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Abstract: The effect of varying the weight percentage composition (wt.%) of low-cost expand-
able graphite (EG), ammonium polyphosphate (APP), fibreglass (FG), and vermiculite (VMT) in
polyurethane (PU) polymer was studied using a traditional intumescent flame retardant (IFR) system.
The synergistic effect between EG, APP, FG, and VMT on the flame retardant properties of the PU
composites was investigated using SEM, TGA, tensile strength tests, and cone calorimetry. The IFR
that contained PU composites with 40 wt.% EG displayed superior flame retardant performance
compared with the composites containing only 20 w.t.% or 10 w.t.% EG. The peak heat release rate,
total smoke release, and carbon dioxide production from the 40 wt.% EG sample along with APP, FG,
and VMT in the PU composite were 88%, 93%, and 92% less than the PU control sample, respectively.
As a result, the synergistic effect was greatly influenced by the compactness of the united protective
layer. The PU composite suppressed smoke emission and inhibited air penetrating the composite,
thus reducing reactions with the gas volatiles of the material. SEM images and TGA results provided
positive evidence for the combustion tests. Further, the mechanical properties of PU composites
were also investigated. As expected, compared with control PU, the addition of flame-retardant
additives decreased the tensile strength, but this was ameliorated with the addition of FG. These new
PU composite materials provide a promising strategy for producing polymer composites with flame
retardation and smoke suppression for construction materials.

Keywords: polyurethane; composites; flame retardant; intumescent

1. Introduction

Accidental fires are a common occurrence in our living and working spaces, making
fire safety of great importance when designing and constructing buildings. Indoor fires
pose a significant health risk to occupants from exposure to volatile toxic compounds in
smoke and hazardous particulates emitted from the fire [1–4]. This highlights a need to
develop improved flame retardant (FR) materials that burn at a slower rate and expel less
smoke and harmful gases. Improved FR materials allow occupants more time to evacuate
buildings and reduce the risk of death. Therefore, the development of FR materials for
construction purposes is critical for safety in future urban development [4,5].
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Polyurethanes (PUs) are a large polymer class that are available in many forms, such
as foams, composites, adhesives, and surface coatings. These capabilities allow them to
be used in an array of industries, such as aerospace, construction, and textiles [1–3]. PUs’
properties include low thermal conductivity, resistance to abrasion, superb hardness, and
low water absorption. Despite these favourable properties, PUs are highly flammable and
emit large volumes of smoke when burnt [1–6]. With the rapid increase in PU usage owing
to its wide range of applications, reducing its flammability is a priority. Further, studies
show that the addition of various additives [7,8] and fillers [9,10] to the polymer matrix has
a positive effect on the chemical and physical properties of the flame-retardant polymer
composite, hence resulting in reduction and enhancing the flammability of the materials.
For this to occur, the PU polymer needs to be modified with additives to improve its flame
retardance [4–6].

Expandable graphite (EG), which functions as a smoke suppressor, is one of the most
effective additive-type flame retardants. EG is more effective at smoke reduction than
common FR additives, such as magnesium dihydroxide, aluminium trihydroxide, boric
compounds, aluminium polyphosphate (APP), triphenyl phosphate, triethyl phosphate,
layered silicate, melamine, and nanoparticles [11–13]. EG has a layered structure, with
sulfuric acid (H2SO4) intercalated between the graphite flakes. When heated, the H2SO4
oxidises, expanding the carbon layer into a thick char that provides flame retardance [4].
The flame retardancy of the PU polymer matrix is further enhanced by combining EG with
other flame retardants, such as APP, aluminium hypophosphite (AHP), and aluminium
hydroxide (ATH) [14–16]. A PU composite sample containing 7.5 wt% EG with 7.5 wt%
APP increased the limited oxygen index (LOI) value by 2.25% compared with the control
PU [14]. Liu et al. [16] reported that the incorporation of dimethyl methyphosphonate
(DMMP: 10 wt%, ATH: 5 wt%, APP: 15 wt%, EG: 20 wt%) in PU composites significantly
improved the flame retardant properties when compared with the control PU composites.
Xu et al.’s study showed that AHP (5 wt%) reinforced PU/EG (15 wt%) systems with
high flame retardancy [17]. These studies [11–17] show that the incorporation of EG as a
synergist is a useful way to improve EG’s flame retardant efficiency and reduce EG loadings
in a PU polymer matrix.

