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Abstract: Leishmaniasis is a neglected tropical disease, and there is an emerging need for the devel-
opment of effective drugs to treat it. To identify novel compounds with antileishmanial properties, a
novel series of functionalized spiro[indoline-3,2′-pyrrolidin]-2-one/spiro[indoline-3,3′-pyrrolizin]-
2-one 23a–f, 24a–f, and 25a–g were prepared from natural-product-inspired pharmaceutically priv-
ileged bioactive sub-structures, i.e., isatins 20a–h, various substituted chalcones 21a–f, and 22a–c
amino acids, via 1,3-dipolar cycloaddition reactions in MeOH at 80 ◦C using a microwave-assisted
approach. Compared to traditional methods, microwave-assisted synthesis produces higher yields
and better quality, and it takes less time. We report here the in vitro antileishmanial activity against
Leishmania donovani and SAR studies. The analogues 24a, 24e, 24f, and 25d were found to be the
most active compounds of the series and showed IC50 values of 2.43 µM, 0.96 µM, 1.62 µM, and
3.55 µM, respectively, compared to the standard reference drug Amphotericin B (IC50 = 0.060 µM).
All compounds were assessed for Leishmania DNA topoisomerase type IB inhibition activity using
the standard drug Camptothecin, and 24a, 24e, 24f, and 25d showed potential results. In order to fur-
ther validate the experimental results and gain a deeper understanding of the binding manner of such
compounds, molecular docking studies were also performed. The stereochemistry of the novel func-
tionalized spirooxindole derivatives was confirmed by single-crystal X-ray crystallography studies.

Keywords: microwave-assisted synthesis; spirooxindole; antileishmanial agents; molecular docking
studies; structure–activity relationship
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1. Introduction

According to the World Health Organization (WHO), in 2021, leishmaniasis emerged
as an endemic in 99 countries/territories (out of 200 countries/territories), mainly in
4 eco-epidemiological provinces worldwide (the Americas, East Africa, North Africa, and
West and South East Asia) [1,2]. It is caused by Leishmania, a protozoan parasite from the
Trypanosomatidae family, which is transmitted by vectors and causes cutaneous leishma-
niasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL); these
are characterized by skin ulcers affecting the mouth, nose, and throat and “kala-azar”,
respectively [3]. Kala-azar (visceral leishmaniasis) is the fatal form of the disease and is
triggered by Leishmania donovani, an intramacrophage protozoan parasite transmitted by
the bite of infected female phlebotomine sandflies. This lethal disease affects millions of in-
dividuals living in tropical/subtropical regions worldwide [4]. Approximately, twenty-one
protozoan parasite species of Leishmania are responsible for causing leishmaniasis, and
this is linked to a variety of symptomatology ranging from minor skin lesions at the bite
site to the deadly visceral forms. A few standard drugs are available for the treatment of
this disease, such as pentavalent antimonials, amphotericin B, its liposomal encapsulation
(lamb-liposomal amphotericin B), and miltefosine. Amphotericin B emerged as an alter-
native second-line treatment for visceral, mucocutaneous, and cutaneous leishmaniasis,
especially in the case of human HIV coinfection after resistance was reported in antimoni-
als. In Thailand, amphotericin B is the only effective drug available for the treatment of
leishmaniasis [5]. According to published research, there is no current safe and effective
treatment for leishmaniasis. The antileishmanial medicines used to treat leishmaniasis at
present are accompanied by various kinds of side effects, toxicity, and drug resistance [6,7].
As per the WHO report, approximately 700,000 to 1,000,000 new cases are reported every
year [8]. Therefore, there is an urgent need for the advent of effective medications against
this neglected tropical disease (NTD).

The spirooxindole class of bio-heterocycles are identified as privileged molecules and
construct the core structural unit in several naturally occurring alkaloids such as horsfiline
1 [9,10], coerulescine 2 [11,12], marcfortine B 3 [13], spirotryprostatin A 4 and B 5 [14,15],
elacomine 6 [16], formosanine 7 [17], pteropodine 8 [18], alstonisine 9 [19], rychnophyilline
10 [20], strychnofoline 11 [21], spirobrassinin 12 [22], mitraphylline 13 [23], notoamide
A 14 [24], etc. (Figure 1). Spirooxindoles are blended with a wide range of biological
activities such as antimicrobial [25,26], antimigraine activity [27], antitumoral [28], anti-
inflammatory [29], antihelmintic activity [30], antimycobacterial [31], acetyl-cholinesterase
inhibitory activities [32,33], anticancer activities [34–36], anesthetic [37], HIV-1 N-NRT
inhibitor [38], antileishmanial [39], etc.

It has been well-documented that several pharmacologically privileged molecules can
be assembled into a single structurally complex molecule with more multi-faceted and en-
hanced biological activities that can target biological sites of interest in a specific manner to
combat specific diseases [40,41]. Several biologically active alkaloidal classes of heterocycles
have been reported in the literature and show promising antileishmanial activity in vitro, ex
vivo, and in vivo [42–45]. Recent studies have revealed that several substituted spirooxin-
doles 15–19 [46–49] show promising antileishmanial activity against promastigotes and the
amastigotes forms of Leishmania (L.) species either in vitro or in vivo when treated with
pentamidine, amphotericin B, or miltefosine as one of the standard drugs. Therefore, in
our endeavor to search for novel bio-heterocycles as antileishmanial agents, we designed
Prototype A, i.e., functionalized spiro[indoline-3,2′-pyrrolidin]-2-one/spiro[indoline-3,3′-
pyrrolizin]-2-one incorporating subunits of 15–19 (Figure 2), and we assessed in vitro
antileishmanial activities against the promastigotes form of L. donovani, with the expec-
tation that a new series of amino-acid-based spirooxindole derivatives would also show
promising in vitro activity. So far, a literature review has revealed that there is no report
available showing amino-acid-based spirooxindoles as antileishmanial agents.
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Figure 1. Structures of natural-product-inspired spirooxindole alkaloids 1–14.

