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Abstract: Recently, much research has revealed the increasing importance of natural fiber in modern
applications. Natural fibers are used in many vital sectors like medicine, aerospace and agriculture.
The cause of increasing the application of natural fiber in different fields is its eco-friendly behavior
and excellent mechanical properties. The study’s primary goal is to increase the usage of environmen-
tally friendly materials. The existing materials used in brake pads are detrimental to humans and the
environment. Natural fiber composites have recently been studied and effectively employed in brake
pads. However, there has yet to be a comparison investigation of natural fiber and Kevlar-based brake
pad composites. Sugarcane, a natural fabric, is employed in the present study to substitute trendy
materials like Kevlar and asbestos. The brake pads have been developed with 5–20 wt.% SCF and
5–10 wt.% Kevlar fiber (KF) to make the comparative study. SCF compounds at 5 wt.% outperformed
the entire NF composite in coefficient of friction (µ), (%) fade and wear. However, the values of
mechanical properties were found to be almost identical. Although it has been observed that, with an
increase in the proportion of SCF, the performance also increased in terms of recovery. The thermal
stability and wear rate are maximum for 20 wt.% SCF and 10 wt.% KF composites. The comparative
study indicated that the Kevlar-based brake pad specimens provide superior outcomes compared to
the SCF composite for fade (%), wear performance and coefficient of friction (∆µ). Finally, the worn
composite surfaces were examined using a scanning electron microscopy technique to investigate
probable wear mechanisms and to comprehend the nature of the generated contact patches/plateaus,
which is critical for determining the tribological behavior of the composites.

Keywords: friction materials; natural fiber; non-asbestos textiles; sugarcane fiber; thermal stability

