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Abstract: Acanthopanax senticosus (A. senticosus) is a member of Acanthopanax Miq. and is used in
traditional Chinese medicine, and it has been found that grafting technology can be used to alter plant
metabolite composition and transcriptome characteristics. In this study, shoots of A. senticosus were
grafted onto the rootstocks of the vigorous Acanthopanax sessiliflorus (A. sessiliflorus) to improve
its varietal characteristics. In order to investigate the changes in metabolites and transcriptional
patterns in grafted A. senticosus leaves (GSCL), fresh leaves were collected from 2-year-old grafted
A. senticosus scions, while self-rooted seedling A. senticosus leaves (SCL) were used as controls to
analyse the transcriptome and metabolome. Metabolic profiles and gene expression patterns were
further identified and correlated in special metabolite target pathways. The content of chlorogenic
acid and triterpenoids in the GSCL was higher than in the control, while the quercetin content
was lower. All these metabolic changes were associated with changes in the expression pattern of
transcripts. Our results revealed the transcriptome and metabolome characteristics of GSCL. This
may help to improve leaf quality in A. senticosus cultivation, suggesting that it is feasible to improve
the medicinal quality of GSCL through asexual propagation, but the long-term effects need further
investigation. In conclusion, this dataset provides a useful resource for future studies on the effects of
grafting on medicinal plants.

Keywords: Acanthopanax senticosus; grafting; transcriptomic; metabolomics

1. Introduction

Acantopanax senticosus (Rupr. Maxim.) Harms (A. senticosus) is a perennial woody plant
of the genus Acanthopanax in the family Araliaceae and is a traditional Chinese medicinal
plant. For a long time, the roots and stems of A. senticosus have been applied extensively as
a tonic, heart tonic and sedative. Numerous chemical, pharmacological and clinical studies
have demonstrated the immunomodulatory, anti-stress, anti-fatigue and antitumour effects
of A. senticosus, as well as its application in treating cardiovascular and cerebrovascu-
lar diseases. A. senticosus leaves (SCL) are generally recognised for their mild medicinal
properties and healing powers, as a local medicinal herb in the Heilongjiang Province
and as a new resource food ingredient in the Jilin Province. They have broad-spectrum
effects due to their various phytochemicals, which are effective in treating cardiovascular
diseases and hypoglycemia and have effects of anti-ageing, antioxidation, antibacterial and
anti-inflammatory, anti-cancer, etc. [1–4]. These health properties are due to the presence of
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various positive health-promoting components in the leaves, such as triterpenoids, phenyl-
propanoids, flavonoids, polysaccharides, lignans and other individual compounds such as
chlorogenic acid, quercetin, syringin, and isofraxidin [5–8]. The metabolites syringin and
isofraxidin are active medicinal ingredients extracted from A. senticosus, produced through
the phenylpropanoid biosynthesis pathway and used in Chinese Pharmacopoeia to deter-
mine the quality of the traditional Chinese herb A. senticosus. Chlorogenic acid is the special
active ingredient of SCL [9], a simple phenylpropanoid compound produced by the plant
under aerobic respiration via the shikimic acid pathway. In traditional Chinese medicine, it
is often used as a medicinal ingredient and a simple preparation to clear heat and detox-
ify the body [10] and has good functions such as antiviral, antitumour cell, antibacterial,
antiallergic, and regulates the activity of cytochrome P450 ligase [11]. According to the
survey, more flavonoids, such as quercetin and other flavonoid glycosides, were included
in SCL, which can reach 37.25% [12]. Quercetin, as the main flavonoid component, has anti-
inflammatory, antioxidant, anti-atherosclerotic and good neuroprotective effects [13,14]. In
addition, triterpenoids are the main secondary metabolites with various biological activities
in SCL, which often have various important medicinal values in clinical practice, such as
antitumour, anti-inflammatory, antiviral, cholesterol-lowering and immune-enhancing [15],
and play an important role in determining the quality of the leaves. Jin et al. [16] showed
that triterpenoids isolated from SCL significantly counteracted the adenosine diphosphate-
induced platelet aggregation effect. This suggests that the concentrations and ratios of
these metabolites can directly affect the potency and pharmacological effects of the leaves
of A. senticosus and even the economic value of the herb.

