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Abstract: Cordyceps exopolysaccharide (CEP) has shown emerging potential in adjustment of gut
microbiota and immune cell function. In this study, a water-soluble CEP with a molecular weight of
58.14 kDa was extracted from the fermentation broth of Paecilomyces hepiali, an endophytic fungus
of Cordyceps sinensis. Our results indicated that Paecilomyces hepiali polysaccharide (PHP) showed
significantly preventive potential on dextran sulfate sodium (DSS)-induced colitis in mice, which can
prevent colon shortening, reduce intestinal epithelial cell (IEC) destruction, suppress inflammatory
cell infiltration, and regulate the balance between regulatory T (Treg) cells and T helper type 17
(Th17) cells. Meanwhile, the disturbed gut microbiota was partially restored after PHP treatment.
Further Pearson correlation coefficient analyses exhibited that the alteration of the gut microbiota
was significantly related to adjustment of the IEC barrier and Treg/Th17 balance. In conclusion,
all findings proposed that purified PHP has the potential to develop into a promising agent for
colitis prevention and adjuvant therapy via maintaining intestinal homeostasis of gut microbiota and
immune system.

Keywords: cordyceps polysaccharide; Paecilomyces hepialid; ulcerative colitis; gut microbiota;

intestinal homeostasis

1. Introduction

Ulcerative colitis (UC) is a chronic, progressive, and potentially disabling inflam-
matory bowel disease with clinical manifestations of bloody diarrhea, abdominal pain,
and emergency, and the majority of patients have a higher risk of relapse [1-3]. With a
global incidence of 7.6-246 people per 100,000 individuals, UC has now emerged as a
tough challenge for global public health [2]. Nevertheless, the available drugs, including 5-
aminosalicylic acid (5-ASA), glucocorticoids, immunosuppressant agents, and monoclonal
antibodies against relevant cytokines, cannot effectively prevent recurrence and sustain
remission of UC [4]. Existing IBD treatment intervention drugs also include new strategies,
such as monoclonal antibodies, which block pro-inflammatory cytokines (tumor necrosis
factor-o (TNF-or)), sphingosine 1-phosphate inhibitors, and the JAK kinase inhibitors [5].

UC has debatable etiology, and is closely related to genetic and homeostatic envi-
ronmental changes, gut microbiota, and mucosal immune system dysfunction [6]. Gut
microbiota is thought to be one of the key factors in regulating host health, and is related to
host protective immunity and epithelial barrier functioning [7,8]. In UC patients, impaired
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epithelial barrier functioning allows normally harmless symbiotic bacteria to cross the ep-
ithelium and become pathogenic bacteria, causing the immune system to attack and drive
them out, thereby exacerbating intestinal inflammation [9]. Hitherto, the interventions
adjusting the structure of gut microbiota, functional foods as prebiotics, and healthy donor
fecal microbiota transplantation (FMT) are some of the current and futuristic methods for
the UC adjunctive therapy [6]. Different nutritional plans and dietary supplements can
lead to changes in the composition and function of gut microbiota, thereby affecting the
progression of UC [10,11]. In recent years, natural polysaccharides (including pectin, guar
gum, rhamnogalacturonan, chitosan, fructan, psyllium, glycosaminoglycan, algal polysac-
charides, polysaccharides from fungi and traditional Chinese medicine, and degraded
polysaccharides from Porphyra haitanensis) have become a research hotspot due to their
therapeutic effects on UC [12,13]. These effects are related to the regulation of inflammatory
factors, gut microbiota, the immune system, and the protection of intestinal mucosa.