1. Introduction

The demand for brake friction materials is rising significantly in the modern day
because of a rapid increase in the number of fast automobiles. To accomplish this objective,
however, an effective braking system is necessary. Brake friction materials play a key role in
achieving the competing performance criteria of friction and wear throughout a wide range
of operating conditions. The current materials used in brake pads harm humans and the
environment. Trending materials like Kevlar and asbestos are a cause of cancer. As a result,
a brake friction composite comprises different materials, such as fibers, fillers, binders
and friction modifiers. After asbestos was removed from brake friction materials due to
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its carcinogenic impact, the evolution of non-asbestos organic friction compounds was
halted. Non-asbestos brake friction materials, on the other hand, have been technologically
developed. Despite this, they have been prone to several braking-related performance
peculiarities that needed to be more practically non-existent in asbestos-based brake fric-
tion composites. Attempts are being undertaken to improve the frictional performance
of brake friction materials in various ways, principally by including novel chemicals or
their combinations into the composition. Different waste materials, natural fibers and
nanomaterials have been asserted to have the potential to be employed in automobile
brake friction composites in this regard. Today’s investigation remains to progress in
engineering practice to discover the alternative to Kevlar and asbestos. According to WHO
reports, these substances harm humans and the environment [1]. These substances are
one reason for cancer and have taken millions of lives [1–3]. As a substitute for asbestos,
several scholars have proposed various alternatives, such as aluminum, steel, wollastonite,
Lapinus and carbon [4–7]. However, Kevlar is still a brake friction substance without
superior options [8,9]. The trending friction substance displays the same effect as asbestos.
Furthermore, it has limitations, such as inadequate reuse, more cost, adversity to humans
and the environmental condition and non-recyclability [10–12]. Natural fiber (NF) has
become trendy because of its environment-friendly nature, superior mechanical proper-
ties, lightweight nature and accessibility [13–18]. Several articles have demonstrated the
potential of NF polymer composites [19–24]. However, a few shortcomings of NF can be
overcome by chemical treatment [25–29]. SCF is the utmost popular crop worldwide [30].
SCF can be used as polymer composite reinforcement due to its abundant availability, low
density, low pre-treatment costs and good mechanical properties. SCF is an agricultural
waste that is composed after the extraction of liquor. Moreover, to being nearly bound-
less, it is generally wasted in countries that cultivate it, which distinguishes a fiber of
meager cost. It is usually used in ethanol, building boards and polypropylene polymer
composites. It is made up of three major components: rind (22%), pith (5%) and fiber (73%).
Mechanical parameters, such as tensile strength, Young’s modulus and density, range from
20 to 50 MPa up to 2.7 GPa and 1.28 g/cc, respectively [31–33]. The ingredients of SCF
are lignin to 18–24%, hemicelluloses 20–25%, cellulose 45–55% and ash 1.18%. It had a
vital role in the life of humans during ancient times. Therefore, SCF considers brake pad
friction material because of its excellent mechanical properties. The SCF provides good
thermal productivity, which can be applied to create brake pad composites. The role of
such property by SCF gives a unique brake system performing in the motorized purpose
if suitably optimized. Hence due to its excellent mechanical properties, an attempt to get
the brake pad with different percentages of 5–20 wt.% SCF and 5–10 wt.% Kevlar fiber
(KF) by weight in the total matrix mixture for optimization. The tensile strength, flexural
strength, density, hardness test, impact test, wear, coefficient of friction, absorption and
optimized composite percentage are well suited for making brake pad material. Several
investigators have studied natural fibers frictional laminate materials in recent years and
have proposed that the multiple benefits of natural fibers will give a less affordable and
much more environmentally friendly substitute to expensive fibers, such as Kevlar, utilized
in the brake friction material industry. Maleque et al. [16] discovered that adding 5% coir
fibers to frictional compositions led to maximum wear resistance. The tribological charac-
teristics of flax fiber-reinforced friction composites were investigated by Z. Fu et al. [27].
They discovered that 5.6 vol.% flax fibers stabilize the friction coefficient and increase wear
resistance at high temperatures. Y. Liu et al. [28] investigated the effect of abaca fiber on
phenol resin-based materials’ wear and friction characteristics. They found that the number
of fibers and their length may significantly improve tribological properties. Furthermore,
sisal fiber [29], hemp fiber [34], bamboo fiber [35], kenaf fiber [36] and, most recently, cow
dung fibers [37] have been shown to increase tribological properties. Tej Singh et al. [38]
study comparing pineapple fiber, and Kevlar offers good physical tribological properties.
However, the comparison is made with constrained criteria. Natural fibers can be used to re-
place asbestos and other harmful materials. Sugarcane fiber, generated from the sugarcane
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plant and causing environmental degradation due to direct dumping on open areas, is one
of the most abundant raw resources. Although sugarcane fiber-reinforced composites have
been found to have acceptable physical and mechanical characteristics, the study refers to
research on using these fibers in the development of limited brake friction materials [30–33].
The brake friction material is a cost-effective and environmentally friendly alternative to
synthetic fibers, such as Kevlar, in the automobile sector. Natural sugarcane fibers were
used as phenol-formaldehyde resin reinforcement to create the hybrid composite. Sug-
arcane fiber-based friction composites were also tested against Kevlar fiber-reinforced
composites. To conduct the contrast investigation, the brake pads were made using
5–20 wt.% SCF and 5–10 wt.% Kevlar fiber (KF). The findings of the studies show that the
new composite has adequate friction and wear performance, making it a good choice for
brake components. A comparative investigation discovered that Kevlar-based brake pad
specimens performed slightly better in terms of % fade, coefficient of friction and wear
performance than Sugarcane composites. Mechanical property values were determined
to be almost equal. The wear rate and thermal stability were maximum for composites
containing 20% sugarcane fiber and 10% Kevlar.

2. Results and Discussion
2.1. Physical, Chemical, Mechanical and Tri-Biological Characterization of SCF/KF Compounds

Physical, mechanical and chemical properties achieved for the duration of the experi-
ment are presented in Table 1. During the test, it was examined that an increased proportion
of SCF porosity also increased in the matrix. However, the range of SCF composites’ poros-
ity lies between 3.85% and 4.4%, while for Kevlar composites, it varies between 3.80%
and 3.90%. It occurs because of the insufficient blending of the ingredients in the polymer
matrix. However, with the increase of fibers, water absorption also increased. Although the
range of water absorption of advanced composites lies between 2.70% and 3.27%, for SCF
and Kevlar composites, it lies between 2.45% and 2.60%. The porosity and water absorption
trend can be correlated. At the lowest porosities (SCF = 3.80% and KF = 3.85%), the water
absorption value is also the lowest (SCF = 2.70% and KF = 2.45%). At the highest value of
porosities (4.4% and 3.90%), the water absorption has been noted highest (SCF fiber = 3.27%
and Kevlar = 2.60%). However, compressibility is expected at the lowest porosity value
(SCF composite = 1.48% and Kevlar composite = 1.45%).