In particular, grafted species differ in the composition and accumulation of metabolites
when compared to ungrafted species, as influenced by the grafted rootstock and scion
species [17–20]. For example, when peppers were grafted onto different rootstocks, CVS.
Weishi (WS) and Buyeding (BYD), the accumulation of salicylic acid, benzoic acid, vanillin,
lignin and polyamines in grafted peppers was increased to different degrees [21]. The
accumulation of lycopene in grafted watermelon fruit was significantly increased when
watermelon plants of the cultivar Ingrid were grafted onto the commercial hybrid root-
stock PS 1313 [22]. Zhou et al. [23] found that tea tree scions ‘Yungui’ and ‘Fuyun NO.6’
grafted onto the rootstock ‘Duanjie baihao’ also differed in the relative contents of various
substances such as flavonoids, organic acids and phenolic acids. This shows that the effect
of grafting is not only related to the process, and the species used are strictly relevant.
However, in some cases, the quality of the grafted plants may also be negatively affected
by the grafting. However, this remains a controversial issue, as this decline in quality is not
a universal phenomenon but is subject to specific scion-rootstock interactions, as well as
specific combinations of growth conditions. At present, there is a complete lack of such
information and no published studies on the effect of grafting on secondary metabolites
of SCL, nor are there published data on Acanthopanax sessiliflorus (Rupr. Maxim.) Seem
(A. sessiliflorus) rootstocks’ effect of SCL on secondary metabolites. Moreover, alterations
in metabolites may also be associated with the RNA and proteins responsible for biosyn-
thesis. As an example, transcriptional variations associated with secondary metabolism
were elicited among grafted grapevine plants [24]. Therefore, Acantopanax sessiliflorus was
selected as a rootstock, which has stronger and more vigorous growth compared with A.
senticosus, to study the effect of grafting on the secondary metabolites of SCL to determine
the mechanism of secondary metabolite accumulation and biosynthesis. This study will
theoretically explain whether the quality of the leaves of A. senticosus can be improved by
grafting, whether lines that perform well in production can be grafted together as a com-
bination of good growing conditions to increase the diversity of the product and provide
theoretical support for its production practice. The results of this research will also elicit a
theory for making full use of the grafting technique to produce leaves of A. senticosus.



Molecules 2023, 28, 4877 3 of 19

2. Results
2.1. LC-MS/MS-Based Metabolomics Reveals Metabolite Changes in GSCL vs. SCL

To investigate the metabolic differences in GSCL vs. SCL, LC-MS/MS was used to per-
form non-targeted metabolomic analysis. The basal peak plots of all samples showed that
the instrument displayed a strong analytical signal, high peak capacity and good retention
time reproducibility (Supplementary Figure S1). A total of 12,389 metabolites (6176 neg and
6213 pos) were identified. Based on these metabolites, PCA and (O)PLS-DA results showed
significant differences between GSCL and SCL (Figure 1A–C), and the OPLS-DA model’s
accuracy was illustrated through 7-fold cross-validation and 200 times RPT (Figure 1D).
A total of 1545 differential metabolites (DMs) (780 upregulated and 765 downregulated
in GSCL) were obtained by combining one-dimensional and multidimensional analyses
to screen for DMs between the SCL and GSCL groups (Figure 1E). In order to show more
clearly the changes in the relative contents of the more diverse DMs in GSCL vs. SCL, a
cluster heat map of the differential metabolite classification was drawn using the software
package R. The results revealed that the relative contents of most of the terpenoids, amino
acids and their derivatives in the GSCL were significantly increased, while the relative
contents of most of the metabolites in lipids, steroids and their derivatives, and flavonoids
were significantly decreased (Figure 1F), indicating that grafting can change the types and
contents of metabolites in SCL.
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Volcano plot in GSCL vs. SCL; (F): Cluster heatmap of DMs classification in GSCL vs. SCL. 
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Figure 1. Multivariate statistical analysis of the differential metabolites based on LC-MS/MS.
(A): Principal component analysis (PCA); (B): Partial least squares discriminant analysis (PLS-DA);
(C): Orthogonal PLS-DA (OPLS-DA); (D): The 200-response sorting tests of the OPLS-DA model;
(E): Volcano plot in GSCL vs. SCL; (F): Cluster heatmap of DMs classification in GSCL vs. SCL.

2.2. Special Differential Metabolite Analysis in GSCL vs. SCL

The relative quantification of peak areas of the same metabolite in different samples
was utilised to analyse and compare the variation in the relative contents of the special
metabolites syringin, isofraxidin, chlorogenic acid and quercetin of Acanthopanax senticosus
leaves between different samples. The results showed that the special metabolites syringin
and isofraxidin were obtained with a VIP < 1 in GSCL, indicating that their contribution to
sample differentiation was small and not significantly different, while chlorogenic acid and
quercetin were significantly different (Table 1). The relative content of chlorogenic acid was
significantly higher, and the relative content of quercetin was significantly lower (Figure 2).

Table 1. VIP and p-values of special metabolites in GSCL vs. SCL.

