.45 (d, J = 14.4 Hz, 1H), 2.47 (s, 3H),
2.42 (s, 3H), 2.38 (s, 3H), 1.39 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 179.68, 169.28, 145.03,
142.88, 138.45, 136.57, 129.90, 129.76, 128.62, 128.26, 126.71, 114.96, 62.18, 47.72, 26.09, 24.61,
21.62, 21.37.

1-Acetyl-5-(4-methoxyphenyl)-3-methyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3h). 1H NMR
(400 MHz, CDCl3) δ 7.71 (d, J = 8.3 Hz, 2H), 7.20–7.10 (m, 2H), 6.89 (d, J = 8.8 Hz, 2H), 5.45
(s, 1H), 3.84 (s, 3H), 3.69 (d, J = 14.3 Hz, 1H), 3.45 (d, J = 14.4 Hz, 1H), 2.48 (s, 3H), 2.42 (s, 3H), 1.38
(s, 3H). 13C NMR (101 MHz, CDCl3) δ 179.75, 169.41, 159.75, 145.04, 142.62, 136.59, 129.89, 128.25,
128.23, 125.05, 114.47, 113.35, 62.21, 55.32, 47.64, 26.17, 24.65, 21.63.

1-Acetyl-5-(3-bromophenyl)-3-methyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3i). 1H NMR
(600 MHz, CDCl3) δ 7.70 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 7.7 Hz, 1H), 7.35 (s, 1H), 7.31 (d,
J = 8.0 Hz, 2H), 7.22 (t, J = 7.9 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H), 5.51 (s, 1H), 3.69 (d, J = 14.4 Hz,
1H), 3.47 (d, J = 14.4 Hz, 1H), 2.52 (s, 3H), 2.45 (s, 3H), 1.39 (s, 3H). 13C NMR (151 MHz, CDCl3)
δ 179.33, 169.17, 145.20, 141.52, 136.52, 134.71, 131.45, 129.99, 129.66, 129.33, 128.17, 125.56,
121.91, 116.51, 62.15, 47.79, 25.89, 24.43, 21.66.

1-Acetyl-3-methyl-5-m-tolyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3j). 1H NMR (400 MHz,
CDCl3) δ 7.74–7.66 (m, 2H), 7.28 (d, J = 7.9 Hz, 2H), 7.24 (d, J = 7.6 Hz, 1H), 7.16 (d, J = 7.6 Hz,
1H), 7.05 (s, 1H), 7.02 (d, J = 7.6 Hz, 1H), 5.49 (s, 1H), 3.69 (d, J = 14.3 Hz, 1H), 3.46 (d,
J = 14.4 Hz, 1H), 2.49 (s, 3H), 2.43 (s, 3H), 2.37 (s, 3H), 1.39 (s, 3H). 13C NMR (101 MHz,
CDCl3) δ 179.64, 169.22, 145.03, 142.97, 137.58, 136.58, 132.58, 129.92, 129.34, 128.26, 127.76,
127.32, 123.89, 115.35, 62.17, 47.76, 26.05, 24.58, 21.63, 21.46.

1-Acetyl-5-(2-chlorophenyl)-3-methyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3k). 1H NMR
(600 MHz, CDCl3) δ 7.78 (d, J = 8.0 Hz, 2H), 7.43 (s, 1H), 7.34 (dt, J = 14.4, 4.1 Hz, 5H), 5.68
(s, 1H), 3.66 (s, 1H), 3.44 (d, J = 14.2 Hz, 1H), 2.44 (d, J = 9.1 Hz, 6H), 1.45 (s, 3H). 13C NMR
(151 MHz, CDCl3) δ 178.67, 168.78, 145.16, 132.80, 129.98, 129.92, 129.82, 128.88, 128.11, 126.70,
116.75, 61.92, 47.61, 25.34, 24.43, 21.61. 1-Acetyl-3-methyl-5-o-tolyl-3-(tosylmethyl)-1H-pyrrol-
2(3H)-one (3l). 1H NMR (600 MHz, CDCl3) δ 7.78 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz,
2H), 7.28 (d, J = 7.4 Hz, 1H), 7.19 (dd, J = 15.2, 7.4 Hz, 2H), 5.58 (s, 1H), 3.67 (d, J = 14.0 Hz,
1H), 3.42 (d, J = 14.0 Hz, 1H), 2.48 (s, 3H), 2.43 (s, 3H), 2.26 (s, 3H), 1.41 (s, 3H). 13C NMR
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(151 MHz, CDCl3) δ 179.56, 168.91, 145.09, 136.91, 133.15, 129.98, 129.57, 128.60, 128.41,
128.00, 125.37, 115.27, 62.16, 47.39, 25.73, 24.93, 21.63, 19.80.