The greater porosity demonstrates maximum compressibility for developed compos-
ites [39–41]. In the polymer composite, the density decreases (SCF = 2.80–2.70 g/cm3

and Kevlar = 2.78–2.50 g/cm3) as SCF and Kevlar ratio increases. It may arise due to the
lightweight (CF and Kevlar) replacing the heavyweight material (barium sulfate). The
mechanical properties decrease with the rise of SCF and Kevlar because lightweight materi-
als are replaced by heavy materials (barium sulfate). Therefore, as the percentage of fiber
increases, the mechanical properties decrease simultaneously. However, a discrepancy in
amounts of acetone extraction has been noted highly a smaller amount (SCF = 0.62–0.75%
and Kevlar = 0.60–0.65), which exhibits the appropriate curing of the established friction
items. The ash substances were reduced (SCF = 83.87–78.74% and Kevlar = 85.80–84.85%)
with a rise in wt. (%) of SCF and Kevlar. However, the five wt.% displays the maximum
amount of ash content. The hardness increases with the increased SCF and KF in the
developed samples. The cause for reducing ash substances and a rise of SCF and KF is
lower resistance fiber has been substituted high resistance barium sulfate. The hardness
decreases with an increasing proportion of SCF and KF in composites (SCF 115.9–113.7 and
Kevlar 113.6–109.3). However, the tensile strength has decreased (SCF 17.50–12.98 MPa
and Kevlar 17.98–16.70 MPa). The maximum tensile strength value has been found at
5 wt.% composites (FS-1 = 17.50 MPa and KV-1 = 17.98 MPa) as shown in Table 1. Proof
stress has been noticed highest for FS-4 (5 MPa) and KV-2 (4.7 MPa). In comparison, flexu-
ral strength demonstrates its uppermost value for FS-1 and KV-1 (SCF = 64.37 MPa and
Kevlar = 68.29 MPa), and flexural Modulus also presents its highest value at FS-4 and KV-1
(SCF = 2.80 GPa and Kevlar = 2.45 GPa) [41] although an increase in SCF proportion in the
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composite heat swelling increases. The cause might be the extremely high temperatures.
NF attempts to spread out and generate a few warm gases in the compounds. FS-1 (1.65)
and KV-1 (1.5) present the minor extension in Table 2. The tensile modulus represents
the maximum value for FS-1 (4675 MPa) and KV-1 (4832 MPa), including the lowest FS-4
(4174 MPa) and KV-2 (4756 MPa). It specifies that an improving percentage of SCF leads to
a non-uniform matrix. The impact energy shows a better value for FS-1 (0.464) and KV-1
(0.470) and the lowest possible for KV-2 (0.465) and FS-4 (0.385).

Table 1. Descriptions of SCF and KV compounds.

Properties Standard Applied [40–44] KV-1 FS-1 KV-2 FS-2 FS-3 FS-4

% Porosity JISD 4418 standard 3.8 3.85 3.9 3.95 3.43 4.4
% Ash content ASTM D570-98 85.8 83.87 84.85 82.6 79.63 78.74

% Water absorption ISO 6310 standard 2.45 2.7 2.6 2.75 3.2 3.27
% Acetone extraction ASTM D494 standard 0.6 0.62 0.65 0.67 0.7 0.75

Density (g/cm3) ASTM C271/C271 M-16 2.8 2.75 2.7 2.7 2.65 2.62
% Compressibility ISO 6310 1.45 1.48 1.53 1.55 1.6 1.65
Hardness (HRR) Rockwell-R scale 115.9 113.6 113.7 111.4 110.8 109.3
% Heat swelling SAE J 160 JNU80 1.5 1.65 1.75 1.95 2.05 2.1
Impact energy (J) ASTM D256 0.47 0.465 0.464 0.45 0.39 0.385