Special Differential Metabolite GSCL SCL VIP p-Values

syringin 501,175.96 ± 87,306 546,293.52 ± 224,004 0.6022 0.6556
isofraxidin 11,210.14 ± 2332 17,301.89 ± 1466 0.5450 0.0003
chlorogenic 1,856,490.76 ± 385,710 507,624.08 ± 40,181 8.4377 <0.0001
quercetin 675,766.18 ± 74,694 914,886.84 ± 68,981 3.4413 0.0002

In addition, when screening differential terpene metabolites in GSCL vs. SCL, among
the 1545 metabolites considered to be differentially accumulated, 109 were identified
as terpenoids, including 7 monoterpenoids, 37 sesquiterpenoids, 6 diterpenoids, and
59 triterpenoids, most of which were elevated after grafting, with the highest proportion
of triterpenoids, followed by sesquiterpenoids (Supplementary Table S1). By analysing
the triterpenoids in GSCL vs. SCL and clustering them hierarchically according to their
VIP ranking (Figure 3A), and quantifying them relatively in terms of the peak areas of
triterpenoids in different samples, the results showed that the relative content of the special
metabolites, triterpenoids, in GSCL increased significantly after grafting (Figure 3B). Given
the relative content of these characteristic metabolites, it can be concluded that grafting
affects the content of special metabolites of SCL, leading to quality differences in the
samples before and after grafting.
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2.3. De Novo Assembly, Analysis, and Functional Annotation of RNA-seq Data

For RNA-seq, equal amounts of high-quality total RNA from three biological replicates
were mixed, purified and enriched to obtain mRNA, which was then reverse transcribed
into cDNA and amplified by PCR to obtain four complementary deoxyribonucleic acid
databases. High-throughput DNA sequencing using the Illumina HiSeq™ 2500 sequencing
stage to sequence cDNA libraries yielded 41.81 Gb of clean data, averaging 6.97 Gb per
sample. Over 95% of read quality scores were >Q30 (Supplementary Table S2). A total
of 83,979 unigenes were produced by the trinity assembler, and their average length was
1065.7 bp. These results indicate that the data obtained meet the demands of the analysis
that follows. To explore the possible functions of unigenes, Unigene was compared to
the NR, SwissProt, KEGG, KOG, eggNOG and GO databases using diamond software,
and functional analysis of Unigene was achieved by comparing Pfam databases via the
HMMER software. The functional annotations gave unigenes of 49,941 (59.47%), 37,475
(44.62%), 11,848 (14.11%), 29,219 (34.79%), 46,513 (55.39%), 33,073 (39.38%) and 26,606
(31.68%), respectively, corresponding to the NR SwissProt, KEGG, KOG, eggNOG, GO and
Pfam databases (Supplementary Table S3). The 64 GO terms associated with the 33665
annotated single genes were grouped into three classes, including biological processes (BP,
23), cellular components (CC, 20) and molecular functions (MF, 21). Within BP, CC and MF,
the largest subcategories were ‘cellular processes’, ‘cellular parts’ and ‘binding’ (Supple-
mentary Figure S2). Annotation results from mapping single gene annotations to KEGG
showed that the assembled genes were annotated into 20 subcategories. Comparisons with
other pathways revealed that more single genes were found in the ‘Translation’ (2072),
‘Carbohydrate metabolism’ (2066) and ‘Folding, sorting and degradation’ (1591) pathways
(Supplementary Figure S3).
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2.4. GO and KEGG Enrichment Analysis of Differential Expression Genes in GSCL vs. SCL

Overall 20,198 differentially expressed genes (DEGs) (10,047 upregulated and 10,151 down-
regulated in GSCL) were identified between the GSCL and SCL samples (Figure 4A,B).
Of these DEGs, 8875 single genes were annotated with GO terms. ‘Cellular process’ and
‘metabolic process’; ‘organelle’ and ‘membrane’ and ‘binding’ and ‘catalytic activity’ were
the first two of BP, CC and MF, respectively (Figure 4C). KEGG enrichment analyses
were performed to obtain insight into the synapse of specific metabolites, associated
gene functions and gene interactions. The DEGs of those upregulated were enriched in
phenylpropanoid biosynthesis, along with sesquiterpenoid and triterpenoid biosynthesis
(Figure 4D). The DEGs of those downregulated were enriched in flavonoid biosynthesis
(Figure 4E).
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GSCL vs. SCL.Each of the samples is displayed on a column, and each gene is represented by a row.
Blue indicates that the gene is expressed at a lower abundance in the tissue, while red indicates a
higher abundance; (B): Volcano plot in GSCL vs. SCL. The red color indicates that the differential gene
is upregulated in GSCL, while the blue color indicates that the differential gene is downregulated in
GSCL; (C): DEGs ontology classification in GSCL vs. SCL at the GO level. Red means upregulated
DEGs, and green means downregulated DEGs; KEGG enrichment analysis of upregulated (D) and
downregulated (E) DEGs in GSCL. The enrichment score is the ratio between the number of DEGs in
a pathway and all the annotated genes in this pathway. The larger the bubble, the more differential
genes in the pathway.