Cordyceps sinensis as a parasitic edible ascomycetous fungus have been applied
extensively in traditional Chinese medicine with various biological and pharmacological
functions [14]. Its main active ingredient is Cordyceps exopolysaccharide (CEP), which pro-
vides a good prospective application in the prevention and treatment of many diseases [15].
Due to many factors, the sustainable utilization of natural Cordyceps sinensis resources
have been seriously threatened, which lead to over-digging [16]. Paecilomyces hepiali is a
type of Cordyceps fungus that can produce CEP by large-scale fermentation, which has
been widely used in clinical and health foods. Paecilomyces hepiali polysaccharide (PHP)
showed various bioactivities, such as anti-fatigue and anti-hypoxic effects [17], anti-diabetic
and anti-nephritic effects [18], and anti-tumor and antioxidant activity [19,20]. However, it
is still unclear whether PHP has a preventive and therapeutic effect on inflammatory bowel
disease, and whether PHP has similar efficacy against native CEP in UC treatment, and its
structure—activity relationship is unclear.

In this study, our results indicated that PHP showed potential anti-inflammatory and
gut microbiota regulating effects in a dextran sulfate sodium (DSS)-induced mouse colitis
model, which make PHP a promising curative agent for prevention and adjuvant therapy
of UC by maintaining gut homeostasis.

2. Results
2.1. Structure Characterization of PHP

Commonly, the pharmacological activity of polysaccharides usually depends on
the structure of polysaccharides and other physicochemical properties, including MW,
monosaccharide composition, uronic acid content, etc. [21]. To better comprehend the
biological activity of PHP, we further explored its structure characterization. After analysis,
the MW of PHP was 58.14 kDa (Figure 1A). The monosaccharide composition of PHP
was presented in Figure 1B. PHP mainly contained D-mannose (2.49%), glucose (57.1%),
galactose (1.43%) and D-galacturonic acid (0.321%) (Figure 1B). FT-IR spectrum was shown
in Figure 1C. The absorption peak at 3370 cm ™! was corresponding to the stretching vibra-
tions of O—H, whereas the weak band at 2931 cm ! was assigned to stretching vibrations
of C—H [22]. The absorption peak at 1650 and 2352 cm~! were related to vibration of C=O
bonds [23], and the spectra of PHP have peaks at 1411, 1246 and 938 cm !, which may put
down to ester and carboxylate groups [24].
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Figure 1. Primary structural characterization of PHP. The MW (A) and monosaccharide composition
(B) determinates of PHP, normalized response integral units (nRIU) and milli—absorbance unit
(mAU). (C) FT-IR spectrum of PHP.

2.2. PHP Supplement Effectively Alleviates DSS Induced Symptoms

In order to study the anti-colitis role of PHP, the DSS-induced colitis mouse model
was constructed (Figure 2A). Obviously, the body weights of mice in the DSS group were
significantly decreased after DSS treatment, but PHP treatment did not improve the weight
of mice significantly (Figure 2B). Colon length is usually used as one of the key macroscopic
indicators to assess the severeness of colitis, and its length is inversely proportional to
the severeness of colitis. As shown in Figure 2C,D, the colon length of DSS group was
significantly lower than the NC group (p < 0.001), while the colon shortening caused
by DSS was reversed after PHP supplement (p < 0.05). In order to further study the
protective role of PHP on the colon, H&E staining was carried out on colon sections of mice
(Figure 2E-H). Compared to the NC group, the histopathological examination of the DSS
group showed more inflammatory cell infiltration, glandular loss, and mucosal epithelial
necrosis (Figure 2E,F). In contrast, the pathological injury of the colon was restored by PHP
supplementation (Figure 2G). Furthermore, histological scores of colon mucosa showed
that PHP had a therapeutic effect on colon injury (Figure 2H). According to the above
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results, PHP has a good protective role on alleviating the pathological damage of the
colon caused by DSS. Moreover, proinflammatory and anti-inflammatory factors play
an important part in the immune response of UC. It was found that the nature of the
mucosal immune response was determined by proinflammatory and anti-inflammatory
factors, and the imbalance between them was a critical factor of abnormality of the mucosal
immune response [25]. To further evaluate the impact of PHP on intestinal inflammatory
and systemic response, anti-inflammatory and proinflammatory factors in the colonic
tissues and serum were measured (Figure 2I-P). Compared with the DSS group, the
concentrations of proinflammatory cytokines (IL-6, TNF-« and IL-13) in the PHP group
were decreased, while the concentration of anti-inflammatory factor (IL-10) was increased
in serum (Figure 2I-L). Meanwhile, RT-qPCR was used to confirm the gene expression of
cytokines associated with inflammation (IL-10, TNF-w, IL-6 and IL-1pB) in the colon tissues,
which was in accord with the trend of ELISA (Figure 2M-P). Taken together, these results
collectively showed that PHP can inhibit DSS-induced colitis symptoms, colon injury and
inflammatory reaction.