Shear strength (kgf) ASTM D732 1560 1423 1510 1490 1367 1320
Tensile strength (MPa) ASTM E8 17.98 17.5 16.7 16.2 13.39 12.98

Flexural strength (MPa) ASTM D790 68.29 64.37 66.76 61.65 58.34 57.28
Tensile modulus (MPa) ASTM E8 4832 4675 4640 4543 4376 4174

Flexural modulus (GPa) ASTM D790 2.59 2.4 2.45 2.65 2.7 2.8

Failure strain (%) ASTM E8 1.65 1.7 1.6 1.85 2.05 2.1
Proof stress (MPa) ASTM E8 4.5 4.75 4.7 4.8 4.98 5

Ultimate compressive
strength (MPa) ASTM E8 178.7 172.5 180.6 164.3 160.7 158.3

Table 2. Attributes utilized in the tri-biological application.

Favorable Value of Elements

µP µv %Fade µs % R µR µF Wear rate
µ-standard Least Small Larger Larger Larger Small Least

The compressive strength has been observed to be highest for FS-1 (180.6 MPa) and
KV-1 (178.7 MPa) and lowest for FS-4 (158.3 MPa) and KV-2 (172.5 MPa) [42]. The shear
strength has been observed maximum for FS-1 (1510 MPa) and KV-1 (1560 MPa); it can be
conceivable that a rise proportion of 5–10% of SCF could act as a binder although 15–20%
fiber compound has been presented, non-uniform medium revealed its lowermost amount
for FS-1 and KV-1 and uppermost for FS-4 and KV-2 [43,44]. The flexural strength, failure
strain and flexural modulus have demonstrated their maximum values at FS-1.

2.2. Tri-Biological Properties of Samples

In the tri-biological test, the favorable values of the coefficient of friction are shown in
Table 2.

2.3. Effect of Friction (µ) in Fade and Recovery Phases

The coefficient of friction is increased to 175 ◦C for all SCF composites and Kevlar-
based composites. It has been observed that, once the temperature reaches 175 ◦C, the
SCF-3 and SCF-4 compounds reduce abruptly even though the rate of SCF-1 and SCF-2
rises to the temperature of 200 ◦C and then decreases very slowly. However, it has been
noticed that KV-1 and KV-2 fiber compounds have minimal alterations, demonstrating
outstanding sustainability, as illustrated in Figures 1 and 2. In the secondary fade cycle for
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SCF-1 and SCF-2 compounds, it has been noticed that the coefficient of friction rises temp.
250 ◦C, while for SCF-3 and SCF-4, it rises to 195 ◦C and later starts to decline (steeply),
similarly to 1st fade cycle. For KV-1 and KV-2, the coefficient of friction is identical. In
the recovery cycle, µ has been improved up to 220 ◦C for all samples afterward; µ leads
to a steady decline for SCF-1 and SCF-2; however, SCF-3 and SCF-4 decreased rapidly.
For secondary recovery, µ for SCF-1 and SCF-2 raised to 200 ◦C; later, it appeared to be a
gradual decline, and for SCF-3 and SCF-4, the µ started to fall rapidly after 150 ◦C temp.
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2.4. Frictional Stability (µS) and Variability (µV) Coefficient Performance

The µS and µV coefficients have been calculated through Equations (1) and (2) [44–46].
During the test, it was determined that the stability value reduces with a raised proportion
of SCF, while the importance of variability rises with a high SCF ratio. The limit for peace
has been noted between 0.88 and 0.84, and for variability, the range has been reported
between 0.49 and 0.56, as presented in Figure 3a,b.

Stability = performance µ/max µ (1)

Variability = variation in (∆) µ/performance µ (2)
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SCF-1 composite demonstrates its maximum value of 0.56 and lowest value of 0.49 for
variability. The Kevlar composite’s variability and stability rates lie between 0.57 and
0.59 and 0.91 and 0.94, respectively. The lower value of µv and higher value of µS is
considered adequate for whole frictional compounds. It has been observed that the value
of %F rises with an increasing proportion of SCF and KF Composite.