2.5. Differential Expression Genes in Special Metabolic Pathways in GSCL vs. SCL

The above study revealed that the secondary metabolic pathways of GSCL are signifi-
cantly different from those of SCL. DEGs regarding the special secondary metabolites chloro-
genic acid biosynthesis, quercetin biosynthesis and triterpenoid biosynthesis were identified
from the cDNAs of GSCL and SCL. A hierarchical clustering heat map was used to represent
the expression of genes associated with the target pathway (Figure 5). Fourteen unigenes
with significant differences in the chlorogenic acid metabolic pathway were identified, includ-
ing the PAL gene (TRINITY_DN33622_c0_g1_i2_2, TRINITY_DN34028_c0_g1_i6_4, TRIN-
ITY_DN39338_c0_g1_i4_4, TRINITY_DN39509_c0_g1_i3_3, TRINITY_DN41525_c1_g4_i1_3),
the CYP73A gene (TRINITY_DN33244_c0_g1_i2_2), the 4CL gene (TRINITY_DN29324_c0_g4
_i1_4, TRINITY_DN36137_c1_g1_i2_1), the HCT gene (TRINITY_DN31067_c0_g1_i8_3, TRIN-
ITY_DN17859_c0_g1_i1_3, TRINITY_DN35120_c0_g1_i3_2, TRINITY_DN36037_c0_g3_i1_3,
TRINITY_DN36764_c0_g1_i6_1) and the C3′H gene (TRINITY_DN38890_c0_g1_i7_1). In
GSCL (relative to SCL), 10 unigenes were decreased, and 4 unigenes were significantly
upregulated (Figure 5A). The results in the metabolic pathways involved in quercetin
showed that a total of 25 significant DEGs were involved in the quercetin biosynthetic
pathway in GSCL compared with SCL, of which 4 genes were upregulated, and 21 genes
were downregulated, with the percentage of downregulated genes being 84%, and CHS,
C3′H, CHS, F3H, FLS, CHI and CYP75B1 were reduced in the quercetin biosynthetic path-
way (Figure 5B). In triterpenoid biosynthesis, 19 significantly different unigenes were
identified, and 10 unigenes were significantly upregulated, including HMGCS (TRIN-
ITY_DN41502_c0_g1_i1_1), MVK/mvaK1 (TRINITY_DN32240_c0_g1_i3_4), MVD/mvaD
(TRINITY_DN33798_c0_g1_i5_2), ispF (TRINITY_DN33754_c0_g5_i1_1), GGPS(TRINITY_
DN39237_c1_g1_i13_1), SQLE/ERG1 (TRINITY_DN32795_c0_g1_i3_ 1, TRINITY_DN28889_
c0_g1_i1_3) and LUP1 (TRINITY_DN39298_c0_g1_i10_4 and TRINITY_DN42046_c1_g2_i1_3,
TRINITY_DN41824_c0_g4_i3_1) (Figure 5C).
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2.6. Association Analysis Target to Special Metabolites

To further explore potential regulatory mechanisms and to clearly show the rela-
tionship between DEGs and differential target metabolites in GSCL, a combined analysis
of the biosynthetic pathways of chlorogenic acid, quercetin and triterpenoids was per-
formed. The most highly expressed DEGs were shown to be in their metabolic pathway
(Figures 6–8). In the chlorogenic acid biosynthetic pathway, p-coumaric acid, caffeoyl
shikimic acid and chlorogenic acid were noted to be significantly higher compared to SCL,
while other compounds, such as cinnamic acid, were not reduced. The expression levels
of genes of 4CL and HCT were all upregulated in GSCL, which increased chlorogenic
acid biosynthesis in GSCL, indicating that grafting could alter the expression of genes
related to the chlorogenic acid biosynthesis pathway in SCL (Figure 6). Compared with
SCL, GSCL had a reduced content of kaempferol. Additionally, a total of 25 differentially
expressed genes were involved in the quercetin biosynthetic pathway, and the percentage
of downregulated genes was 84%. CHS, C3’H, F3H, FLS, CHI and CYP75B1, which were
significantly related to the quercetin biosynthetic pathway, were all downregulated, indicat-
ing that quercetin biosynthesis-related genes are involved in regulating the biosynthesis of
quercetin metabolites, suggesting that grafting has a regulatory effect on the expression of
quercetin in Acanthopanax senticosus leaves (Figure 7). Critical gene expression patterns in
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triterpenoid biosynthesis are divided into two main steps, terpene backbone biosynthesis
and triterpenoid biosynthesis. The terpene backbone biosynthesis pathway has two main
pathways, Mevalonate and MEP/DOXP. Three differential genes involving the upstream
Mevalonate pathway were expressed more in GSCL than SCL, one differential gene in
the MEP/DOXP pathway was expressed more in GSCL than SCL, and two differential
genes were expressed less in GSCL than SCL, indicating that it is the Mevalonate pathway
that plays the major role. The expression of HMGCS, MVK/mvak1 and MVD/mvaD in
the Mevalonate pathway was upregulated in GSCL, which was speculated to be possibly
related to the high content of terpenoids in GSCL. In addition, ERG1/SQLE genes on the
triterpene biosynthesis pathway also showed an upregulation trend in GSCL, suggesting
that ERG1/SQLE may be a key gene for the synthesis of terpene skeletons into triterpene
components in GSCL (Figure 8).
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2.7. qRT-PCR Validation