Figure 2. Design strategy for the target functionalized spiro[indoline-3,2′-pyrrolidin]-2-
one/spiro[indoline-3,3′-pyrrolizin]-2-one having antileishmanial activity.
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Microwave-assisted organic synthesis (MAOS) is a non-conventional, eco-friendly
source of energy in chemical synthesis that can perform the reaction in a shorter time with
less energy and furnish the product in a greater yield with higher purities as compared
to traditional synthetic processes [50–55]. This fascinating method has a wide range of
applications in drug discovery evaluation and the pharmaceutical segment for chemical
synthesis. It has established an ongoing position in analytical and organic laboratory
praxis [56]. Multi-component reactions (MCRs) via 1,3-dipolar cycloaddition reactions
have been considered the best potential way for the synthesis of a library of spirooxindole
derivatives [57,58].

Herein, we report the microwave-assisted synthesis as well as in vitro antileishma-
nial activity and structure–activity relationship studies of a novel series of function-
alized spiro[indoline-3,2′-pyrrolidin]-2-one/spiro[indoline-3,3′-pyrrolizin]-2-one 23a–f,
24a–f, and 25a–g via 1,3-dipolar cycloaddition. This was achieved by the interaction of
various isatins and amino acids with substituted chalcones in up to 98% yields in a highly
regioselective and stereoselective manner. For the first time, all the compounds 23a–f, 24a–f,
and 25a–g were prepared via microwave-assisted methodology. The stereochemistry of the
novel functionalized spiro[indoline-3,2′-pyrrolidin]-2-one/spiro[indoline-3,3′-pyrrolizin]-2-
ones was confirmed by single-crystal X-ray crystallography studies of the bromo derivative,
i.e., compound 23f. To the best of our knowledge, functionalized spiro[indoline-3,2′-
pyrrolidin]-2-one/spiro[indoline-3,3′-pyrrolizin]-2-one 23a–f, 24a–f, and 25a–g were iden-
tified for the first time as promising antileishmanial agents. In this study, amphotericin B
was used as the standard reference drug. We also report the validation of wet results via in
silico molecular docking studies of active compounds 24a, 24e, 24f, and 25d.

2. Results
2.1. Synthesis

The 1,3-dipolar cycloaddition reaction of azomethine ylides is a versatile reaction and
is well known for the assembly of numerous varieties of complex bioactive azaheterocyclic
skeletons [59–61]. The azomethine ylide is also reported to serve as an important building
block for the construction of several natural-product-inspired aza-heterocycles [62–64] and
bioactive molecules [65].

We commenced our synthetic investigation by taking isatin 20a, chalcone 21a, and L-
proline 22a as starting materials for carrying out microwave-assisted synthesis of spirooxindole-
pyrrolidine 23a. Initially, the reaction was attempted under refluxing conditions. Therefore,
the reaction was carried out by taking 20a (1 equiv.), 21a (1 equiv.), and 22a (1 equiv.) in
MeOH under refluxing conditions for 120 min. We were delighted to get the desired spiro
compound 23a in 86% yield (Table 1, entry 1). Then, we analysed the effect of the number
of equivalents of the starting materials. Thus, the reaction was repeated in MeOH with
20a (1 equiv.), 21a (1.5 equiv.), and 22a (1.5 equiv.) under refluxing conditions for 180 min,
yielding 23a in 96% yield (Table 1, entry 2). It was noticed that changing the number of
equivalents led to an improvement in the yield of the reaction. In order to reduce the
time to complete the reaction, the reaction was subjected exactly to the same conditions
as mentioned in entry no. 2 and allowed to run for 120, 60, and 30 min, which produced
23a in 89%, 67%, and 58% yields, respectively (Table 1, entries 3–5). Keeping the reaction
exactly under the same conditions as mentioned in entry no. 2, the screening of different
solvents (AcCN, ethylene glycol, H2O, and ethanol) did not show an incremental effect on
the yield of the reaction (Table 1, entries 6–9).

It is well known that microwave irradiation has been used as a fundamental tool
for constructing aza-heterocycles with interesting properties, either in homogeneous or
heterogeneous liquid reaction systems [66]. Utilizing the dual potential of both microwave
irradiation as well as the 1,3,-dipolar cycloaddition reaction strategy; equimolar amounts of
20a (1 equiv.), 21a (1.5 equiv.), and 22a (1.5 equiv.) dissolved in MeOH were treated under
microwave irradiation conditions at 80 ◦C for 1 and 3 min, which produced 23a in 41% and
71% yield, respectively (Table 1, entries 10–11). Intriguingly, when the same reaction was
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subjected to 5 min under microwave conditions; 23a was obtained in 98% yield (Table 1,
entry 12). The reactions were further screened with different solvents (AcCN, ethylene
glycol, and ethanol) utilizing the same conditions as mentioned in entry no. 12 with varying
times and temperatures (Table 1, entries 13–21). However, none of the reactions produced
better yields than those obtained in entry no. 12. Therefore, equimolar amounts of 20a
(1 equiv.), 21a (1.5 equiv.), and 22a (1.5 equiv.) dissolved in MeOH under microwave
irradiation conditions at 80 ◦C for 5 min was found to be the best optimized reaction
condition (Table 1, entry 12).