1-Acetyl-4-ethyl-3-methyl-5-phenyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3m). 1H NMR
(600 MHz, CDCl3) δ 7.76 (d, J = 7.9 Hz, 2H), 7.39 (t, J = 7.3 Hz, 2H), 7.36 (d, J = 7.2 Hz,
1H), 7.34–7.27 (m, 4H), 3.70 (d, J = 14.3 Hz, 1H), 3.49 (d, J = 14.3 Hz, 1H), 2.44 (s, 3H), 2.43 (s,
3H), 2.21 (dd, J = 15.2, 7.7 Hz, 1H), 1.94 (dd, J = 15.0, 7.5 Hz, 1H), 1.38 (s, 3H), 0.91 (t, J = 7.6 Hz,
3H). 13C NMR (151 MHz, CDCl3) δ 179.42, 169.08, 145.02, 137.67, 136.88, 132.56, 129.92, 128.32,
128.13, 128.00, 127.93, 126.10, 61.75, 50.46, 26.18, 24.64, 21.63, 18.04, 14.58.

1-Acetyl-3-butyl-5-phenyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3n). 1H NMR (600 MHz,
CDCl3) δ 7.70 (d, J = 8.1 Hz, 2H), 7.38–7.34 (m, 4H), 7.26 (d, J = 5.4 Hz, 5H), 5.42 (s, 1H), 3.69
(d, J = 14.4 Hz, 1H), 3.49 (d, J = 14.4 Hz, 1H), 2.49 (s, 3H), 2.41 (s, 3H), 1.75–1.67 (m, 2H),
1.27 (s, 3H), 1.11 (d, J = 11.6 Hz, 1H), 0.85 (t, J = 7.0 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ
179.40, 169.09, 145.00, 143.77, 136.68, 132.82, 129.88, 128.48, 128.22, 127.90, 126.82, 114.00,
61.79, 51.71, 38.07, 26.05, 25.64, 22.60, 21.61, 13.75.

3-Methyl-5-phenyl-1-propionyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3o). 1H NMR (600 MHz,
CDCl3) δ 7.70 (d, J = 8.2 Hz, 2H), 7.38–7.33 (m, 3H), 7.27 (d, J = 5.6 Hz, 2H), 7.23 (dd, J = 6.5,
2.9 Hz, 2H), 5.51 (s, 1H), 3.70 (d, J = 14.4 Hz, 1H), 3.45 (d, J = 14.4 Hz, 1H), 2.95–2.81 (m, 2H),
2.41 (s, 3H), 1.39 (s, 3H), 1.14 (t, J = 7.3 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 179.43, 173.23,
145.03, 143.01, 136.60, 132.85, 129.87, 128.48, 128.22, 127.93, 126.70, 115.49, 62.16, 47.83, 31.58,
24.63, 21.62, 8.33.

1-Isobutyryl-3-methyl-5-phenyl-3-(tosylmethyl)-1H-pyrrol-2(3H)-one (3p). 1H NMR (600 MHz,
CDCl3) δ 1H NMR (600 MHz, CDCl3) δ 7.69 (d, J = 8.3 Hz, 2H), 7.36 (dd, J = 5.0, 1.8 Hz, 3H),
7.24 (d, J = 8.0 Hz, 2H), 7.19 (dd, J = 6.5, 3.1 Hz, 2H), 5.49 (s, 1H), 3.70 (d, J = 14.4 Hz, 1H),
3.66 (s, 1H), 3.46 (d, J = 14.4 Hz, 1H), 2.40 (s, 3H), 1.40 (s, 3H), 1.24 (d, J = 6.9 Hz, 3H), 1.18 (d,
J = 6.8 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 178.91, 176.67, 144.97, 143.15, 136.68, 132.81,
129.86, 128.49, 128.18, 128.05, 126.22, 115.31, 62.11, 48.11, 35.57, 24.69, 21.62, 18.60, 18.37.