In order to check the correctness and the reproducibility of the RNA-seq data, eight
DEGs were selected for qRT-PCR analysis. The validation results were consistent with the
trend of RNA-seq sequencing results, suggesting that the transcriptome analysis results
were authentic and reliable (Figure 9).
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3. Discussion

Metabolites, as products of the plant’s growth and development, usually accumulate
in some of its specific tissues. It has been reported that the number of natural metabolites in
plants may reach 200,000 [25]. These metabolites are important for the energy acquisition
and health of plants and humans [26]. In the meantime, they are also a major source of clin-
ical drugs and make a significant contribution to the agricultural sector and pharmaceutical
industry. In this study, 1545 (780 upregulated and 765 downregulated) well-defined DMs
were detected, and the special metabolites had an increased relative content of chlorogenic
acid and triterpenoids and decreased relative content of quercetin. This makes them ideally
suited for research on the mechanisms regulating the biosynthesis of metabolism because
of the high diversity and variability of these plant metabolites and their ability to inform
subsequent studies.

Moreover, the investigation strategy of histology provides new perspectives into sys-
tems biology, elucidating the relationship between related gene expression and metabolite
accumulation. Plant cells can regulate their cellular metabolism to adapt to new conditions
by initiating gene expression programs that respond to changes in conditions to facilitate
their survival under different external conditions and by altering their own metabolites and
thus exhibiting significant regulatory flexibility. In recent years, some scholars have begun
to extensively investigate the potential mechanisms between grafted plant metabolites and
the expression of enzyme activities or genes in related metabolic pathways. For example,
some researchers have integrated transcriptomics and metabolomics to analyse grafted
tea trees and oil teas to reveal important correlations between their specific secondary
metabolite accumulation and genes [17,27]. In this study, to elucidate the role of grafting
on the accumulation of metabolites in SCL and its regulatory mechanisms, an association
analysis of metabolomics of specific metabolites with DEGs in the synthetic pathway was
performed, showing the relationship between the expression levels of some genes and
metabolites, indicating the effect of genes associated with the biosynthesis of these metabo-
lites on the specific metabolites of GSCL. Chlorogenic acid, a phenylpropanoid produced by
the shikimic acid pathway, is a condensed phenol produced by the combination of caffeic
acid and quinic acid and is the main metabolite in GSCL. In this study, it was found that
the high expression of 4CL and HCT in GSCL may have contributed to the synthesis of
hydroxycinnamoyltransferase to generate p-coumaroyl quinic acid, which subsequently
undergoes C3H hydroxylation to generate chlorogenic acid [28], which in turn increases
the relative amount of chlorogenic acid. Studies on various plants have shown that HCT
can promote chlorogenic acid synthesis [29–31]. Wen et al. [32] obtained two 4CL genes
from the analysis of the chlorogenic acid metabolic pathway in pear fruits from the Xinjiang
region. Therefore, it was suggested that grafting might further promote the synthesis of
chlorogenic acid by promoting 4CL and HCT expression in GSCL.