Ammonium polyphosphate (APP) is another polymer additive that acts as an in-
tumescent fire retardant, meaning that it forms an expanded char layer. This is due to
phosphorus in APP altering the thermal degradation process, which leads to carbonisation
and formation of the char layer through a condensable phase reaction [17,18]. Research
demonstrated that, when combined with EG, APP reduced the heat release rate (HRR) and
total heat release rate (THR), as well as reducing the smoke release rate (SRP) and total
smoke production (TSP) [14–16]. The optimal ratio to maximise the synergistic effects of
EG and APP was 2/3 [14–16]. A ratio of 10:5 was found to reduce smoke and flammability
in wood flour and polypropylene composites by Song et al. [2]. A recent study by Xian-Yan
Meng showed that, individually, APP and EG reduced the mechanical properties of the
polymer, but, when combined, the properties increased, in turn reducing flammability [13].
Work by Chuigen Guo demonstrated the same effect, without a decrease in mechanical
properties when the EG:APP ratio was 1:1 [11]. APP was found to control the rapid char
layer expansion of EG, referred to as the “popcorn effect”, owing to the large chunks formed.
While these formed a protective barrier, if the chunks were too large, they would break
off, exposing the polymer below to the flame. When combined with APP, this “blow-off”
effect was reduced, improving the flame resistance [12]. This research highlighted the
improvements observed with the synergistic effects of multiple additives.

To maintain the mechanical strength of materials while increasing their fire retardant
properties, fibreglass (FG) is a recommended additive. Fibreglass is widely used in poly-
mers to increase strength, impact resistance, and recyclability [19]. However, owing to the
structure of the glass fibres, they are susceptible to the “candlewick effect”, in which the
flammable materials from the polymer are drawn through the glass fibres, accelerating the
thermal degradation [20]. Therefore, more FR additives are required in polymers reinforced
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with FG. A study by Yun Liu et. al. [15] combined FR-reinforced polypropylene with a
combination of intumescent flame retardants (a charring agent, APP, and organically modi-
fied montmorillonite). They demonstrated an increased flame retardance with only a small
reduction in mechanical strength. A similar study used FG-reinforced polyester composites
and EG, APP, and aluminium trihydroxide (ATH) as the intumescent fire retardants. A ratio
of 50:50 wt.% for ATH:EG and 50:30:20 wt.% for ATH:APP:EG demonstrated the highest
reduction in flammability without a loss of mechanical properties [21]. These studies
demonstrated how synergising FR materials is optimal for increased flame retardance,
while FG reinforcement maintains mechanical performance.

Vermiculite (VMT) is also a fire-retardant additive that can be combined with EG and
APP in a PU polymer. VMT ((MgFe, Al)3(Al, Si)4O10(OH)2·4H2O) is a hydrous silicate
material with a triclinic structure and layers of minerals and water molecules. When
heated above 200 ◦C, the bulk vermiculite exfoliates, releasing the water between the
mineral layers, and this is its primary flame retardant mechanism. However, it is difficult
to manufacture vermiculite films, especially for the thickness required (<40 µm) [22]. It
was found that increasing the thickness of the films increased the fire retardance, as shown
by a study Jun Young Cheong et al. [22]. In a study with VMT on fibreboard samples, the
limiting oxygen index (LOI), and, therefore, flammability, was reduced with the addition of
VMT; however, it also greatly reduced the mechanical strength [23]. By increasing the ratio
of VMT in the particle board, the charring was over 10 times the volume of the untreated
sample. These studies [22,23] showed the potential for VMT to be used for fire retardance;
however, the drastic reduction in mechanical strength is still an issue to be overcome.