1-Acetyl-3-methyl-5-phenyl-3-(phenylsulfonylmethyl)-1H-pyrrol-2(3H)-one (4a). 1H NMR
(600 MHz, CDCl3) δ 7.84 (d, J = 7.6 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H),
7.37–7.33 (m, 3H), 7.24 (dd, J = 6.4, 2.6 Hz, 2H), 5.50 (s, 1H), 3.71 (d, J = 14.4 Hz, 1H), 3.49 (d,
J = 14.4 Hz, 1H), 2.51 (s, 3H), 1.41 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 179.58, 169.29, 143.05,
139.60, 133.94, 132.63, 129.30, 128.54, 128.17, 127.92, 126.76, 115.37, 62.13, 47.78, 26.07, 24.53.

1-Acetyl-3-((4-methoxyphenylsulfonyl)methyl)-3-methyl-5-phenyl-1H-pyrrol-2(3H)-one (4b).
1H NMR (600 MHz, CDCl3) δ 7.74 (d, J = 8.8 Hz, 2H), 7.42–7.32 (m, 3H), 6.91 (d, J = 8.9 Hz,
2H), 5.50 (s, 1H), 3.84 (s, 3H), 3.70 (d, J = 14.4 Hz, 1H), 3.45 (d, J = 14.4 Hz, 1H), 2.50 (s,
3H), 1.39 (s, 3H).13C NMR (151 MHz, CDCl3) δ 179.60, 169.30, 163.90, 142.80, 132.71, 130.90,
130.46, 128.50, 127.90, 126.77, 115.66, 114.45, 62.36, 55.73, 47.80, 26.04, 24.64.

1-Acetyl-3-((4-tert-butylphenylsulfonyl)methyl)-3-methyl-5-phenyl-1H-pyrrol-2(3H)-one (4c).
1H NMR (600 MHz, CDCl3) δ 7.73 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.38–7.32 (m,
3H), 7.21 (dd, J = 3.9, 1.8 Hz, 2H), 5.45 (s, 1H), 3.71 (d, J = 14.4 Hz, 1H), 3.48 (d, J = 14.4
Hz, 1H), 2.50 (s, 3H), 1.40 (s, 3H), 1.32 (s, 9H). 13C NMR (151 MHz, CDCl3) δ 179.57, 169.24,
157.94, 142.81, 136.43, 132.64, 128.49, 128.04, 127.88, 126.73, 126.32, 115.56, 62.07, 47.75, 35.27,
31.02, 26.10, 24.55.

1-Acetyl-3-methyl-5-phenyl-3-((m-tolylsulfonyl)methyl)-1,3-dihydro-2H-pyrrol-2-one (4d).
White solid; mp 136.3–138.0 ◦C; 1H NMR (600 MHz, CDCl3) δ 7.62 (d, J = 11.2 Hz, 2H),
7.41 (d, J = 7.6 Hz, 1H), 7.39–7.33 (m, 4H), 7.24 (dd, J = 6.6, 2.9 Hz, 2H), 5.46 (s, 1H), 3.71 (d,
J = 14.4 Hz, 1H), 3.48 (d, J = 14.4 Hz, 1H), 2.53 (s, 3H), 2.32 (s, 3H), 1.40 (s, 3H). 13C NMR
(151 MHz, CDCl3) δ 179.65, 169.31, 143.07, 139.70, 139.47, 134.73, 132.68, 129.17, 128.54,
128.48, 127.93, 126.77, 125.22, 115.33, 62.13, 47.79, 26.08, 24.51, 21.19. HRMS (ESI, m/z):
Calcd. For C21H21NSO4Na [M + Na]+ 406.1083, found: 406.1085.