2.5. Fade (F) (%) and Recovery (R) Performance Analysis

The calculations formula for finding R and F (%) are:

%F = performing µ − fade µ/performing µ × 100 (3)

%R = recovery µ/performing µ × 100 (4)

It has been observed that the fade value varies between 37.2 and 47.6 for SCF com-
posites, and Kevlar composites vary from 54.6 to 54.7, as indicated in Figure 4. However,
recovery rises with the increase in SCF proportion and lies in 108.6–110.6%. SCF-4 reveals
the ultimate value, but SCF-1 shows the most negligible value of %R. The lowest fade
values are observed, i.e., 37.2 for SCF-1, and the highest recovery, i.e., 110.6 for SCF-4,
as shown in Figure 4. The %R of KF based also increased with the proportion of Kevlar
(KV-1 = 110.8, KV-2 = 111.3). The most negligible value of %F and the utmost importance
of %R is considered favorable for the entire friction experiments. The SCF-1 and SCF-2
lower proportion-based SCF compounds present the most negligible fade value (%F), i.e.,
28% lower than SCF-3 and SCF-4. The enhancement in fade (%F) with reduction has been
noticed in NF substances.

The rising proportion of SCF in polymer mixtures creates a discrepancy matrix; in
tribal experiments, it may be caused to generate extra wear particles and debris (act
as the third body) among the frictional boundaries and enhance the performance [46].
However, the improved fiber makes an inhomogeneous matrix that produces debris and
performs as wear particles throughout the friction test to improve friction [34,39,40,46].
Although, with increasing the proportion of SCF and KF, the values of fade and recovery
were observed to be enhanced. The accumulation of SCF and KF in polymer compounds
indicates easier shear and degradation. It improves the values of %F and %R, as described
in the literature [46–50].
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Figure 4. Frictional Behavior of %Fade (a) and %Recovery (b) of developed composites.

2.6. µP, µR, µF and ∆µ Performance of SCF Compounds

The performance of the coefficient of friction has been presented in Figure 5. Several
parameters like µp, µF, µR and ∆µ have been investigated during the test. It has been ob-
served that the performance of µ and F coefficient decreased with the increasing proportion
of SCF in polymer compounds. However, the ranges lie between 0.360 and 0.284 for µF and
0.549 and 0.523 for µP at more than 200 ◦C. The friction values reduce as the NF compounds
and phenolic resin decompose [34,39,40,46–48]. The µR value increased (0.586–0.590) in
SCF proportion in developed mixtures and KF composite (0.655–0.641)—the value of ∆µ

increases as the SCF proportion rises in the developed brake pad models. The ∆µ value for
SCF-1 and SCF-2 fibers grew compound limits between 0.220 and 0.223, whereas SCF-3
and SCF-4 samples were in the 0.228–0.235. However, due to the method of tribo-produced
boundaries (reorganization and fragmentation), the ∆µ value could be enhanced, leading
to the creation of friction film. Secondly, raising the proportion of pure fibers in compounds
reduced the adhesion strength with phenolic resin. Therefore, it forms debris and disconti-
nuity information and performs as a third party, enhancing friction values [34,39,40]. The
µF and µp for KV-1 values were noticed as 0.575 and 0.395, respectively, although KV-2
has shown fall values, i.e., 0.570 and 0.392. The decreasing tendency in the values may be
caused by tribo-interfaces process [51]. The performance of µR for KV-1 and KV-2 is 0.655
and 0.641, respectively. The ∆µ value has been noticed at 0.186 and 0.197, respectively, for
KV-1 and KV-2. However, SCF-1 shows 60% less fluctuation in friction (∆µ) than SCF-4
compounds. However, the value of SCF-1 demonstrates a 5% better value than SCF-4 for
µp, indicating that with an increasing proportion of SCF, good fiber values begin to reduce.
The µF value for SCF-1 and SCF-2 compounds must be 27% greater than that of SCF-3
and SCF-4; however, for µR (maximum discount is beneficial), the value rises with a rising
proportion of SCF. The SCF-1 and SCF-2 show enhanced values. It has also been seen in the
KF case that KV-1 indicated improved outcomes for µp, µF, ∆µ and µR than that of KV-2.