Table 1. Optimization study: Microwave-assisted synthesis of novel functionalized spiro[indoline-
3,2′–pyrrolidin]–2–one/spiro[indoline-3,3′–pyrrolizin]–2–one 23a from isatin 20a, chalcone 21a, and
L-proline 22a as starting materials.

Entry 20a
(Eq.)

21a
(Eq.)

22a
(Eq.) Solvent Condition Time (Min.) a Yield (%)

1. 1 1 1 MeOH Reflux 120 86

2. 1 1.5 1.5 MeOH Reflux 180 96

3. 1 1.5 1.5 MeOH Reflux 120 89

4. 1 1.5 1.5 MeOH Reflux 60 67

5. 1 1.5 1.5 MeOH Reflux 30 58

6. 1 1.5 1.5 AcCN Reflux 180 79

7. 1 1.5 1.5 Ethylene glycol Reflux 180 76

8. 1 1.5 1.5 H2O Reflux 180 9

9. 1 1.5 1.5 Ethanol Reflux 180 77

10. 1 1.5 1.5 MeOH MW, 80 ◦C 1 41

11. 1 1.5 1.5 MeOH MW, 80 ◦C 3 71

12. 1 1.5 1.5 MeOH MW, 80 ◦C 5 98

13. 1 1.5 1.5 AcCN MW, 80 ◦C 5 73

14. 1 1.5 1.5 AcCN MW, 100 ◦C 10 81

15. 1 1.5 1.5 AcCN MW, 100 ◦C 15 83

16. 1 1.5 1.5 Ethylene glycol MW, 80 ◦C 5 72

17. 1 1.5 1.5 Ethylene glycol MW, 100 ◦C 10 77

18. 1 1.5 1.5 Ethylene glycol MW, 100 ◦C 15 79

19. 1 1.5 1.5 Ethanol MW, 80 ◦C 5 78

20. 1 1.5 1.5 Ethanol MW, 100 ◦C 10 82

21. 1 1.5 1.5 Ethanol MW, 100 ◦C 15 85
a Isolated yield after recrystallization/column chromatography.

Substituted isatins 20a–h, substituted chalcones 21a–f, and various amino acids 22a–c
were subjected to microwave-assisted 1,3-dipolar cycloaddition reactions in MeOH at 80 ◦C
for 5 min, which produced the desired chalcone-isatin-amino-acid-based spirooxindole
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compounds 23a–f, 24a–f, and 25a–g in excellent yields (up to 98%) in a highly diastereose-
lective manner (Scheme 1, Please see Supplementary Materials). In this reaction, [3 + 2]
cycloaddition of substituted chalcones occurred with in situ generated azomethine ylides
from microwave-assisted decarboxylative condensation of substituted isatins and various
secondary amino acids.

Scheme 1. Microwave-assisted synthesis of novel functionalized spiro[indoline-3,2′-pyrrolidin]-2-
one/spiro[indoline-3,3′-pyrrolizin]-2-one 23a–f, 24a–f, and 25a–g via the 1,3-dipolar cycloaddition
reaction.

The physico-chemical data, such as melting point and yield, under conventional
conditions as well as in microwave-assisted conditions for all the compounds (23a–f, 24a–f,
and 25a–g) are shown in Table 2.

The structures of all the synthesized compounds were well characterized by FT-
IR, optical rotation, 1H-NMR, 13C-NMR spectroscopy, and HRMS mass spectrometric
analysis (Please see Supplementary Materials). Finally, the stereochemistry of the four
chiral centres of the cycloaddition reaction was unequivocally determined by single-crystal
X-ray diffraction analysis of the cycloadduct 23f (Figure 3, please see Supplementary
Materials). After screening over the series of other derivatives, we found that the 23f
prepared in one step and obtained as an off-white solid in 86% yield, which was further
subjected to crystallization; we were able to isolate the 23f in ~10–11% yield using a slow
evaporation crystallization technique with DCM as a solvent at low temperature. After
couple of weeks, we came up with the single-crystal X-ray structure of the 23f, the raw data
of 23f were subjected to the solution using Olex2 [67], and the crystal was crystallized in a
trigonal system in R-3 space group. Consequently, the three-dimensional representation of
compound 23f shows that the compound has four chiral carbons, with one carbon having
an R-configuration and the other three having S-configurations. The crystal structure
confirmed that the trans-geometry of chalcone and the regioselectivity were also well
established as a result of the concerted reaction of chalcones with the ylides.
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Table 2. Physicochemical data of spirooxindole pyrrolidines/pyrrolizines compounds 23a–f, 24a–f,
and 25a–g.

Sr. No.

Isatin’s
(20a–h) Chalcones (21a–f) Amino

Acids
(22a–c)

Product

Reflux
(180 Min.)