In this work, we have designed and characterised a new PU composite containing EG,
APP, VMT, and FG for use in flame retardant applications. In particular, we have explored
the effect of different additives on overall performance. This work will focus on the
synergistic effects of this combination to improve the FR effects of the individual additives.
This is a precursory step to produce cost-effective, low-toxicity, and environmentally
benign PU composite membranes for construction materials to yield improved flame
resistance performance.

2. Results and Discussion
2.1. Mechanical Properties: Tensile

While reducing flammability is important in the material, its strength still must be
retained for use in practical applications. As observed above in Figure 1 and Table 1, the
control PU withstands the most stress before yielding at 2.86 MPa. This is followed by
the PU/EG/FG10, PU/EG/VMT10, and PU/EG10 samples. The samples with higher
proportions of additives had lower tensile strengths, which is a known drawback of
intumescent fire retardants. It is important to note that the PU/EG/VMT/FG10 yielded at
a significantly lower strain value than the other 10 wt.% samples, showing that the VMT
has a negative impact on the tensile strength and flexibility. The PU/EG/FG40 sample
also has the highest yield point of the 40 wt.% samples. This reflects the purpose of the
fibreglass additive: to reinforce the polymer when the vermiculite and expandable graphite
are added. The fibreglass reinforces the polymer and allows it to retain its structure when
burnt rather than flowing when molten. This assists in ensuring that the sample and its
charring layer can remain intact to prevent further burning.

2.2. SEM

To examine the surface morphology of the breakage point of the flame-retardant PU
composites, a scanning electron microscope (SEM) was used at 50 k and 500 k magnification.
From the SEM micrograph of the PU control sample (Figure 2a,b), it was observed that there
were no noticeable matrix imperfections, with a smooth and even surface at the breakage
point. This supports a reported study of pure PU material [1–5]. In Figure 2c,d, the EG
is observed to damage the PU matrix compared with pure PU; PU/EG10 is larger in size
and has a more irregular shape. This is owing to the EG increasing the viscosity during
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mixing, which hinders the dispersion of the graphite flakes. It was noted that, when adding
APP (20 wt.%) to prepare PU/EG (In Figure 2c,d), it did not affect the homogeneity of the
matrix. This is thought to be owing to the APP particles’ small size and how they are in the
backbone of the polymeric matrix.
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Figure 1. Tensile stress/strain curves for PU composites and control PU. 

Table 1. Tensile results for PU composites and control PU. 

Sample Average Elongation 
(mm) 

Young’s Modulus 
(MPa) 

Ultimate Tensile 
Strength (MPa) 

Pure PU 78.96 ± 0.35 2.86 ± 0.25 2.96 ± 0.27 
PU/EG10 52.14 ± 0.27 5.33 ± 0.02 1.80 ± 0.17 
PU/EG40 7.14 ± 0.15 15.05 ± 0.03 1.35 ± 0.18 

PU/EG/FG10 54.65 ± 0.22 5.69 ± 0.02 2.21 ± 0.15 
PU/EG/FG40 12.79 ± 0.12 17.57 ± 0.06 1.81 ± 0.12 

PU/EG/VMT10 53.04 ± 0.15 5.63 ± 0.05 1.77 ± 0.09 
PU/EG/VMT40 5.11 ± 0.06 34.78 ± 0.12 1.91 ± 0.04 

PU/VMT/FG/EG10 32.73 ± 0.21 9.25 ± 0.03 1.75 ± 0.07 
PU/VMT/FG/EG40 8.23 ± 0.02 29.17 ± 0.04 1.73 ± 0.02 
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Figure 1. Tensile stress/strain curves for PU composites and control PU.

Table 1. Tensile results for PU composites and control PU.