2.7. Wear Performance

The wear test has observed the wear rate increase with an increasing proportion of
SCF and Kevlar in composites although the wear range was found between 1.1 and 1.7 g
for SCF and 1.0–1.08 for Kevlar-based polymer composites, as shown in Figure 6. SCF-1
composite has established the minimum wear value, whereas SCF-4 has demonstrated the
maximum wear value. KV-1 has shown better results than KV-2. The increased percentage
of sugarcane fiber does not mix properly with other ingredients in a polymer composite,
which leads to an increase in the wear rate [34,39,40]. The velocity of wear performance was
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4.2 m/s with a sliding distance of 1200 m. The tensile stress-strain rate of the developed
composite has been presented in Figure 6.
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Figure 6. Tensile stress-strain rate of developed compound.

2.8. Worn Surface Assessment

According to the worn surface research, the formation of primary and secondary
contact patches/plateaus is one of the most crucial factors in determining the tribological
performance of the composite, along with abrasive and adhesive wear processes. From
scanning electron microscope (SEM), it has been observed that small pits, contact plateaus,
small debris and more smooth areas created on the exterior portion of SCF-1 and SCF-2
compounds where more pits, fewer interaction plateaus, high derbies and high rough
surfaces arise in the external part of SCF-3 and SCF-4 compounds. The inadequate blending
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of resin and NF in the polymer compounds may cause more spalling pits, debris and
surface irregularity. However, SCF-1 and SCF-2 have shown higher contact plateaus,
favorable for mixing all ingredients. KV-2 offers rougher surfaces with more wear debris
and shear-induced texture than KV-1 composites. Furthermore, several fibers were found
in SCF-3, while SCF-4 compounds pulled away from the polymer matrix, as shown in
Figure 7. The chase test found that higher sugar fiber-based samples were easily worn
when encountering hard grinding substances, which raised the wear rate [34,39,40,48].
However, KV-1 and SCF-1 display the smoothest surface of all compounds with small wear
debris and spalling pits.
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2.9. TGA of SCF-Based Experiments

The TGA has been performed with nitrogen and oxygen in two different environmental
conditions. It has been noticed that the degradation occurred in three stages for both
sugarcane and Kevlar composites. The weight reduction in the first stage has been seen
as very low or less than 12%. In the second stage, a steep or heavy degradation has been
noticed. At this stage, the losses were recorded by more than 77%. The third degradation
shows a minimum loss in weight. The first, second and third degradation were reordered
to 0–249 ◦C, 249–599 ◦C and 599–900 ◦C [41–44], respectively, as shown in Figure 8.
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The degradation has been noted in a nitrogen environment from 0–299 ◦C, 299–599 ◦C
and 600–900 ◦C, respectively, as shown in Figure 9 [42,43]. Heavy loss of more than 78%
has been noted at 299–599 ◦C, where the first and third degradation shows minimum losses,
less than 11%. The first degradation occurs due to the moister substance in the fiber and
Kevlar. Secondly, degradation might be the reason for the decrease in hydrogen bonding in
Kevlar compounds, the deficit of hemicelluloses and the discharge of gases from the SCF
compounds. The third degradation occurs due to the amide group deficiency and loss of
lignin and cellulose from KF and SCF [41–44,52–56]. The study has examined that raising
the SCF and KF proportion in the compounds (5–20%) enhanced thermal stability [41–44].
The reach of the oxidation index under the O2 environment has been recorded between
5.40 and 5.63 and 5.70 and 5.84 in the N2 environment for SCF composites described in
Table 3. In the case of Kevlar compounds, OI reach has been recorded between 5.60 and
5.65 in the O2 climate, while for the N2 environment, it was recorded at 5.80–5.85. However,
for SCF-4, the thermal stability has been recorded as maximum, and for Kevlar-based
composites, KV-2 displays more excellent thermal stability. The TGA of SCF and KF-based
compounds in the N2 atmosphere are presented in Figure 9.

Table 3. Residue and oxidation index for SCF and Kevlar compounds.