Microwave
Heating (5 Min.) M.P. (◦C)

R1 R2 R3 Yields a (%) Yields b (%)

1. 5-CH3 -F -Cl 22a 23a 96 98 182–184

2. 5-F -F -OCH3 22a 23b 61 72 161–163

3. 5-F -Br -OCH3 22a 23c 59 74 126–128

4. 5-OCH3 -Br -OCH3 22a 23d 82 93 107–109

5. 5-NO2 -Br -OCH3 22a 23e 72 83 111–113

6. 5-Br -H -H 22a 23f 71 86 175–177

7. 5-OCH3 -NO2 -Cl 22b 24a 75 89 188–190

8. 5-NO2 -CH3 -Br 22b 24b 82 95 121–122

9. 5-CH3 -NO2 -Cl 22b 24c 79 88 135–137

10. 5-H -F -Cl 22b 24d 89 97 104–106

11. 5-Br -NO2 -Cl 22b 24e 69 83 166–168

12. 7-I -CH3 -Br 22b 24f 96 98 101–102

13. 5-Br -F -OCH3 22c 25a 81 91 154–156

14. 5-H -Br -OCH3 22c 25b 61 75 118–120

15. 5-Br -F -Cl 22c 25c 63 71 138–140

16. 5-F -Cyclohexyl -Br 22c 25d 57 73 112–114

17. 5-CH3 -F -OCH3 22c 25e 74 87 103–105

18. 5-NO2 -F -Cl 22c 25f 58 72 172–174

19. 5-OCH3 -F -Cl 22c 25g 67 81 142–144
a Isolated yields by column chromatography (conventional method). b Isolated yields by column chromatography
(microwave-assisted synthesis).

Molecules 2023, 28, x FOR PEER REVIEW 8 of 21 
 

 

17. 5-CH3 -F -OCH3 22c 25e 74 87 103–105 
18. 5-NO2 -F -Cl 22c 25f 58 72 172–174 
19. 5-OCH3 -F -Cl 22c 25g 67 81 142–144 

a Isolated yields by column chromatography (conventional method). b Isolated yields by column 
chromatography (microwave-assisted synthesis). 

The structures of all the synthesized compounds were well characterized by FT-IR, 
optical rotation, 1H-NMR, 13C-NMR spectroscopy, and HRMS mass spectrometric analy-
sis (Please see Supplementary materials). Finally, the stereochemistry of the four chiral 
centres of the cycloaddition reaction was unequivocally determined by single-crystal 
X-ray diffraction analysis of the cycloadduct 23f (Figure 3, please see Supplementary 
materials). After screening over the series of other derivatives, we found that the 23f 
prepared in one step and obtained as an off-white solid in 86% yield, which was further 
subjected to crystallization; we were able to isolate the 23f in ~10–11% yield using a slow 
evaporation crystallization technique with DCM as a solvent at low temperature. After 
couple of weeks, we came up with the single-crystal X-ray structure of the 23f, the raw 
data of 23f were subjected to the solution using Olex2 [67], and the crystal was crystal-
lized in a trigonal system in R-3 space group. Consequently, the three-dimensional rep-
resentation of compound 23f shows that the compound has four chiral carbons, with one 
carbon having an R-configuration and the other three having S-configurations. The 
crystal structure confirmed that the trans-geometry of chalcone and the regioselectivity 
were also well established as a result of the concerted reaction of chalcones with the 
ylides. 

 
Figure 3. (A) ORTEP diagram of the cycloadduct 23f. (B) Structure of (1′S,2′R,3S,7a’S)-2′-benzoyl 
-5-bromo-1′-phenyl-1′,2′,5′,6′,7′,7a’-hexahydrospiro[indolin-3,3′-pyrrolizin]-2-one 23f. 

2.2. Single-Crystal X-ray 
Furthermore, it was observed that the crystallized framework had a hexagonal ar-

chitecture consisting of six molecules in a circular fashion around the disordered func-
tionality that takes non-planar circular conformations with the presence of short contacts 
in the alternate configuration. The molecular arrangement of 23f, its inside functionality 
in a large cavity, and its size are directly proportional to the distance between the carbon 
atoms at the opposite sides and the Van der Waals radius of the carbon atom present in 
the ring. In order to understand more about the intermolecular interactions of 23f, a 
Hirshfeld surface analysis using Crystal Explorer 3.1 software suite was used [68]. The 
3D representation of short intermolecular contact can be provided by de and di mapped 
on the Hirshfeld surface, which corresponds to exterior and interior distances, respec-
tively. The dnorm, shape index, and curvedness of 23f roughly indicating the presence of 
strong intermolecular short contacts and stronger Van der Waals interactions. The 2D 

Figure 3. (A) ORTEP diagram of the cycloadduct 23f. (B) Structure of (1′S,2′R,3S,7a’S)-2′-benzoyl
-5-bromo-1′-phenyl-1′,2′,5′,6′,7′,7a’-hexahydrospiro[indolin-3,3′-pyrrolizin]-2-one 23f.