2.3. PHP Helps Maintain the Integrity of the Intestinal Barrier

Tight junction (TJ) proteins (ZO-1, Occludin and Claudin-1) play an import part in
the maintenance of intestine barriers to prevent the transmission of potentially harmful
pathogens and toxins [26] (Figure 3A). Herein, the regulative actions of PHP on intestinal
TJ proteins were measured by RT-qPCR and WB (Figure 3). DSS induction significantly re-
duced the protein and gene expressions of these T] proteins, while PHP treatment increased
the protein and gene expression of T] proteins (Figure 3B—H). These results showed that
PHP treatment could significantly reverse the decrease of T] proteins expression caused by
DSS destruction, thereby enhancing the change of epithelial permeability and the stability of
epithelial barrier structure. Moreover, the colonic mucus layer was studied utilizing alcian
blue staining to better realize the impact of PHP on mucosal barrier functions (Figure 31-K).
It can be seen that the secretion defects caused by the disappearance of goblet cells and
their secretory vesicles resulted in the reduction in mucus production in the DSS group
(Figure 3J). Interestingly, mucosal changes were reversed to a large extent in the PHP group
(Figure 3K). Above all, these results delineated that PHP improves intestinal injury, possibly
by promoting the expression of T] proteins and the function of mucosal barriers.

2.4. PHP Improves Treg/Th17 Cell Balance to Regulate Immunity

It was discovered that the balance of Treg/Th17 cells is essential for the regulation of
UC treatment [27,28]. The change of characteristic genes belonging to Treg/Th17 pathways
were displayed via analysis of transcriptome data of colitis tissues from UC patients and
healthy individuals in the GEO database (Figure 4A). The findings demonstrated that there
were significant differences in different gene expression patterns of Treg/Th17 pathways
between the UC group and the control group, which further suggested that Treg/Th17
balance played an important role in the occurrence and development of UC. Using flow
cytometry, the proportion of CD3*CD4*CD25*Treg* and CD3*CD4*Th17* cells in mice
spleens was identified and analyzed to further investigate the impact of PHP on the balance
of Treg/Th17 cells (Figure 4B,C). The results showed that, compared with NC group, the
proportion of Treg and Th17 cells in DSS group changed, which was consistent with the
results of the outcomes shown in Figure 4A. At the same time, compared with the DSS
group, the number of Th17 cells in spleen lymphocytes of PHP group mice decreased
significantly (p < 0.01), while the number of Treg cells increased significantly (p < 0.05)
(Figure 4B,C). These findings illustrate that PHP could restore the intestinal immune
function of DSS-induced mice by regulating the balance between Th17 and Treg cells.
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Figure 2. PHP significantly alleviated the DSS-induced colitis in mice. (A) The flow chart of experi-
mental design (NC or PHP: n = 6, DSS: n = 7). (B) The changes in body weight. (C) Images of colon.
(D) The quantification of the colon length. (E-G) Representative images of the H&E-stained colon
sections. The plotting scale = 100 um. (H) Histological scores of colons (n = 3). The concentrations of
IL-1p3 (I), IL-6 (J), TNF-o (K) and IL-10 (L) in serum. The relative mRNA expression levels of IL-1
(M), IL-6 (N), TNF-« (O) and IL-10 (P) in colon tissue. Compared with the DSS group, * p < 0.05,
**p <0.01, and *** p < 0.001.
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Figure 3. Effects of PHP on the functioning of the intestinal barrier. (A) Mechanism diagram of TJ

proteins. (B) WB analysis of ZO-1, Occludin and Claudin-1 (n = 3). The quantitative analysis of
protein expressions of Claudin-1 (C), Occludin (D) and zonula occludens-1 (ZO-1) (E). The relative
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*p < 0.01, ** p < 0.001.
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2.5. PHP Alters the Relative Abundance of Gut Microbiota