In contrast, the relative content of the special metabolite quercetin was found to be re-
duced in GSCL, and the key enzymes of biosynthesis in the synthetic pathway (CHS,
CHI, F3H, CYP75B1 and FLS) were downregulated, suggesting that these genes can
regulate the differential synthesis of quercetin and reduce the biosynthetic activity of
quercetin. The secondary metabolites downstream of the phenylpropanoid metabolic path-
way are flavonoids and flavonoids, of which p-coumaroyl-CoA is a precursor of flavonoids
and flavonoids [33,34], and CHS is the first key enzyme that leads the phenylpropanoid
metabolic pathway into the flavonoid metabolic pathway, catalysing the transformation of
p-coumaroyl-CoA into naringin chalcone [35] and driving the flow of upstream compounds
in the phenylpropanoid synthetic pathway to the quercetin synthetic pathway [36,37], a
key gene in quercetin biosynthesis, whose downregulation may lead to the blockage of
quercetin biosynthesis. In addition, F3H can catalyse the formation of dihydrokaempferol
from naringenin, further formation of kaempferol catalysed by FLS; and in the presence
of CYP75B1, the 3′ and 5′ positions of the flavonoid B ring were hydroxylated to produce
quercetin [36]. For example, the FLS-encoding flavonol synthase that was silenced in
tobacco can result in a 17–53% reduction in quercetin content [38]. Xia et al. [39] compared
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the flavonoid metabolites of red ‘Summer Black’ (SB) and white ‘Shine Muscat’ (SM) grapes
during the development of the fruit and found that the higher flavonol content of quercetin
and kaempferol in SM was associated with a high expression of F3H and FLS. Quercetin
can be synthesised from dihydroquercetin or kaempferol through FLS or CYP75B1, and
some studies have reported higher quercetin content in the stem and leaves of Kurz. var.
vinciflora (Kom.) L.T. Shen than its tuber due to the high expression of FLS, CYP75B1
and the aforementioned upstream genes [40]. Functional identification of CYP75B1 in
Camellia sinensis suggested the role in the biosynthesis of flavonoids [41]. Therefore, this
study suggested that grafting caused the downregulation of upstream genes and the crucial
enzyme genes for quercetin biosynthesis, thereby decreasing the content of kaempferol and
quercetin in GSCL.

Increased triterpenoid metabolites in GSCL may be associated with the upregulation
of HMGCS, MVK/mvak1, MVD/mvaD, ERG1/SQLE and LUP1 expression. HMGCS is
capable of catalysing the synthesis of 3-hydroxy-3-methylglutaryl-CoA by acetyl-CoA. It is
a crucial rate-limiting enzyme for terpene backbone synthesis, the precursors of triterpenes
in the MVA pathway, and has a positive regulatory effect on terpenoid synthesis [42–44].
MVK/mvak1 is the first of three sequential ATP-dependent enzymes in the mevalonate
pathway for terpenoid synthesis, catalysing the production of mevalonate-5P from meval-
onate. The isopentenyl-PP generated by the MVD/mvaD-catalysed decarboxylation of
mevalonate pyrophosphate is a precursor material for the synthesis of terpenoids [45].
Thus, high expression of MVK/mvak1 and MVD/mvaD in GSCL promotes terpenoid
backbone biosynthesis. In addition, two enzymes, ERG1/SQLE and LUP1, in the triterpene
synthesis pathway, were significantly upregulated in GSCL. ERG1/SQLE cyclises squalene
to (s)-squalene-2,3-epoxide and is a crucial enzyme in triterpenes synthesis [46]. LUP1,
a lupinol synthase, is the main enzyme regulating lupinol synthesis in plants [47]. Its
distribution as a triterpene is found in many plants, and its modification leads to various
triterpenoids [48]. It is hypothesised that the synthesis of triterpenoids in GSCL is regu-
lated by ERG1/SQLE enzymes and LUP1 enzymes, which further synthesise the terpene
backbone into multiple triterpenoids.

4. Materials and Methods
4.1. Plant Materials

One-year-old seedlings of Acantopanax senticosus (Rupr. Maxim.) Harms (A. senticosus)
and Acanthopanax sessiliflorus (Rupr. Maxim.) Seem (A. sessiliflorus) were purchased from
Zhengyang Nursery (Liaoning, China). A. senticosus and A. sessiliflorus are each identical
strains, each with stable genetic traits. All samples were identified by Prof. Jun Ai, Col-
lege of Horticulture, Jilin Agricultural University, Changchun, China. The corresponding
voucher specimens were stored in the State Local Joint Engineering Research Center of Gin-
seng Breeding and Application, China. We transplanted one-year-old A. senticosus and A.
sessiliflorus in a nutrient bowl with organic substrates (Vloam: Vsand: Vpeatmoss = 3: 1: 1).
The cleft grafting method [49,50] was carried out in March 2020, in the facility agricultural
base of Jilin Agricultural University, China (latitude 43◦48′ N, longitude 125◦24′ E). In
grafting experiments, one-year-old A. senticosus and A. sessiliflorus were used as scions and
rootstocks, respectively, and the self-rooted seedlings of A. senticosus were controls. After
grafting, all plants were transferred to a growth chamber where they were kept at a constant
temperature of 20 ± 1 ◦C and a relative humidity of 80–90% for 2 weeks. Grafted plants
were successfully transferred to a greenhouse for growth with the self-rooted seedlings of
A. senticosus together. The test was divided into two combinations (grafted and ungrafted
plants), and there were 60 plants in each combination. Each combination was replicated
three times. Field management was handled according to conventional cultivation tech-
niques, and all were managed by the same person. On 20 June 2022, three plants were
randomly selected from each of the successful grafted and self-rooted seedlings, and three
fresh leaves of the same leaf age were collected from each plant, for a total of 18 leaves. The
graftings with A. senticosus as scion and A. sessiliflorus as rootstock were labeled as GSCL
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and the control self-rooted seedlings of A. senticosus were labeled as SCL. Samples were
immediately frozen in liquid nitrogen and stored in a −80 ◦C refrigerator for metabolomics
and transcriptomics analysis.