2.2. Single-Crystal X-ray

Furthermore, it was observed that the crystallized framework had a hexagonal archi-
tecture consisting of six molecules in a circular fashion around the disordered functionality
that takes non-planar circular conformations with the presence of short contacts in the
alternate configuration. The molecular arrangement of 23f, its inside functionality in a large



Molecules 2023, 28, 4817 8 of 19

cavity, and its size are directly proportional to the distance between the carbon atoms at
the opposite sides and the Van der Waals radius of the carbon atom present in the ring. In
order to understand more about the intermolecular interactions of 23f, a Hirshfeld surface
analysis using Crystal Explorer 3.1 software suite was used [68]. The 3D representation of
short intermolecular contact can be provided by de and di mapped on the Hirshfeld surface,
which corresponds to exterior and interior distances, respectively. The dnorm, shape index,
and curvedness of 23f roughly indicating the presence of strong intermolecular short con-
tacts and stronger Van der Waals interactions. The 2D finger plot of 23f reveals significant
interactions corresponding to C-C, H-C, and H-H contributes 4.5%, 8.9%, and 39.0% of the
total Hirshfeld surface, respectively, which is again attributable to the presence of strong
intermolecular interactions; these are more prominent that of π–π interactions (Figure 4).

Figure 4. The 2D Finger plot of C-C, H-C, and H-H of 23f.

As can be seen from Scheme 1 and Figure 4, all synthesized spirooxindoles 23a–f,
24a–f, and 25a–g were obtained in the 71–98% yield range. It was noticed that the reac-
tions were occurring smoothly under microwave conditions with very good to excellent
yields; however, the effects of the electron-donating group (EDG) and/or the electron-
withdrawing group (EWG) had a marginal influence on the yield of the reaction. Among
the spiro[indoline-3,2′-pyrrolidin]-2-one/spiro[indoline-3,3′-pyrrolizin]-2-one derivatives,
i.e., 23a–f, 24a–f, and 25a–g, it was noticeable that the EDG (Me, OMe, cycloalkyl, Cl,
Br, and I), either on isatin or on Chalcone, produced the desired compound in excellent
yield for 23a, 23d, 24d, 24f, and 25a–b. However, in the case of EWG (NO2, F), either on
isatin or on chalcone, the target compounds were obtained in a good-to-excellent yield
range (Figure 5).

2.3. Biological Activity

Considering the importance of amphotericin B in the control of visceral leishmaniasis,
the drug was selected as a control in the present study [69]. Camptothecin, a recognized
inhibitor of LTopIB, effectively inhibits topoisomerase IB [70].Therefore, both drugs were
used as control drugs for performing in vitro antileishmanial activity of all synthesized
spirooxindoles 23a–f, 24a–f, and 25a–g.

2.3.1. In Vitro Antileishmanial Activity

The compounds (23a–f, 24a–f, and 25a–g) were initially screened for their in vitro an-
tileishmanial activity against promastigotes of Leishmania donovani (MHOM/IN/1983/AG83)
utilizing the Trypan blue dye exclusion method [71] and the plasmid relaxation assay using
amphotericin B and camphothesin as standard reference drugs, respectively [72,73].

Trypan Blue Dye Exclusion Method

The promastigotes were harvested from the culture vials, counted, and 2 × 106 cells/well
were seeded in a 48-well culture plate. The antileishmanial screening of all the derivatives,
23a–f, 24a–f, and 25a–g, as well as the positive control, was performed at various concen-
trations (2 µg/mL, 4 µg/mL, 8 µg/mL, and 16 µg/mL) added in triplicate. The plate was
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incubated at 22 ± 1 ◦C in the BOD incubator for 72 h. After 72 h, each well was counted
for the number of viable parasites using the Trypan blue dye exclusion method, and the
percentage growth inhibition was calculated by using the formula:

Percentage viability =
No. of viable cells in treated well
No. of viable cells in blank well

× 100

Percentage growth inhibition = 100 − percentage viability

The IC50 (inhibitory concentration at which 50% of the parasites were dead) value was
obtained by plotting a linear dose–response curve in SPSS software (Version 23) [71].

Figure 5. Structures of all synthesized spirooxindoles 23a–f, 24a–f, and 25a–g.

Plasmid Relaxation Assay

The relaxation of supercoiled plasmid DNA is the method used for the determination
of LTopIB activity. Various doses of each compound were treated with one unit of pure
LTopIB (the enzyme to relax 0.5 µg of supercoiled DNA for 30 min at 37 ◦C) for 20 min
at 4 ◦C. The reaction mixture, including 0.5 µg of supercoiled pBluescript SK(−) plasmid,
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10 mM Tris-HCl buffer pH 7.5, 5 mM MgCl2, 0.1 mM EDTA, 15 µg/mL of bovine serum
albumin, and 150 mM KCl, was then added in a final volume of 20 µL. After 30 min at 37 ◦C,
the reaction mixtures were stopped by adding 4 µL of loading buffer, which included 5%
sarkosyl, 0.12% bromophenol blue, and 25% glycerol. By electrophoresis, the topoisomers
were separated on 1% agarose gels and electrophoresed at 2 V/cm for 16 h in a 0.1 M
Tris-borate-EDTA buffer (pH 8.0) after being stained with ethidium bromide (0.5 µg/mL).
Plotting the percentage of supercoiled DNA versus drug concentrations allowed researchers
to determine the 50% inhibition concentration (IC50) values of LTopIB inhibition as the 50%
reduction of supercoiled DNA [72].

2.3.2. Inhibition of Leishmanial DNA Topoisomerase IB

Because of the presence of spirooxindole systems in the structure of these compounds,
we aimed to assess their inhibitory potential on purified recombinant LTopIB measuring the
relaxation of supercoiled plasmid DNA. In this regard, all spirooxindole derivatives were
assessed for LTopIB inhibition through the prevention of DNA relaxation in a circular DNA
plasmid. All compounds were tested at a single concentration of 100 µM to discard those
that did not prevent DNA relaxation by LTopIB. After this initial test, potential inhibitor
dose/response curves were performed to obtain their IC50 values. The compounds 24a, 24e,
24f, and 25d were potent LTopIB inhibitors, and the IC50 values of all nineteen compounds
are shown in Table 3. The lowest IC50 value corresponded to 24e (IC50 = 15.7 µM).