To assess the alteration of gut microbiota in response to PHP, fecal samples from
mice were tested by 165 rRNA sequencing. A Venn diagram describes the operational
taxonomic unit (OTU) changes in the three groups (Figure 5A). It showed that 268 OTUs
coexisted in 3 groups, 101 OTUs coexisted between the NC group and DSS group, 52 OTUs
coexisted between the DSS group and the PHP group, and 83 OTUs coexisted between
the PHP group and the NC group. Different OTU diversity in each group indicates that
PHP treatment dramatically changed the composition of gut microbiota. There was no
significant difference in «-diversity and (3-diversity between the NC, DSS, and PH groups
(data not shown). The structural changes of gut microbiota were analyzed by principal
coordinates component analysis (PCoA) based on UniFrac distance. As can be seen in
Figure 5B, when compared to the NC group, DSS administration dramatically altered the
composition of the gut microbiota, whereas PHP treatment significantly reversed this trend,
making it closer to the NC group. Meanwhile, we analyzed the relative abundance of three
groups of gut microbiota at the phylum level (Figure 5C), and found that the PHP group
had the highest relative abundance of Actinobacteriota among the three groups.

The gut microbiota changed dramatically at the phylum level after PHP treatment. To
further evaluate the relative abundance changes in the gut microbiota, we have selected
some bacteria to separately describe relative abundance at the phylum level (Figure 5D-I).
Compared with DSS group, the relative abundance of Firmicutes decreased remarkably
in PHP group (Figure 5D), while the relative abundance of Bacteroidota increased to some
extent (Figure 5E), resulting in a noteworthy reduction in the value of F/B (Figure 5F). Com-
pared with the DSS group, the relative abundance of Verrucomicrobiota and Deferribacterota
in the PHP group increased as the phylum level increases (Figure 5G,I), while the relative
abundance of Desulfobacterota was significantly decreased (p < 0.05) (Figure 5H).

Meanwhile, a heat map further proved the differences at the family level and genus
level in gut microbiota among the three groups (Figure 6A,B). At a family level, in cluster
1, Desulfovibrionaceae, Anaerovoracaceae, Oscillospiraceae, Enterobacteriaceae, Lactobacillaceae
and Lachnospiraceae were significantly over-represented in the DSS group compared with
the NC group, while this state was reversed after treatment of PHP (Figure 6A). The gut
microbiota in cluster 1 in the DSS group was increased at the genus level (Figure 6B).
However, after PHP supplementation, the bacteria in cluster 1 recovered to the NC level.
This also significantly enhanced the abundance of gut microbiota in cluster 3, mostly the
beneficial bacteria, such as Faecalibacterium and Romboutsia (Figure 6B). Linear discriminant
analysis (LDA) effect size (LEfSe) analysis was used to identify the specific bacterial taxa
characterized among each group (Figure 6C,D). Figure 6C,D shows the species with sig-
nificant differences, indicated by an LDA score greater than 2.0, which mirrors the degree
of influence of different treatments for gut microbiota. LEfSe analysis showed the LDA
score of pro-inflammatory bacteria, such as Desulfovibrio, Escherichia Shigella and Enterobac-
teriaceae was greater than 3 in the DSS group (Figure 6C). Conversely, the PHP group had
a lot of beneficial bacteria with higher scores, such as Prevotellaceae, Bacteroides_vulgatus
and the Rikenellaceae_RC9_gut_group (Figure 6C). The cladogram in Figure 6D presented
the markedly differential taxonomic features and their phylogenetic relationships. We
found that Deferribacteraceae located within the phylum Deferribacterota, were the prominent
species in the PHP group, and the family of Enterobacteriaceae was the main bacteria species
of the DSS group (Figure 6D). Taken together, our results reveal the regulatory effect of
PHP on gut microbiota.