Samples SCF-4 SCF-3 SCF-2 SCF-1 KV-1 KV-2

% residue (O2) of SCF
compounds 80.5 79.8 78.9 77.4 80.7 79.7

Oxidation index of SCF
composites 5.63 5.58 5.55 5.40 5.65 5.60

% residue (N2) of SCF
composites 83.70 83.45 82.69 82.58 83.72 82.9

Oxidation index (OI) N2 5.84 5.76 5.72 5.70 5.85 5.80
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3. Materials and Methods
3.1. Compound or Composite Assembly

The waste composition (fiber) has been accumulated from Himachal Pradesh; in India,
fiber is cut out into 2–6 mm small sizes. Therefore, it has been treated with NaOH to
remove the impurities from small pieces of thread [57,58]. The ingredients used in brake
pads are barium sulfate, aluminum oxide, vermiculite, graphite and sugarcane. All these
materials were appropriately mixed with the plow machine. After that, these materials were
poured into the molding machine to develop brake pads [34,39]. The compositional detail,
mixing and molding conditions are shown in Table 4 and Figure 10. Various materials
were used in the composite formulation. The Novolac phenolic reis is manufactured using
an acidic catalyst and a relative surplus of phenolic to formaldehyde. The simplified
synthesis shows the enormous number of conceivable polymers. The first reaction takes
place between methylene glycol and phenol. A standard phenol novolac resin has an
average molecular weight (Mn) of 250 and 900. Barium sulfate is an inorganic substance
having the chemical formula BaSO4. It is a white crystalline material that is notoriously
insoluble in water. It may be found in mineral barite, the primary commercial barium
source. Its significant applications take advantage of its opaque white appearance and
high density. In the composite, barium sulfate D-1.0 (98%min) was used. Aluminum oxide
(Al2O3) is a chemical compound of aluminum and oxygen. It is the most common of many
aluminum oxides and is known as aluminum oxide. The aluminum oxide used in the
composite has a molecular weight of 101.961. Kevlar fiber is intrinsically durable at higher
temperatures, with slight shrinkage, little creep and a high glass transition temperature. It
is corrosion-resistant, non-conductive and chemically resistant to all but solid acids and
bases. The properties of Kevlar used in the composite have a tensile strength of 23 gpd,
initial modulus of 550 gpd, elongation of 3.6%, a density of 1.44 g/cc and moisture regain
of 6%.

Table 4. Composition aspect of materials.

Sample SCF-1 KV-1 SCF-2 KV-2 SCF-3 SCF-4

KF (wt.%) - 05 - 10 - -
BaSO4 (wt.%) 50 50 45 45 40 35

SCF (wt.%) 05 - 10 - 15 20
Composition 45 45 45 45 45 45

Formulation = Phenol formaldehyde resin (10%), lapinus fiber (20 wt.%), property modifiers (graphite, alumina
and vermiculite = equal ratio (15 wt.%).
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3.2. Physico-Mechanical and Thermal Attributes

Mechanical assets like ultimate tensile strength (UTS), proof stress, ultimate com-
pressive strength (UCS), total elongation and tensile modulus have been determined by
a universal testing machine (UTM) observed by the ASTM E8 standard. The sample size
has been taken with (70 × 20 × 10) mm dimensions. However, the impact energy test
has been accomplished on the pendulum impact testing machine at GIET, Solan. UTM
has been used to calculate the strength at three points and the modulus (flexure) of the
samples as per the ASTM ED790 standard. Hind-type UTM (Allied Nippon, Ghaziabad,
India) has been used to calculate the shear strength. The uncured resin has been evaluated
with acetone extraction instruments [40]. The density has been determined with a sensor
weighing scale [39]. The specimens were dipped in preheated oil (SAE 90) to discover
the permeability of the prepared samples [39]. The manufactured pieces (2–4 g) were
burnt in the furnace for 2 h at a temperature of 860 ◦C to get the ash content. As per
ASTM D 570-98 standard to calculate the water absorption, the developed brake pads are
plunged into distilled water for 24 h [41]. However, the pendulum impact testing machine
has been used at GHEC, Solan, for the impact strength of the specimen calculation. The
compressibility testing machine has been applied to achieve compressibility corresponding
to ISO 6310 Standard [42]. A weighing device has been used to discover the alterations in
the weight of the experiment sample, i.e., water absorption and ash contents test. However,
the hardness calculates the R ratio on the harness tester (model: TRSN). Fuel instruments
supply UTM, and engineering has been applied to examine the shear strength. To find heat
swelling (%), samples were heated in a muffle furnace for 5 h at 50 ◦C temperature; tests
were carried out as per 38SAE J 160 JNU80 standard, and sample dimension was taken
(25 × 10 × 5) mm [42–44].