Table 3. In vitro antileishmanial activity of novel functionalized spiro[indoline-3,2′ -pyrrolidin]-2-
one/spiro[indoline-3,3′-pyrrolizin]-2-one based compounds 23a–f, 24a–f, and 25a–g.

Spirooxindole Derivatives,
i.e., 23a–f, 24a–f, and 25a–g

IC50 (µM) a Using Trypan
Blue Dye Exclusion Method

IC50 (µM) a Using Plasmid
Relaxation Assay

23a >10 µM >100 µM

23b >20 µM >100 µM

23c >20 µM >100 µM

23d 7.78 µM 53.6 µM

23e >20 µM >100 µM

23f >20 µM >100 µM

24a 2.43 µM 17.3 µM

24b 5.36 µM 37.6 µM

24c >20 µM >100 µM

24d >20 µM >100 µM

24e 0.96 µM 15.7 µM

24f 1.62 µM 19.6 µM

25a >10 µM 71.3 µM

25b >10 µM 89.1 µM

25c >10 µM 64.5 µM

25d 3.55 µM 27.2 µM

25e >10 µM >100 µM

25f >20 µM >100 µM

25g >10 µM 78.4 µM

Amphotericin B 0.060 µM -

Camptothecin - 3 µM
a IC50: value indicates the effective concentration of a compound required to achieve 50% growth inhibition
in µM.
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All nineteen compounds exhibited moderate-to-good antileishmanial activity against
Leishmania donovani. The results are shown in Table 3.

2.3.3. Structure–Activity Relationship (SAR) Studies

The inhibitory concentration (IC) values for all the spiro[indoline-3,2′-pyrrolidin]-2-
one/spiro[indoline-3,3′-pyrrolizin]-2-one derivatives, i.e., 23a–f, 24a–f, and 25a–g, and the
positive-control drugs, were also determined against promastigotes of Leishmania donovani
utilizing the Trypan blue dye exclusion method [68]. Amphotericin B was taken as a
positive control. As can be seen from Table 3, compound 24e, the most active compound of
the series, showed potent in vitro antileishmanial activity, with the IC50 value of 0.96 µM
against Leishmania donovani. Compound 24f, the next most active compound in the series
(IC50 = 1.62 µM), exhibited potent antileishmanial activity in comparison to the standard
drug Amphotericin B (IC50 = 0.060 µM). Subsequently, compounds 24a and 25d also showed
promising antileishmanial activity, with IC50 values of 2.43 µM and 3.55 µM, respectively.
Furthermore, compounds 23d and 24b showed moderate activity (IC50 ≤ 10 µM). The rest
of the compounds exhibited a lesser activity profile. Thus, SAR experiments indicated
that the L-phenylalanine-based spirooxindoles showed a better antileishmanial activity
profile as compared to L-proline and L-tryptophan-based counterparts. In proline-based
spirooxindoles 23a–f, the EDG group (OMe, Me) on the isatin moiety and the halogen
(X = Br) on the chalcone functionality, i.e., 23d, provided significant activity compared to
Amphotericin B. Subsequently, phenylalanine-based spirooxindoles 24a–f were found to
be the best active compounds among the series. However, the presence of EDG (OMe,
Me), EWG (NO2, F), or a halogen (X = Br, I) on the isatin moiety showed promising
antileishmanial activity in compounds 24a, 24b, 24e, and 24f despite having EDG, EWG,
or halogen groups on chalcone, except 24c–d. Furthermore, among tryptophan-based
spirooxindoles 25a–g, the presence of EDG (OMe, Me), EWG (NO2, F), or a halogen (X = F,
Br) on the isatin moiety showed moderate activity (25d) despite having EDG (OMe, Me,
cyclohexyl), EWG (X = F), or a halogen (X = F, Cl, Br) on chalcone functionality. It was also
observed that the presence of EDG or EWG on the spiroskeleton had no influence on the
yield of the reaction.

2.4. Molecular Docking Studies

The molecular docking studies of the most active spiro[indoline-3,2′-pyrrolidin]-2-
one/spiro[indoline-3,3′-pyrrolizin]-2-one derivatives, i.e., 24a, 24e, 24f, and 25d, were
performed with Leishmania donovani topoisomerase I-vanadate-DNA complex protein (PDB
ID: 2B9S) using Discovery Studio Visualizer Software [43].

2.4.1. Ligand Preparation

The two-dimensional structure (2d) of novel functionalized spiro[indoline-3,2′-pyrrolidin]-
2-one/spiro[indoline-3,3′-pyrrolizin]-2-one-based compounds 23a–f, 24a–f, and 25a–g
along with standard drugs amphotericin and camptothecin were drawn in Chem Draw
Ultra 22.0 software, and then the 2D structures of the ligands were converted into MDL
molfile V3000 (*mol) format. The ligand was finally optimized with a small molecule
protocol, which helps to remove tautomers, isomers, and duplicate conformations.