Molecules 2023, 28, 4984 90f17

C

NC DSS ONC DSSCPHP Emicutes [ Poloobacteria [ Cyanobacieria
| terot:

>
o9)

o
[}

D Campil
Actinobacteriota [l Others

101
280 207

o o
[

I
1
} 1
I

[<)
~
a

268
83 52

PCOA2(18.95%)
o
|
|
|
|
I
A
)
|
|
|
|
1

I 1
© o
N N

.
Relative Abundance
o
R o
o

137

-0.6

o

I
!
!
1
-0.5 0 0.5
PHP PCOA1(53.09%) NC DSs PHP

O
m
M

Firmicutes Bacteroidota FIB ratio

—_
'
'
'
—_
—_
'
T
' Q
' T
J—

0.8

1.8 20

0.6
1.6

0.5
1.2

Relative abundance
0.45 0.5 0.55 06 065 0.7 0.75

Relative abundance
Relative abundance
4

—_
'
-
T
H —_
—_

[
.
1

—

P
o

NC DSS PHP NC DSS PHP NC DSS PHP

@
T

Verrucomicrobiota Desulfobacterota Deferribacterota

@«
S . N N
o

0.002

0.06

0.0015
L

0.001
|

Relative abundance
0.0005 0.001 0.0015 0.002 0.0025

Relative abundance
0.04
Relative abundance

L
{

0.02

0.0005
1

EQ: == &-

}.

NC DSS PHP NC DSS PHP NC DSS PHP

Figure 5. PHP adjusted the entirety construction of the gut microbiota. The fecal samples were
collected for 16S rRNA sequencing (n = 3). (A) Venn diagram of OTUs. (B) Principal coordinate anal-
ysis (PCoA) plots upon the difference among three groups. (C) The phylum-level abundance of gut
microbiota. The relative abundance of Firmicutes (D), Bacteroidota (E), F/B ratio (F), Verrucomicrobiota
(G), Desulfobacterota (H) and Deferribacterota (I). All at the level of phylum, * p < 0.05.

2.6. Correlation Analysis of UC-Related Symptoms and Treg/Th17-Related Immunity with
Gut Microbiota

In order to comprehensively analyze the relationship between UC-related symptom
parameters and gut microbiota, the Pearson’s correlation coefficient was calculated to gener-
ate a correlation matrix (Figure 7). The results showed that there was a negative correlation
between Bacteroidaceae, Enterobacteriaceae and Oscillospiraceae with TJ proteins (Claudin-1,
Occludin and ZO-1). It was worth mentioning that Candidatus Saccharimonas, Parasutterella
and Erysipelotrichaceae were positively correlated with TJ proteins, while negatively corre-
lated with pro-inflammatory factors, suggesting that Candidatus Saccharimonas, Parasutterella
and Erysipelotrichaceae had the potential to repair intestinal damage. Meanwhile, the abun-
dance of Erysipelotrichaceae was negatively correlated with the number of Th17 cells. Above
all, it was speculated that there was a connection between the alteration of different bacteria
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and the colitis-related parameters, indicating that there is a close relationship between the

inflammatory response and immunity and the alteration of gut microbiota.
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Figure 6. Alteration of gut microbiota by PHP. Heatmap depicted the normalized abundance of each
microbiota from fecal samples among the NC, DSS and PHP groups at the family level (A) and at
the genus level (B). The Y-axis distribution is divided into families or genera belonging to different
phyla, and the X-axis shows the abundance distribution of different groups. (C) Distribution his-
togram acquired applying LEfSe in the NC, DSS, and PHP groups, p < 0.05 and LDA score (log1o)
> 2 displayed. (D) Cladogram illustrating the results of LEfSe analysis.