TGA was carried out on approximately 10 ± 0.1 mg of fabricated friction composite
material on a TA-60WS model supplied by Shimadzu scientific instruments at a heating
rate of 10 ◦C/min from 50 ◦C temperature to 800 ◦C in the presence of air and nitrogen
atmosphere with the flow rate of 40 mL/min. Oxidation Index (OI) was calculated based
on the weight of carbonaceous char (CR) [41–44]. The thermo-gravimetric analysis results
are presented in Table 5.
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Table 5. Materials TGA assessment.

Instrument Shimadzu Scientific Instruments

Fabricated friction compound on
TA-60WS model 10 ± 0.1 mg (around)

Heating ratio 50 ◦C to 800 ◦C and 10 ◦C/min
Flow value 40 mL/min (air and nitrogen)

Calculation of oxidation index (OI) Vary with a weight of carbonaceous char (CR)

3.3. Assessment of Tri-Biological Attributes of Established Compounds

A chase machine was used [34,39,40] for the experimental conditions shown in Table 6.
The various tribological proprieties have been assessed through the analysis, i.e., friction
fluctuation (∆µ), wear, stability coefficient (µs), fade (%), performance coefficient (µp),
variability coefficient (µv), recovery (%).

Table 6. Experimental conditions of tribological proprieties (IS 2742-4 Standard).

Test
Parameters

Application
Applied

Heating
(Status)

Applied
Load (N)

Speed
(rpm)

Max. Temp.
(◦C)

Time
(min.)

Min.
Temp. (◦C)

Primary fade 1 off 440 308 93 20 -
Primary recovery 1 on 660 411 289 10 82

Secondary fade 1 off 660 411 261 10 93
Secondary recovery 1 off 660 411 317 10 82

Burnish 1 off 660 411 345 10 93

4. Conclusions

Non-asbestos sugarcane fiber-containing brake pads were fabricated to study the
physical, chemical, thermal, mechanical and tri-biological properties. The result achieved
from the study has been presented as follows. The sample’s water absorption, porosity
and compressibility increased with a higher proportion of SCF in the compound. However,
adding SCF proportion and hardness in developed mixtures decreases the ash proportion
and hardness value.

(1) The tensile strength, ultimate compressive strength, flexural strength, tensile modulus,
flexural modulus and impact energy revealed the most excellent performance for
SCF-1 (5 wt.%) brake pad composite, including all SCF composites. The SCF brake
pads have shown the most mechanical results near Kevlar-based compounds. It has
also been observed that the percentage of wear and friction level increases with the
addition of SCF in the mix.

(2) The ultimate shear strength and proof stress revealed the best performance for SCF-
2 brake pad compounds, including the entire SCF composites. In contrast, Kevlar
composites have shown their maximum value of 5 wt—% (KV-1) compounds. SCF-1
sample showed the highest and lowest values of µs and µ, respectively.

(3) The value of µs enhances with SCF proportion, while µv decreases with an increasing
proportion of SCF. The SCF compounds (SCF-4) showed the ultimate value of recovery
percentage. Although, the (%) recovery has been discovered to be over the hundred
percent for all the desirable compounds. SCF-1 showed the utmost value of the
performance of COF, with minor wear.

(4) The comparative study determined that the Kevlar-based brake pad samples revealed
slightly improved %-fade, µ, wear and thermal stability results than SCF and KV-2
compounds. Thermal stability for SCF compounds exhibited the maximum value
of OI (5.84) at 20 wt—% SCF composites. From the analysis, it has been concluded
that SCF-based brake pad samples indicated excellent performance in physical and
chemical mechanical properties and noticed values very near Kevlar composites.
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Moreover, SCF-1 compounds exhibit improved thermal, tri-biological and mechanical
outcomes among all SCF compounds.

(5) The worn surface study reveals that, in addition to abrasive and adhesive wear
processes, the development of primary and secondary contact patches/plateaus is
one of the most critical elements in determining the tribological performance of
the composite.
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