2.4.2. Protein Preparation

The protein crystal 3D structures of the heterodimeric L. Donovani topoisomerase
I- vanadate DNA complex were taken from the protein data bank (PDB), PDB ID 2B9S.
The protein was minimized using the simulation protocol via the CHARMm-based smart
minimizer method, and protein preparation involved five different steps: cleaning protein,
inserting missing atoms, refining loops, minimizing loops, and protonating protein.
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2.4.3. In Silico Studies

Analysis of the docking results was carried out by comparing the binding affinities of
all the proposed docked molecules to the complex protein. The docking of the abovemen-
tioned protein was carried out by removing DNA, and the remaining protein was kept in a
grid box. Then, we explored the binding orientation of active functionalized spirooxindoles
in terms of their Cdocker energy and Libdock score. It is to be noted that low Cdocker
energy and high Libdock score values indicate higher binding affinity toward the target
protein, thereby reflecting its higher potency (Table 4).

Table 4. Docking score, i.e., binding energy, of spirooxindole derivatives 24a, 24e, 24f, 25d, and
camptothecin obtained from docking studies.

Compounds -Cdocker Energy
(kcal/mol)

CDocking Interaction Energy
(kcal/mol) Libdock Score

24a −17.1681 26.9327 128.598

24e −7.7614 30.2844 96.0439

24f −7.7800 30.3540 131.125

25d −14.6475 32.2816 83.1911

Camptothecin −10.838 30.4772 123.320

The docking results for 24a against Leishmania donovani showed a high binding affinity
docking score indicated by a total score of 128.598, and it formed three H-bonds of length
2.19 Å, 2.9 Å, and 2.16 Å to the hydrophobic nucleophilic residues, i.e., the side chains of
ASP: A-353 (aspartic acid), ARG: A-190 (arginine), and ASN: B-221 (asparagine), respec-
tively. In the docking pose of the complex, the chemical nature of binding site residues
within a radius of 3 Å showed non-bonding Van der Waals interactions with HIS: A-193
(histidine), ARG: A-314 (arginine), THR: B-217 (threonine), ILE: B-220 (isoleucine), and LYS:
A-352 (lysine), thus leading to more stability and activity in this compound. In addition,
24a also exhibited a π–anion interaction with ASP: A-353 and an alkyl–π–alkyl interaction
with the TYR: B-222 (thyrosine) amino acid residue (Figure 6).

Figure 6. (A): Predicted 2D interactions of 24a with Leishmania donovani (PDB ID: 2B9S) with a docking
total score of 128.598, revealing H-bonding to the hydrophobic aliphatic residue, i.e., the side chain
of LYS: A-352 (lysine). (B) Predicted 3D interactions of 24a with Leishmania donovani (PDB ID: 2B9S)
with a docking total score of 128.598, revealing π–anion interaction and alkyl–π–alkyl interaction
with TYR: B-222 (tyrosine).
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The docking results for 24e against Leishmania donovani showed a docking score of
96.0439 and showed attractive charges between nitro group substitution with ASP: A-353
(aspartic acid) and ARG: A-190 (arginine) of bond lengths of 4.58 Å and 3.80 Å, respectively,
and LYS: A-352 (lysine) amino acids involved in H-bonds of lengths 2.37 Å and 2.23 Å
with the carbonyl oxygen of the ligand. Furthermore, single carbon–hydrogen bond was
observed with a bond length of 2.7 Å with ARG: A-190 (arginine), showing the presence of
additional H-bonding (Figure 7).

Figure 7. (A): Predicted 2D interactions of 24e with Leishmania donovani (PDB ID: 2B9S) with a
docking total score of 96.0439, revealing a conventional H-bonding carbonyl group with the amino
acid residue, i.e., the side chain of LYS: A-352 (lysine). (B) Predicted 3D interactions of 24e with
Leishmania donovani (PDB ID: 2B9S) with a docking total score of 96.0439, revealing attractive charge
interactions with ASP: A-353 (aspartic acid) and ARG: A-190 (arginine).

Similar to compound 24e, the docking profile for 24f against the antileishmanial target
showed a docking score of 131.125 and revealed non-bonding Van der Waals interactions
with GLU A:182, LYS A:251 (lysine), ASN B:221 (asparagine), THR B:217 (threonine), and
TYR B:222 (tyrosine).

The π–anion interaction was observed between LYS A:352 (lysine) and isatin of bond
length 3.85 Å. The conventional H-bonding of amino acids ASP: A-353 (aspartic acid) and
ARG: A-190 (arginine) with bond lengths of 3.52 Å and 2.43 Å were present along with NH
and carbonyl group moieties of ligand 24f, respectively. Subsequently, 24f also showed
other interactions involving carbon–hydrogen bonds as well as π–cation, π–anion, and
π–alkyl interactions (Figure 8).