The above results suggest that the beneficial effect of PHP on colitis is mainly achieved
by improving the imbalance of microbiota, maintaining the intestinal barrier function, and
maintaining the balance of Treg/Th17 cells (Figure 8).
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Figure 8. The proposed mechanism of PHP in preventing and treating DSS-induced colitis.
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3. Discussion

As a traditional medicinal fungus, the quality and efficacy of natural Cordyceps sinen-
sis harvested in different regions, altitude, and climate conditions vary greatly [29]. The
main purpose of this study was to investigate the active polysaccharide for the treatment of
DSS-induced colitis from industrial Paecilomyces hepiali, a Cordyceps fungus, and to probe
the underlying mechanisms. We verified that PHP could enhance the integrity of intestinal
epithelial barrier, reduce various inflammatory cytokines, regulate the Treg/Th17 imbal-
ance, and ameliorate the dysbiosis of gut microbiota. These findings make PHP a suitable
functional food for inhibiting inflammatory responses and regulating gut homeostasis.

The pathogenesis of UC is closely correlated with the damage of intestinal epithelial
barrier structures and functions [30]. Intestinal epithelial cells connect with each other by
T] proteins, such as ZO-1, Claudin-1 and Occludin, forming a tight but selective barrier
that allows electrolyte and nutrient absorption, provides energy for the growth of intestinal
symbionts, and blocks lumen bacterial invasion [31,32]. Disturbance of intestinal T] pro-
tein expression/localization leads to severe intestinal barrier damage, and bacterial and
endotoxin invasion, which increases systemic inflammation and immune response [33,34].
Our results confirmed the good therapeutic effect of PHP on the intestinal barrier and tight
connections destroyed by DSS in morphology (Figure 3E-G), and gene expression and
protein analyses (Figure 4B-H), indicating its potential in the adjuvant therapy of UC.

In addition, Treg/Th17 imbalance plays an indispensable role in the pathogenesis
of UC. Treg cells played a regulatory role in immunity by secreting IL-10 [35]. Th17 cells
participate in, and promote the occurrence and development of, multiple autoimmune
diseases, mainly producing pro-inflammatory cytokines [36,37]. It is worth noting that
strongly inducing Th17 cell differentiation aggravated colitis in the mice model, while
stimulating Treg cell differentiation could inhibit adaptive and innate immune responses
to alleviate UC [38,39]. Therefore, ameliorating the Treg/Th17 balance is helpful to re-
establish intestinal immune homeostasis [40]. In this study, PHP administration selectively
upregulated the number of Treg cells and downregulated the proportion of Th17 cells,
improving the Treg/Th17 balance in the DSS-induced UC model, which was consistent
with the mechanism of Gegen Qinlian decoction [41] and Berberine [42] in treating UC.

Dysbiosis alterations of gut microbiota composition have long been intimately bound
up with chronic inflammation, and are responsible for pathogenesis in colitis [43]. There is
a widespread brief that most polysaccharides not digested by the small bowel perform their
physiological functions through the metabolic breakdown of gut microbiota [43]. Therefore,
we speculated that the gut microbiota might be responsible for the therapeutic effects
for colitis of PHP and, subsequently, inspected the effect for PHP on the gut microbiota
dysbiosis in DSS-induced colitis. In our study, we found that PHP treatment reversed the
structure’s change of microbiota caused by DSS, augmented the abundance of beneficial mi-
crobiota, and lessened the abundance of harmful microbiota, hinting its potential prebiotics
activity (Figures 5 and 6). In Figure 5C, we observed that PHP can increase the abundance
of Actinobacteriota. Some known Actinobacteriota can protect the health of the host by in-
hibiting the growth and proliferation of harmful bacteria, enhancing intestinal immunity
and regulating the balance of gut microbiota in the intestine. For example, Streptomyces,
Actinomadura, and Micromonospora have the ability to produce active metabolites such as
antibiotics, cathelicidin, and acids, which can inhibit the growth of intestinal pathogens and
alleviate intestinal inflammation [44,45]. The phylum Verrucomicrobiota, with potential
anti-inflammatory properties, was significantly increased in the PHP group [46] (Figure 5G).
Butyrate can be absorbed by colonocytes and gut microbiota as an energy source, which
is an essential metabolite with an anti-inflammatory effect [47,48]. The intake of PHP
could augment the abundance of butyrate-producing bacteria, including Faecalibaculum
and Prevotellaceae [49,50] (Figure 6A,B). Furthermore, we found that supplementing with
PHP remarkably reduced the relative abundance of Desulfovibrio compared with the DSS
group (Figure 6B). The Desulfovibrio vulgaris can induce increased barrier permeability in
polarized Caco-2 cells to contribute to leaky gut [51]. In order to better study the regulation
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of PHP or other prebiotics on gut microbiota, metagenomic sequencing, short-chain fatty
acid, and the determination of other metabolites need to be introduced in further study.
These abovementioned results proposed that PHP might relieve gut inflammation by ad-
justing several key microorganisms to augment the content of short-chain fatty acids and
to improve intestinal barrier damage.