Sample Average Elongation (mm) Young’s Modulus (MPa) Ultimate Tensile Strength (MPa)

Pure PU 78.96 ± 0.35 2.86 ± 0.25 2.96 ± 0.27
PU/EG10 52.14 ± 0.27 5.33 ± 0.02 1.80 ± 0.17
PU/EG40 7.14 ± 0.15 15.05 ± 0.03 1.35 ± 0.18

PU/EG/FG10 54.65 ± 0.22 5.69 ± 0.02 2.21 ± 0.15
PU/EG/FG40 12.79 ± 0.12 17.57 ± 0.06 1.81 ± 0.12

PU/EG/VMT10 53.04 ± 0.15 5.63 ± 0.05 1.77 ± 0.09
PU/EG/VMT40 5.11 ± 0.06 34.78 ± 0.12 1.91 ± 0.04

PU/VMT/FG/EG10 32.73 ± 0.21 9.25 ± 0.03 1.75 ± 0.07
PU/VMT/FG/EG40 8.23 ± 0.02 29.17 ± 0.04 1.73 ± 0.02

The compact glass fibre packs can be observed in (Figure 2e,f). The adhesion of the
glass fibre to the matrix is hindered by the absence of characteristic functional groups and a
plain surface, limiting the interaction surface. When the PU/EG/FG40 sample was broken,
the glass fibre did not rupture. Cracks are more likely to occur on the phase border between
the fibre and the matrix owing to the glass fibre’s high tensile strength and plain structure.
This causes insufficient adhesion between the matrix and the glass fibre. A high roughness
was observed at the PU/EG/VMT40 Figure 2g,h sample compared with the PU/EG10 and
PU/EG/FG40 samples (Figure 2c–f). This high level of surface roughness can increase both
the interaction surface and the adhesion of VMT to the PU matrix. The strong adhesion of
VMT was also shown by the low number of small holes observed on the sample (Figure 2h)
due to the VMT phases distributed through the polymer matrix.

As shown in Figure 2i,j, the surface morphology of the PU/EG/FG/VMT40 sam-
ple reveals FG and irregular graphite flakes. Less surface roughness was observed in
the PU/EG/FG/VMT40 sample than the PU/EG/VMT40 despite VMT contributing
to the effect in both. It is likely caused by the VMT improving the dispersion of the
PU/EG/FG/VMT40 sample (Figure 2i,j) by reducing agglomeration and imperfections, as
shown in Figure 2i,j.
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2.3. Thermal Properties: TGA/DTG

Weight loss during TGA is indicative of material burning. A steep decrease can be
observed at around 300 s after exposure in Figure 3a. The samples with the 40 wt.% EG
were shown to reach a higher plateau of approximately 40%, with PU/EG40 being an
exception and steadying at around 35%. The 20 wt.% and 10 wt.% EG samples reached
as low as 10%, while the control PU sample burned almost completely, leaving virtually
no material. The control PU initially began decreasing weight more gradually than all
the other PU composite samples, as observed from the line deviating from the others in
Figure 3a. However, this initial weight loss was greater than the other samples, falling to
below 20% before flattening. The sudden loss of weight from the other samples may have
been owing to the intumescent additives forming the barrier layer quickly, and some of the
expanded material may have been combusted faster.
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thermograms of PU composites and control PU under oxygen gas flow.

The weight loss rate in Figure 3b depicts a similar trend to that in Figure 3, with
the combustion of the samples characterised by the steep increase in the weight loss rate
followed by a plateau. Again, the samples with the 40 wt.% additives were observed to
have a lower maximum rate. In addition, the curve for the PU sample is skewed to the
right, showing a delayed thermal degradation that was less rapid but of longer duration.