1-Acetyl-3-(((2-methoxyphenyl)sulfonyl)methyl)-3-methyl-5-phenyl-1,3-dihydro-2H-pyrrol-2-
one (4e). White solid; mp 123.4–125.0 ◦C; 1H NMR (600 MHz, CDCl3) δ 7.76 (dd, J = 7.8,
1.7 Hz, 1H), 7.59–7.53 (m, 1H), 7.34–7.29 (m, 3H), 7.12 (dd, J = 6.5, 3.1 Hz, 2H), 7.03 (d,
J = 8.3 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 5.37 (s, 1H), 4.02 (s, 3H), 3.95 (d, J = 14.5 Hz, 1H), 3.77
(d, J = 14.6 Hz, 1H), 2.47 (s, 3H), 1.39 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 179.69, 169.24,
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157.38, 142.70, 135.86, 132.68, 130.67, 128.39, 127.79, 127.19, 126.65, 120.87, 115.64, 112.35,
60.13, 56.47, 47.69, 26.00, 24.55. HRMS (ESI, m/z): Calcd. For C21H21NO5SNa [M + Na]+

422.1033, found: 422.1038.
1-Acetyl-3-((4-bromophenylsulfonyl)methyl)-3-methyl-5-phenyl-1H-pyrrol-2(3H)-one (4f).

1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 7.9 Hz, 2H), 7.36 (s, 3H),
7.22 (s, 2H), 5.48 (s, 1H), 3.70 (d, J = 14.4 Hz, 1H), 3.46 (d, J = 14.3 Hz, 1H), 2.52 (s, 3H), 1.39
(s, 3H). 13C NMR (101 MHz, CDCl3) δ 179.45, 169.28, 143.22, 138.49, 132.66, 132.50, 129.75,
129.44, 128.67, 128.01, 126.71, 115.17, 62.20, 47.77, 26.03, 24.57. HRMS (ESI, m/z): Calcd. For
C20H18NO4SBrNa [M + Na]+ 470.0032, found: 470.0035.

1-Acetyl-3-((4-iodophenylsulfonyl)methyl)-3-methyl-5-phenyl-1H-pyrrol-2(3H)-one (4g). 1H
NMR (600 MHz, CDCl3) δ 7.84 (d, J = 8.3 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 1.6 Hz,
3H), 7.22 (d, J = 3.6 Hz, 2H), 5.49 (s, 1H), 3.70 (d, J = 14.4 Hz, 1H), 3.46 (d, J = 14.4 Hz, 1H),
2.52 (s, 3H), 1.40 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 179.41, 169.25, 143.17, 139.09, 138.63,
132.47, 129.49, 128.65, 127.99, 126.69, 115.16, 102.04, 62.12, 47.73, 26.03, 24.58.

4-(((1-Acetyl-3-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-pyrrol-3-yl)methyl)sulfonyl)benzonitrile
(4h). White solid; mp 189.4–191.5 ◦C; 1H NMR (600 MHz, CDCl3) δ 7.94 (d, J = 8.1 Hz, 2H),
7.76 (d, J = 8.1 Hz, 2H), 7.38 (s, 3H), 7.22 (d, J = 3.2 Hz, 2H), 5.43 (s, 1H), 3.72 (d, J = 14.4 Hz,
1H), 3.52 (d, J = 14.4 Hz, 1H), 2.55 (s, 3H), 1.41 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 179.31,
169.26, 143.63, 143.57, 133.03, 132.35, 128.87, 128.79, 128.06, 126.61, 117.72, 116.90, 114.77, 62.11,
47.75, 26.05, 24.39. HRMS (ESI, m/z): Calcd. For C21H18N2O4SNa [M + Na]+ 417.0879, found:
417.0883.