4.2. Sample Extraction and Metabolite Profiling

A total of 60 mg of sample was weighed and placed in a 1.5 mL centrifuge tube. Two
small steel beads and a 600 µL mixture of methanol and water (V:V = 7:3, including internal
standard L-2-chlorophenylalanine, 4 µg/mL) were spiked with each sample. The samples
were pre-cooled at −40 ◦C for 2 min in a refrigerator and then milled for 2 min in a fully
automated sample rapid grinder (Wonbio-E, Shanghai Wanbai Biotechnology Co., Ltd.,
Shanghai, China) with the grinding frequency set to 60 Hz. Samples were extracted using an
ice-water bath for 30 min and left to stand overnight at −40 ◦C. Samples were centrifuged
at low temperature for 10 min (13,000 rpm and 4 ◦C), and 150 µL of the supernatant
was collected separately from each tube by syringe and filtered through an organic filter
membrane (0.22 µm) and transferred to LC vials. The vials were kept at −80 ◦C until
the LC-MS metabolomics analysis. All chemicals and solvents were of an analytical or
LC/MS grade. All reagents used for extraction were pre-cooled in a −20 ◦C refrigerator
prior to use. The analysis was carried out on an ACQUITY UPLC HSS T3 column (1.8 µm,
2.1 × 100 mm) in both positive and negative modes. Both contained 0.1% formic acid in
water and acetonitrile as mobile phases, respectively. The gradient procedure is as follows:
0 min, 5% B; 2 min, 5% B; 4 min, 30% B; 8 min, 50% B; 10 min, 80% B; 14 min, 100% B;
15 min, 100% B; 15.1 min, 5% B and 16 min, 5% B. The column temperature was set at 45 ◦C,
and the flow rate of the mobile phase was 0.35 mL/min. The injection volume was 2 µL.
The mass spectrometry (MS) data were collected in bothESI+ and ESI- modes described by
the following parameters: resolution (full scan) of 70,000; spray voltage of 3800 V in ESI+
(3000 V in ESI-); sheath gas flow rate of 35 arb; aux gas flow rate of 8 arb and a capillary
temp of 320 ◦C. The mass spectra scan range was set as m/z 70–1000. A total of 12 samples
(2 samples × 6 biological replicates) were used to observe the difference in metabolite
composition between grafted plants and control leaves.

4.3. Multivariate Statistical Analysis and Metabolite Identification

Raw LC-MS/MS data were analysed using Progenesis QI V2.3 (Nonlinear, Dynamics,
Newcastle, UK) software, such as basis line filtering, peak identifications, integration,
retaining time correction, peak alignment and standardisation. Compounds were identified
via The Human Metabolome Database (HMDB), Lipidmaps (v2.3) and METLIN databases,
as well as the PMDB database, according to accurate mass numbers, secondary fragments,
and isotopic distribution, qualitatively.

For the obtained data, ion peaks with > 50% missing values (0 value) within the group
were deleted, and the 0 value was replaced by half of the minimum value. According to the
fraction of the compound characterisation results, the compounds were screened, and those
below 36 were considered to be inaccurate and were removed. The positive and negative
ion data were combined into a data matrix for subsequent analysis.

The multivariate statistical analysis used principal component analysis (PCA) to
visualise the general distribution between the samples and the stability of the entire analysis
process. Partial least squares discriminant analysis (PLS-DA) and orthogonal partial least
squares discriminant analysis (OPLS-DA) were used to distinguish the overall differences
in metabolic profiles between the groups and to find the DMs between the groups. To
prevent overfitting, 7-fold cross-validation and 200 response permutation testing (RPT)
were used to assess the quality of the model. Further, based on the VIP values obtained
in the OPLS-DA model, DMs with VIP values greater than 1.0 and p-values less than 0.05
were selected.
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4.4. RNA Extraction, cDNA Library Construction and IIIumina Sequencing

Total RNA from GSCL and SCL was extracted using the mirVana miRNA Isolation Kit
(Ambion, Naugatuck, CT, USA) plant RNA Kit based on the manufacturer’s instructions.
The RNA integrity was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). Equal amounts of RNA from three biological replicates of each
sample were used for cDNA library preparation.