2.4. Flammability Properties: Cone Calorimeter

From Figure 4, the impact on the additives is clear from the sharp increase in the peak
heat release rate (pHRR) of the control PU sample compared with the other samples. The PU
control peaks at around 420 kWm−2 after 50 s of burning, indicative of very sudden burning
after ignition. The samples of PU/EG10 and PU/EG20 reached peaks of 220 kWm−2 and
190 kWm−2 at 180 s and 130 s, respectively, showing a slightly slower and less intense
thermal decomposition. When the additives had a 20 wt.% proportion, further reduc-
tion in HRR was observed, such as the PU/EG/FG20 and PU/EG/FG/VMT20 samples,
which did not have a sudden peak. Furthermore, they reached values of 150 kWm−2 and
125 kWm−2 at 250 s, which showed that the additives decreased the flammability. This was
through the EG and VMT forming a charring layer to prevent the flame from reaching the
unburnt polymer matrix below. The slightly lower HRR value of the PU/EG/FG/VMT20
sample highlights the added impact of the exfoliation effect of the vermiculite. Both the
PU/EG/FG40 and PU/EG/VMT40 had significantly lower maximum HRR values, with
both peaking around 50 kWm−2 and remaining at 0 for the remainder of the experiment. It
is important to note that the PU/EF/FG40 sample had a peak at 100 s before returning to 0
at 200 s, with PU/EG/VMT40 peaking at 150 s before returning to 0 at 300 s. This shows
that the 40 wt.% samples burnt for a very short amount of time (with the exception of
PU/EG40), and that the vermiculite was a more effective fire retardant than the fibreglass.
The exception of PU/EG40 could have been caused by the char expanding too quickly and
breaking off due to the high amount of EG. This is known as the “popcorn effect” [24–26]
and is observed in other studies of EG [24–26].

Smoke production rate (SPR) (Figure 5) is a critical measure for the lethality of fires.
Consistent with HRR, the samples with the higher 40 wt.% of additive showed significantly
lower smoke production, with the PU/EG/FG/VMT40 and PU/EG/VMT40 remaining at
around 0 m2s−1 for the majority of the experiment. Research has shown that both EG and
VMT can significantly reduce the smoke production of burning polymers [22,23]. The PU
control showed the highest peak at 0.030 m2s−1 at around 150 s from ignition and again
at 180 s. Most of the other samples of 10 wt.% and 20 wt.% peaked between 0.022 m2s−1

and 0.027 m2s−1 at 100–200 s before declining to 0 m2s−1 at around 250 s. Two notable
exceptions were the PU/EG/FG20 and the PU/EG/FG/VMT20 samples. PU/EG/FG20
experienced an early peak of 0.033 m2s−1 at 50 s; however, Figure 5 did not indicate an early
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ignition. This shows that the sample emitted smoke before it began to release a significant
amount of heat with the addition of FG. The PU/EF/FG/VMT20 showed a sustained peak
of 0.017 m2s−1 from 150 to around 300 s, indicating a high release of smoke. This suggests
that the fibreglass can increase smoke production when combined with other additives at
20 wt.% as this was not observed at 10 w.t.% or 40 w.t.%.
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The total smoke production rate (TSR) in Figure 6 reflects what was observed in
Figure 5, with the 40 wt.% samples producing a significantly lower amount of smoke
compared with the samples with a smaller proportion of additives. This reiterates the
smoke reduction effects of EG and VMT. The PU/EG/FG/VMT40 sample had the lowest
value of 25 m2/m2. The control PU, PU/EG/10, and PU/EG20 samples reached a peak of
370 m2/m2, nearly 15 times the value of the PU/EG/FG/VMT40 smoke production rate.
With the addition of FG and VMT at 10% wt., this value was observed to drop to around
330 m2/m2. This shows that fibreglass did reduce the total smoke production despite
the early peak observed in the PU/FG/EG20 sample in Figure 5. Again, a clear decrease
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in smoke production (and, therefore, thermal degradation) is observed with an increase
in additives.
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The carbon dioxide production (CO2P) in Figure 7 strongly resembles the HRR in
Figure 4 as the thermal degradation releases CO2. Again, the PU control sample is observed
to have a sudden peak as it ignites the fastest after ignition. This peak is at 0.24 gs−1 at 50 s.
The 40 wt.%. samples are shown to release very little CO2, with the most active sample,
PU/EG40, releasing a maximum of 0.02 gs−1. This is due to the char layer forming and
preventing the further burning of the polymer. As VMT releases water when heated, this
further suppresses the burning and, therefore, CO2 release. The samples with 10–20 wt%
additives showed steady production rates around 0.08 gs−1. This further shows that
the increase in the proportion in flame-retardant additives reduces the flammability and,
therefore, carbon dioxide production.
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Carbon monoxide (CO) is a deadly gas that heavily contributes to the mortality
observed in fires, and its production should be limited in enclosed spaces. In Figure 8, the
values vary for all the samples and a trend is difficult to observe. The PU/EG/FG/VMT40
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sample presents the lowest peak, 0.025 gs−1. However, the other 40 wt.% samples exhibit
higher peaks, showing that the combination of all the additives may produce lower levels
of CO. The EG and VMT act together with their charring properties to prevent thermal
degradation. Most of the samples peak at between 0.04 gs−1 and 0.05 gs−1, with the
PU/EG10 and PU samples peaking at 0.06 gs−1. Most of the samples fall from their peaks
but continue to sustain CO production after 500 s.
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2.5. Char Residue