4. Materials and Methods
4.1. Materials and Reagents

DSS, molecular weight (MW) of 36-50 kDa, was obtained from MP Biochemicals (Santa
Ana, CA, USA). Paraformaldehyde Fix Solution (4%), antibodies against zonula occludens-1
(ZO-1, GB111402) and Claudin-1 (GB112523) were purchased from Sevicebio Technology
Co., Ltd. (Wuhan, China). Antibodies against Occludin (A12621) and 3-actin (AC026)
were purchased from ABclonal Technology Co., Ltd. (Wuhan, China). CD3 (100203), CD4
(100407), CD25 (102010), IL-17A (506915), Foxp3 (126407), Cell Activation Cocktail (with
Brefeldin A, phorbol 12-myristate 13-acetate (PMA), ionomycin, etc.) (423303) and True-
Nuclear™ 4X Fix Concentrate (B337252) were purchased from BioLegend (San Diego,
CA, USA).

4.2. Preparation and Identification of Polysaccharide

Crude PHP (527812) was extracted from the fermentation broth of Paecilomyces hepiali
that purchased from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China). The
crude PHP solution was repeatedly deproteinated by the sevage method [18] and purified
by ethanol precipitation [52]. The molecular size distribution of PHP was analyzed by
Agilent 1260 LC instrument (Agilent Technologies, Santa Clara, CA, USA) with a TSKgel
GMPWy, analysis column (7.8 mm x 300 mm, Tosoh, Tokyo, Japan). The MW of the PHP
was calculated according to the calibration curve established by the dextran standards (T-10,
T-40, T-70, T-500, and T-2000). The monosaccharide composition of PHP was analyzed
by high-performance liquid chromatography (HPLC) via Agilent 1260 LC instrument
(Agilent Technologies Inc, Santa Clara, CA, USA) with a ZORBAX Eclipse XDB-C18 column
(id 5 pm, 4.6 x 250 mm, Agilent Technologies Inc., Santa Clara, CA, USA) according to
the monosaccharide standard, including rhamnose, arabinose and galactose, etc. The
Fourier transforms infrared spectroscopy (FI-IR) spectrum of PHP was detected with a
FT-IR spectrometer (Alpha type, Bruker, Billerica, MA, USA). PHP was processed by KBr
pressure disk technology and measured within the frequency range of 4000~400 cm 1.

4.3. Animals and Induction of Colitis

C57BL/6] male mice (16-18 g) were purchased from Jinan Pengyue Experimental
Animal Breeding Co., Ltd. (Jinan, China) and housed at SPF conditions. After 2 weeks
of adaptation, all mice were randomly divided into the three experimental groups, and
received the different treatments as in Figure 2A: (1) NC group: no treatment for all 3 weeks
(n = 6); (2) DSS group (n = 7): 2.5% DSS for the last week; (3) PHP group (n = 6): PHP
(400 mg/kg/day) for all 3 weeks, and 2.5% DSS for the last week. Colitis was induced in
mice with free drinking water containing 2.5% DSS.