1-Acetyl-3-methyl-5-phenyl-3-((4(trifluoromethyl)phenylsulfonyl)methyl)-1H-pyrrol-2(3H)-one
(4i). 1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 7.7 Hz, 2H), 7.74 (d, J = 7.7 Hz, 2H), 7.37 (s, 3H),
7.21 (s, 2H), 5.45 (s, 1H), 3.74 (d, J = 14.4 Hz, 1H), 3.52 (d, J = 14.4 Hz, 1H), 2.52 (s, 3H), 1.41 (s,
3H). 13C NMR (101 MHz, CDCl3) δ 179.35, 169.30, 143.37, 142.98, 135.63 (J = 32 Hz), 132.38,
128.86, 128.74, 128.03, 126.63, 126.48 (J = 3 Hz), 125.28 (J = 250 Hz), 114.99, 76.75, 62.08, 47.74,
26.03, 24.53. 19F NMR (565 MHz, CDCl3) δ-63.25.

1-Acetyl-3-methyl-3-((4-nitrophenylsulfonyl)methyl)-5-phenyl-1H-pyrrol-2(3H)-one (4j). 1H
NMR (400 MHz, CDCl3) δ 8.29 (d, J = 8.1 Hz, 2H), 8.01 (d, J = 8.3 Hz, 2H), 7.37 (s, 3H), 7.22
(d, J = 3.7 Hz, 2H), 5.44 (s, 1H), 3.74 (d, J = 14.3 Hz, 1H), 3.54 (d, J = 14.4 Hz, 1H), 2.55 (s,
3H), 1.41 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 179.29, 169.27, 150.85, 145.06, 143.63, 132.28,
129.62, 128.80, 128.06, 126.57, 124.44, 114.68, 62.16, 47.75, 26.05, 24.38.

1-Acetyl-3-((3-chlorophenylsulfonyl)methyl)-3-methyl-5-phenyl-1H-pyrrol-2(3H)-one (4k).
1H NMR (400 MHz, CDCl3) δ 7.82 (s, 1H), 7.72 (d, J = 7.3 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H),
7.43 (t, J = 7.9 Hz, 1H), 7.36 (s, 2H), 7.26 (s, 2H), 5.49 (s, 1H), 3.72 (d, J = 14.4 Hz, 1H), 3.50
(d, J = 14.4 Hz, 1H), 2.55 (s, 3H), 1.41 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 179.45, 169.26,
143.35, 141.29, 135.56, 134.13, 132.44, 130.61, 128.60, 128.13, 127.96, 126.70, 126.27, 114.91,
62.13, 47.75, 26.08, 24.45.

1-Acetyl-3-((2-chlorophenylsulfonyl)methyl)-3-methyl-5-phenyl-1H-pyrrol-2(3H)-one (4l).
1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 7.7 Hz, 1H), 7.52 (d, J = 6.7 Hz, 2H), 7.33 (s, 3H),
7.26–7.20 (m, 1H), 7.13 (d, J = 3.3 Hz, 2H), 5.29 (s, 1H), 3.92 (s, 2H), 2.53 (s, 3H), 1.40 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 179.38, 169.33, 143.22, 137.02, 134.93, 132.62, 132.48, 131.84,
128.52, 127.86, 127.46, 126.52, 115.06, 60.08, 47.68, 26.05, 24.38.

1-Acetyl-3-methyl-5-phenyl-3-((thiophen-2ylsulfonyl)methyl)-1H-pyrrol-2(3H)-one (4m). 1H
NMR (600 MHz, CDCl3) δ 7.70 (d, J = 4.4 Hz, 1H), 7.62 (d, J = 3.0 Hz, 1H), 7.40–7.33 (m,
3H), 7.26 (d, J = 4.9 Hz, 2H), 7.11–7.02 (m, 1H), 5.59 (s, 1H), 3.82 (d, J = 14.4 Hz, 1H), 3.59
(d, J = 14.4 Hz, 1H), 2.53 (s, 3H), 1.43 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 179.45, 169.26,
143.15, 140.70, 134.67, 134.58, 132.61, 128.55, 127.92, 126.84, 115.19, 63.58, 47.89, 26.09, 24.46.