To display the effect of char formation on the combustion behaviour of the FR-PU
composite materials, the morphology and the structure of the chars after the CCT were
captured using a digital camera and SEM. Figure 9a–c show digital photographs of the
residual char from the control PU, PU/EG10, and PU/EG/FG/VMT40 samples. The raw
PU, PU/EG10, and PU/EG/FG/VMT40 samples were selected to demonstrate how the
hybrid chars of the three instrumental FR chemicals formed compared with the control
matrix. Figure 9a shows that the control PU has no charring layer and most of the material
has burnt away, which is expected owing to the porous nature of flexible PU allowing for
fast combustion [24,27]. It can be observed that “worm-like” intumescent and dense char
was left after the addition of EG (PU/EG10 and PU/EG/FG/VMT40). The EG samples have
a thicker, fluffier “worm-like” char, which provides a good barrier from the heat of the cone
apparatus [18]. Figure 9b shows the PU/EG10 sample, which has a uniform char, while the
PU/EG/FG/VMT40 (Figure 9c) has a thick char, larger ripples, and cracking. This is due to
the EG particles not being as homogenously distributed within the reinforcement materials
(VMT and FG) at the higher concentration. These variations in surface morphology allow
combustion fuel and heat to penetrate the layer and burn the PU below [28]. This morphed
shape of the sample and air movement from the cone apparatus meant that a great deal of
the char disintegrated, allowing for more combustion. This over-expansion and blow-off is
known as the popcorn effect and is a known consequence of high weightings of additives
in PU [24–26].
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and (c) PU/EG/FG/VMT40; SEM images (25 k) of the char residues after cone calorimeter test for
the control (d) PU, (e) PU/EG10, and (f) PU/EG/FG/VMT40.

Figure 9d–f show the SEM images of the char residue for the control PU, PU/EG10,
and PU/EG/FG/VMT40. The SEM image of PU (Figure 9d) appears to have a thicker
surface morphology than the PU composites owing to the thermo-oxidation degradation
of polymer chains during the combustion process. This is clearly observed in the image
of the char residue in Figure 9a, where the material has almost completely burnt away.
The surface morphology of Figure 9e PU/EG10 shows a larger, more intact charring
structure of the sample, which reflects its strong intumescent effect. Homogeneity and
compactness of the char are good indicators of effective intumescence in SEM imagery [29],
which correlate with Figure 9b. The relationship between these larger sections of char and
effective flame retardant behaviour is also observed in other SEM investigations using
EG and APP [29]. Figure 9f demonstrates that EG, VMT, and FG are incorporated in
PU/EG systems. The main hypothesis for this is that EG, VMT, and FG can decompose
to form silica, a self-extinguishing layer, when exposed to heat, and, as the materials
decompose, it leaves inorganic silica residue. These silica layers are non-volatile viscous
semisolid materials that can cover the matrix surface to form a liquid layer and can catalyse
the dehydration carbonisation of the PU matrix [30]. The formed viscous liquid layer
can reinforce the densification and strength of the “worm-like” intumescent char layer
(Figure 9c,f) and enhance adhesion with the PU matrix at the same time; hence, they are
good indicators of effective intumescence FR materials, as supported by the CCT data.
The PU/EG/FG/VMT40 sample was shown to char (Figure 9c) and prevent a high pHRR
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(Figure 4) but continued to smoulder, generating excess smoke and heat up to 450 s later
than the PU/EG10 and control PU.