The docking results for 25d against Leishmania donovani (PDB ID: 2B9S) showed a high
binding affinity docking score, indicated by a total score of 83.1911, and it mostly formed
nonbonding Van der Waals interactions with amino acid residues GLY: A-189 (glycine), LYS:
A-319 (lysine), HIS: A-193 (histidine), PHE: A-187 (phenylalanine), GLN: A-454 (glutamine),
THR: B-217 (threonine), ARG: A-314 (arginine), ASN: B-221 (asparagine), ALA: A-324
(alanine), LYS: A-407 (lysine), and LYS: A-269 (lysine). It also shows a π–anion interaction
between the phenyl moiety and ASP: A-353 (aspartic acid) and conventional hydrogen
bonding between carbonyl oxygen and the amino acid residue, LYS: A-352 (lysine). The
pair of alkyl–π–alkyl interactions HIS: A-453 (histidine) with a bond length of 5.24 Å and
ARG: A-190 (arginine) with a bond length of 4.91 Å were also present, along with π–π
T-shaped TYR: B-222 (thyrosine) with a bond length of 2.97 Å (Figure 9).
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Figure 8. (A): Predicted 2D interactions of 24f with Leishmania donovani (PDB ID: 2B9S) with a docking
total score of 131.125, giving conventional H-bonding of the carbonyl group with the amino acid
residue, i.e., the side chain of LYS: A-352 (lysine). (B) Predicted 3D interactions of 24f with Leishmania
donovani (PDB ID: 2B9S) with a docking total score of 131.125, revealing conventional H bonding
interactions with ASP: A-353 (aspartic acid), and ARG: A-190 (arginine).

Figure 9. (A): Predicted 2D interactions of 25d with Leishmania donovani (PDB ID: 2B9S) with a
docking total score of 83.1911, revealing H-bonding to the hydrophobic aliphatic residue, i.e., the side
chain of LYS: A-352 (lysine). (B) Predicted 3D interactions of 25d with Leishmania donovani (PDB ID:
2B9S) with a docking total score of 83.1911, revealing alkyl–π–alkyl interaction and π–π T-shaped
interaction with TYR: B-222 (thyrosine).

The docking results for camptothecin against Leishmania donovani showed a high bind-
ing affinity docking score indicated by a total score of 123.320 and formed two conventional
H-bonds of length 2.55 Å and 1.79 Å to the hydrophobic nucleophilic residues, i.e., the side
chains of ALA: A-324 (alanine) and LYS: A-319 (lysine), respectively. In the docking pose of
the complex, the chemical nature of binding site residues showed non-bonding Van der
Waals interactions with PHE: A-187 (phenylalanine), GLY: A-189 (glycine), THR: A-326
(threonine), SER: A-354 (serine), and GLU: A-353 (glutamic acid), which give extra stability
and activity in this compound. In addition, camptothecin also exhibited the π–cation
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interaction with ARG: A-190 (arginine) and the alkyl–π–alkyl interaction with ALA: A-324
(alanine) and HIS: A-193 (histidine) amino acid residues (Figure 10).

Figure 10. (A): Predicted 2D interactions of camptothecin with Leishmania donovani (PDB ID: 2B9S)
with a docking total score of 123.320, revealing H-bonding to the hydrophobic aliphatic residue, i.e.,
the side chain of ALA: A-324 (alanine). (B) Predicted 3D interactions of camptothecin with Leishmania
donovani (PDB ID: 2B9S) with a docking total score of 128.598, showing different binding interaction
and alkyl–π–alkyl interaction with ARG: A-190 (arginine).

3. Conclusions

In conclusion, we report the microwave-assisted synthesis of a novel series of function-
alized spiro[indoline-3,2′-pyrrolidin]-2-one/spiro[indoline-3,3′-pyrrolizin]-2-one deriva-
tives, i.e., 23a–f, 24a–f, and 25a–g, and these have pharmaceutically privileged chalcones
and amino acids. The time required for completion of reaction in MM varied from
5 min as compared to CM, which required 3 h. We also report, for the first time, the
antileishmanial activity and SAR studies of 23a–f, 24a–f, and 25a–g, which were vali-
dated by carrying out molecular docking studies of 24a, 24e, 24f, and 25d. The stereo-
chemistry of the novel functionalized spiro[indoline-3,2′-pyrrolidin]-2-one/spiro[indoline-
3,3′-pyrrolizin]-2-one derivatives were confirmed by single-crystal X-ray crystallogra-
phy studies of 23f. Among all the synthesized compounds, 24a (IC50 = 2.43 µM), 24e
(IC50 = 0.96 µM), 24f (IC50 = 1.62 µM), and 25d (IC50 = 3.55 µM) showed potent in vitro
antileishmanial activity against Leishmania donovani in comparison to the standard drug
Amphotericin B (IC50 = 0.060 µM). All the compounds were tried as potential inhibitors of
LTopIB, but only 24a, 24e, 24f, and 25d were able to inhibit the recombinant enzyme in vitro.
Subsequently, the molecular docking studies validated the biological results. In short, our
findings qualify the studied molecules as prospective antileishmanial agents with distinct
pharmaceutically privileged structures that pave the way for further advanced applications.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28124817/s1, Figures S1–S38: 1H NMR and 13C
NMR Spectral Data of 23a–f, 24a–f, and 25a–g; Tables S1–S6: X-ray Crystallography: Single-crystal
data of spirooxindole 23f. General experimental conditions; General Procedure for the Synthesis
of Chalcones 21a–f; General Procedure (GP) for the Synthesis of Spirooxindole Derivatives, 23a–f,
24a–f, and 25a–g; Biological Methods: Parasite strain and culture conditions, In vitro antileishmanial
activity, and Plasmid relaxation assay; Characterization data of spirooxindole derivatives (23a–f,
24a–f, 25a–g); X-ray Crystallography: Single-crystal data of spirooxindole 23f; optical rotation, 1H
and 13C NMR spectral data of all the synthesized compounds 23a–f, 24a–f and 25a–g.
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