1-Acetyl-3-(cyclopropylsulfonylmethyl)-3-methyl-5-phenyl-1H-pyrrol-2(3H)-one (4n). 1H
NMR (600 MHz, CDCl3) δ 7.36–7.33 (m, 3H), 7.28 (dd, J = 6.5, 2.9 Hz, 2H), 5.72 (s, 1H), 3.62
(d, J = 14.0 Hz, 1H), 3.41 (d, J = 14.0 Hz, 1H), 2.57 (s, 3H), 2.41–2.36 (m, 1H), 1.47 (s, 3H),
1.28–1.25 (m, 1H), 1.21 (dd, J = 4.8, 1.8 Hz, 1H), 1.05–1.01 (m, 2H). 13C NMR (151 MHz,
CDCl3) δ 179.93, 169.38, 143.37, 132.73, 128.53, 127.93, 126.93, 115.39, 59.87, 47.49, 31.27,
26.11, 24.19, 5.35, 5.14.
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1-Acetyl-3-((ethylsulfonyl)methyl)-3-methyl-5-phenyl-1,3-dihydro-2H-pyrrol-2-one (4o).
Amorphous solid; 1H NMR (600 MHz, CDCl3) δ 7.37–7.32 (m, 3H), 7.28 (dd, J = 6.6,
3.0 Hz, 2H), 5.69 (s, 1H), 3.49 (d, J = 13.9 Hz, 1H), 3.33 (d, J = 13.9 Hz, 1H), 2.98 (d, J = 7.5 Hz,
2H), 2.57 (s, 3H), 1.46 (s, 3H), 1.38 (t, J = 7.5 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 179.90,
169.36, 143.63, 132.75, 128.55, 127.93, 126.97, 115.02, 57.84, 49.54, 47.30, 26.11, 24.15, 6.57.
HRMS (ESI, m/z): Calcd. For C16H19NSO4Na [M + Na]+ 344.0927, found: 344.0932.

3-Methyl-5-phenyl-3-((phenylsulfonyl)methyl)-1,3-dihydro-2H-pyrrol-2-one (4aa). White
solid; mp 186.5–188.4 ◦C; 1H NMR (600 MHz, CDCl3) δ 8.60 (s, 1H), 7.83 (d, J = 7.3 Hz, 2H),
7.60 (t, J = 7.5 Hz, 1H), 7.48–7.42 (m, 6H), 7.39 (dd, J = 8.2, 5.6 Hz, 1H), 5.75 (d, J = 1.8 Hz,
1H), 3.61 (d, J = 14.3 Hz, 1H), 3.50 (d, J = 14.3 Hz, 1H), 1.44 (s, 3H). 13C NMR (151 MHz,
CDCl3) δ 182.28, 139.99, 139.92, 133.78, 129.49, 129.35, 129.08, 128.94, 128.18, 124.94, 107.88,
77.24, 77.03, 76.82, 61.68, 48.27, 23.52. HRMS (ESI, m/z): Calcd. For C18H17NO3SNa
[M + Na]+ 350.0821, found: 350.0827.

(2-Tosylethene-1,1-diyl)dibenzene. 1H NMR (600 MHz, CDCl3) δ 7.47 (d, J = 8.1 Hz, 2H),
7.37 (dd, J = 14.0, 7.4 Hz, 2H), 7.30 (t, J = 7.6 Hz, 4H), 7.20 (d, J = 7.6 Hz, 2H), 7.15 (d,
J = 8.1 Hz, 2H), 7.10 (d, J = 7.4 Hz, 2H), 6.99 (s, 1H), 2.38 (s, 3H). 13C NMR (151 MHz,
CDCl3) δ 154.71, 143.76, 139.26, 138.63, 135.59, 130.23, 129.79, 129.34, 128.98, 128.85, 128.65,
128.58, 128.22, 127.82, 127.71, 126.05, 21.58.

4. Conclusions

In conclusion, we developed a visible-light-induced, regioselective cascade sulfonyla-
tion/cyclization of 1,5-dienes with sulfonyl chlorides. A variety of structurally significant
pyrrolinones with important classes of sulfonyl group patterns were obtained in medium
to high yields. This methodology features sulfonyl radical addition/cyclization of alkenes
C(sp2)-H with high regioselectivity under very mild conditions and tolerated broad func-
tional groups.
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