3. Experimental Section
3.1. Materials

Table 2 provides details of the materials for the experimental procedure. A two-part
(A/B) polyurethane elastomer (PU-WC565) with a Shore-A hardness of 65A (65A SPU) was
provided by Barnes Pt. Australia. Fillers were incorporated in part A (composition mixtures:
cycloaliphatic polymer, methylene bis(4-cyclohexylisocyanate), naphtha petroleum, light
aromatic solvent, xylene; 1,2,4-trimethyl benzene, ethylbenzene, N-methyl-2-pyrrolidone,
toluene, phenylmercuric acetate) of the PU and homogeneously mixed using a mechanical
blade mixer operating at 300 rpm for 5 min. Part B (composition mixtures: polyether polyol
mixture, N-methyl-2-pyrrolidone, phenylmercuric acetate) of the PU was then added to
the above mixture to cross-link the composite and mixed for a further 5 min. The mixture
was degassed and poured into a mould. To cure these composites, moulds were kept in
a laboratory at room temperature for 24 h. In this work, 12 samples were fabricated and
subjected to combustibility and mechanical measurements. Detailed formulation of each
sample is provided in Table 3.

Table 2. Details of the materials used for developing the PU composites’ formulations.

Polyurethane Elastomer (PU-WC565) Part (A/B), Shore-A Hardness: 65 A Barnes Pty. AU

Ammonium polyphosphate (APP) AP 422 (phase II)- Powder (≤100 µm) Clariant
Expandable Graphite (EG) Carbonfoil-FF 80-Flakes (≤250 µm) Metachem Manuf Co.

VMT Powder (≤100 µm) Allnex Compos (AU)
FG Flakes (≤450 µm) Allnex Compos (AU)

Table 3. Formulation of PU composites.

Sample Code PU (Mass%) EG (Mass%) FG (Mass%) VMT (Mass%)

Pure PU 100 -- -- --
PU/EG10 * 70 10 -- --

PU/EG/FG10 * 65 10 5 --
PU/EG/VMT10 * 65 10 -- 5

PU/EG/FG/VMT10 * 60 10 5 5
PU/EG20 * 60 20 -- --

PU/EG/FG20 * 55 20 5 --
PU/EG/VMT20 * 55 20 -- 5

PU/EG/FG/VMT20 * 50 20 5 5
PU/EG40 * 40 40 -- --

PU/EG/FG40 * 35 40 5
PU/EG/VMT40 * 35 40 -- 5

PU/EG/FG/VMT40 * 30 40 5 5
* APP remains constant at 20% (mass) for all PU composites’ formulations.

3.2. Sample Characterisation

Scanning electron microscopy (SEM) (FEI NOVA NANO 230; Boston, USA) was
conducted to investigate the dispersion of the fillers, the morphology of the cross-section
area, and the char residue (after cone calorimetry testing (CCT)) of these samples, with an
accelerating voltage of 5 kV. The transverse sections and the char residue (after the cone
calorimetry test) were coated with a thin platinum layer (20 nm in thickness).