All the mice were weighed daily. Fresh feces were collected and kept at —80 °C for gut
microbiota analysis. All the mice were anesthetized before serum samples were collected.
After euthanasia, the colon samples were obtained, and their lengths were identified. The
colon samples were stored at —80 °C for RNA /protein extraction and histological analyses.
Simultaneously, the spleens of mice were gathered for flow cytometry analysis. All animal
procedures were approved by the Ethics Committee of the Medical College of Qingdao
University (QDU-AEC-2022359). All animal experiments should comply with the ARRIVE
guidelines [53].
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4.4. Histological Evaluation

The colon samples were fixed and embedded with paraffin. The above colon tissue
sections with a thickness of 4 um were subjected to alcian blue and hematoxylin and eosin
(H&E) staining as previously depicted [54]. Additionally, the histological scoring method
was determined as previously described [55].

4.5. Western Blot (WB) Analysis

The cold RIPA lysis buffer (Solarbio, Beijing, China) was applied to extract the total
protein from colon tissue samples. Protein concentration was determined by using the
BCA assay kit (Epizyme, Shanghai, China). Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) was used to separate an equal number of denatured proteins.
Then, the proteins were transferred to PVDF membrane (Millipore, Billerica, MA, USA),
and the membrane was blocked with 1X Protein Free Rapid Blocking Buffer (Epizyme,
Shanghai, China). After incubation with primary antibodies and secondary antibodies,
the protein signals were detected with Ultra High Sensitivity ECL Kit (GlpBio, Montclair,
CA, USA).

4.6. RNA Extraction and RT-gPCR

Total RNA was extracted from colon tissues by RNA Extraction Kit (Spark]ade, Jinan,
China). Then, cDNAs were produced by SPARK script II RT Plus Kit (SparkJade, Jinan,
China). Data obtained through RT-qPCR using kit from SparkJade (Jinan, China) were
analyzed by 2744Ct method. GAPDH gene expression was used to standardize gene
expression levels. The primer sequences were listed in Table S1.

4.7. Cytokine Measurements

Whole blood samples were gathered and centrifuged at 3000 rpm for 15 min to obtain
serum. All the supernatants were collected and stored at —80 °C for enzyme-linked
immunosorbent assay (ELISA) detection. The concentration of proinflammatory cytokines
of serum was determined via the ELISA kit (Abclonal, Wuhan, China).

4.8. Flow Cytometry

Primary spleen cells of mice were isolated as described in the previous study [56].
In short, the spleens of mice were obtained under aseptic conditions. After grinding, the
red blood cells were lysed and obtained single cell suspension. The specific method for
measuring the number of T helper type 17 (Th17) cells and regulatory T (Treg) cells via
flow cytometry referred to our previous study [57].

4.9. Gut Microbiota Analysis

The DNA of gathered fecal samples were abstracted for PCR amplification and 165
RNA sequencing based on a previous description [58]. Subsequently, data analysis method
of gut microbiota distribution and structure were from our previous study [58].

4.10. Database Mining

Transcriptome data (GSE87466) of normal colon tissues and colitis tissues were down-
loaded from the Gene Expression Omnibus (GEO) database [59] (https://www.ncbinlm.
nih.gov/geo/, accessed on 1 December 2018). The list of genes related to Treg and Th17
signaling pathways were summarized from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (https:/ /www.genome.jp/kegg/, accessed on 1 December 2018). The ex-
pression quantity was transformed into log, and then the R software was used to construct
the heat map.

4.11. Statistical Analysis

Statistical analysis was completed with GraphPad Prism 9.3 (La Jolla, CA, USA).
Significant differences were evaluated by one-way the analysis of variance (ANOVA) for
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multiple groups and Students’ t-test for two groups, and * p < 0.05, ** p < 0.01, *** p < 0.001
were regarded as statistically significant.

5. Conclusions

Taken together, our findings demonstrate PHP has the ability to ameliorate DSS-
induced colitis symptoms in mice. The beneficial effect of PHP was mainly mediated
via ameliorating microbiota dysbiosis, promoting intestinal barrier functions, positively
regulating inflammatory factors and Treg/Th17 cell balance. These findings provide a
potential insight into prevention and treatment of UC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390 /molecules28134984 /s1, Table S1: Primers used for RT-qPCR.
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