Specific steps of transcriptome library construction and sequencing: According to the
manufacturer’s instructions, the cDNA library was constructed using the A kit through
a series of operations such as mRNA enrichment, fragment homogenisation, synthesis of
first-strand cDNA and second-strand cDNA, purification and end repair of double-strand
DNA, adding A tails and connecting sequencing connectors, fragment size selection and
PCR amplification. After the constructed library passed the quality inspection, the prepared
libraries were sequenced on the sequencing platform (HiSeqTM 2500, Illumina, San Diego,
CA, USA).

4.5. De Novo Transcriptome Assembly and Functional Annotation

Transcriptome sequencing and analysis were performed by OE Biotechnology Co.,
Ltd. (Shanghai, China). Trimmomatic was used to process the raw data (raw read) [51]
and rejected low-quality sequences for high-quality clean readings. The clean reads were
spliced with the Trinity software (version: 2.4) paired-end splicing method to obtain the
Transcript sequence [52]. The longest was selected as the unigene is based on sequence
similarity and length. Unigene’s sequences were compared to the NCBI non-redundant
(NR), Clusters of Orthologous Groups of proteins (COG/KOG) and Swissprot databases
by using Blastx [53], and the threshold E-value was set to 10−5. The proteins with the
highest sequence similarity to Unigene were used for functional annotation. According to
the results of Swissprot, the Swissprot ID was mapped to the GO term to obtain the GO
annotation of Unigene. Finally, Unigene was compared to the KEGG database to obtain the
pathway annotation information [54].

4.6. Screening and Enrichment of Differentially Expressed Genes

Bowtie2 and eXpress software were used to analyse the FPKM and read counts value
for Unigene [55–57]. DEGs were analysed by DESeq [58], and the screening criteria were
false discovery rate (FDR) <0.01 and fold change ≥1.5. The GO and KEGG enrichment
analysis of the differential gene was performed. Meanwhile, unsupervised hierarchical
clustering was performed to discover the expression patterns of DEGs in different samples.

4.7. Quantitative Real-Time PCR Analysis

Reverse transcription was performed on RNA to be tested into cDNA using kit TransS-
cript All-in-One First-Strand cDNA Synthesis SuperMIX for qPCR. After reverse transcrip-
tion was complete, 90 µL Nuclease-free H2O was added, and it was stored in a −20 ◦C
refrigerator. A total of six differential genes, PAL, CHS, FLS, HMGCS, MVD/mvaD and
LUP1, were screened for qRT-PCR validation analysis in combination with metabolomic
and transcriptomic analyses. All primers were synthesised by OE Biotechnology Ltd.
(Nanjing, Jiangsu Province, China). The calculation of relative gene expression was per-
formed via 2−∆∆Ct. GADPH was used as an internal reference gene. All reactions were
repeated three times in the experiments. Gene names and primer numbers are listed in
Supplementary Table S4.

5. Conclusions

In this study, 1545 DMs and 20198 DEGs were obtained by metabolomic and transcrip-
tomic analyses, indicating that grafting can cause changes in metabolite recombination
and transcript expression in SCL. Grafting was found to have the greatest effect on the
special metabolites chlorogenic acid, quercetin and terpenoids in SCL in the study. In-
formation on the differential expression patterns of genes and metabolites related to the
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leaves of A. senticosus before and after grafting was obtained by combined transcriptome
and metabolome analysis. Both 4CL and HCT in the chlorogenic acid pathway are highly
expressed in GSCL and promote chlorogenic acid biosynthesis. In contrast, six genes related
to the quercetin synthesis pathway (CHS, C3H, F3H, FLS, CHI and CYP75B1), which are
lowly expressed in GSCL, inhibited the accumulation of quercetin. Meanwhile, HMGCS,
MVK/mvak1, MVD/mvaD and ERG1/SQLE in the terpene synthesis pathway were highly
expressed in GSCL, promoting the accumulation of terpenoids, especially triterpenoids.
The above results show the relationship between the effect of grafting on changes in spe-
cial metabolites and gene expression patterns and reveal the transcriptional changes in
secondary metabolites of medicinal plants via heterozygous grafting. This could have a
positive impact with important implications for improving the production and breeding of
A. senticosus.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28124877/s1, Figure S1: Total ion chromatogram;
Figure S2: GO analysis; Figure S3: KEGG annotation statistics; Table S1: Terpenoid metabolites
with significant differences noted in GSCL vs. SCL; Table S2: Quality statistics of RNA-seq reads
from GSCL and SCL; Table S3: Results of unigenes annotation from seven public databases; Table S4:
Primers for qRT-PCR analysis.
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