The tensile tests were performed with a strength testing machine (Instron 34 T-30kN;
Boston, MA, USA). A static load cell of 1 kN was used for tensile testing with a crosshead
velocity of 50 mm/min. Tensile testing samples were fabricated into a dog bone shape
according to ASTM D412-C standard. For each group, at least three samples were fabricated.
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For each tensile experiment, the load and displacement were recorded. The experiments
were conducted at room temperature (23 ◦C).

Thermogravimetric analysis (TGA) was performed using a Perkin Elmer Simultaneous
Thermal Analyzer (STA 6000; Boston, MA, USA) with a temperature range from 30 ◦C to
800 ◦C and a heating rate of 10 ◦C min−1 under air atmosphere.

Cone calorimeter measurements were performed using an Atlas Cone 2 (iCone Classic
(Fire Testing Technology; London, UK) according to ASTM E 1354 at incident flux of
35 kW/m2 using a cone-shaped heater. The spark was continuous until the sample ignited.
All samples (100 × 100 × 25 mm) were exposed to a heat flux of 35 kW/m2.

3.3. Combustion Mechanism

Scheme 1 shows the synthesis of PU composite mechanisms used in this study, where
each component provides a different functionality. The PU polymer matrix (part A and
B) is thermoplastic and flexible. EG, which consists of a layered structure, with sulfuric
acid (H2SO4) intercalated between the graphite flakes, oxidises the H2SO4 upon heating
to expand the carbon layer into a thick char. This char functions as a smoke suppressor.
APP comprises phosphorus, which alters the thermal degradation process to carbonise and
form char layers through the condensable phase reaction. The FG structure has enough
protection ability to shield it from alkali agents and was reinforced in the combustion
process to maintain the mechanical strength of the polymer composites while increasing
their IFR properties. VMT consists of a hydrous silicate material (triclinic structure), which,
upon heating (>200 ◦C), will exfoliate and release H2O between the mineral layers and
produce a further char protective layer. This is the primary flame retardant mechanism of
the PU composite of this study.
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4. Conclusions

In this work, the flame retardant properties of a new PU composite containing EG,
APP, VMT, and FG were investigated for use in fire-resistant applications for the first
time. Through TGA analysis under an oxygen gas environment, it was found that the PU
composites with 40 wt.% EG had greater thermal stability than those with 20 w.t.% and
10 w.t.% EG along with APP, VMT, and FG in the PU composite. Tensile strength testing
showed that the control PU withstood the most stress compared with the PU composite
samples. The samples with 40 wt.% EG had the highest yield point owing to fibreglass
reinforcement with EG in the PU polymer. Flammability analysis and flame retardancy
properties of all PU composites were assessed using cone calorimetry testing. The PU
composites proved far superior compared with the control PU tested over a wide range of
flammability test parameters. The cone calorimetry test showed that the values of pHRR,
SPR, TSR, CO2, and CO were reduced after the incorporation of 40 wt.% EG along with APP,
VMT, and FG and showed compact and close char layers, which functioned as a barrier to
retard the combustion process. The char acted as an insulating and non-burning material,
reducing the emission of volatile products into the flame area. Overall, the results showed
that the addition of 40 wt.% EG along with APP, VMT, and FG delayed the combustion
process, which was attributed to the excellent dispersion and barrier effect of EG in PU.
This work demonstrates that using these additives in combination in PU composites has
the potential to be developed to produce cost-effective, low-toxicity, and environmentally
benign materials for building elements to impart flame resistance performance.

For future work, X-ray photoelectron spectroscopy (XPS) may be utilized to detect
the elemental composition with an instrument able to penetrate samples within more than
2–5 nm, and the UL-94 test can be completed to more completely characterize the fire
resistance of the studied materials [31]. As the introduction of fillers may affect the viscosity
of the composition [13], assessment of the viscosity is recommended in future studies to
determine the properties of the new materials. Furthermore, VMT and FG evidenced the
capability of improving the FR and heat insulation of the composite. Further studies need
to be conducted to assess the suitable concentrations.
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