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Abstract: CO2 emission is deemed to be mainly responsible for global warming. To reduce CO2

emissions into the atmosphere and to use it as a carbon source, CO2 capture and its conversion
into valuable chemicals is greatly desirable. To reduce the transportation cost, the integration of the
capture and utilization processes is a feasible option. Here, the recent progress in the integration of
CO2 capture and conversion is reviewed. The absorption, adsorption, and electrochemical separation
capture processes integrated with several utilization processes, such as CO2 hydrogenation, reverse
water–gas shift reaction, or dry methane reforming, is discussed in detail. The integration of capture
and conversion over dual functional materials is also discussed. This review is aimed to encourage
more efforts devoted to the integration of CO2 capture and utilization, and thus contribute to carbon
neutrality around the world.
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1. Introduction

Carbon dioxide capture, utilization, and storage (CCUS) are increasingly gaining
global attention. The challenge is to meet the energy demand while balancing CO2 emis-
sions. Several solutions have been proposed to reduce the CO2 emission, namely, increasing
the utilization of eco-friendly energy sources, such as wind and solar energy, to improve the
energy efficiency. However, the advancement of such technologies is currently still limited
and can be an optimal option in the long-term. At present times, the CCUS technology is
more effective and can be a short-term alternative.

CO2 can be captured using various technologies, such as amine absorption, porous
materials adsorption and membrane separation. Since CO2 itself is a carbon source, it
can be converted into valuable chemicals via dry methane reforming (DMR), CO2 hydro-
genation, reverse water–gas shift reaction, etc. There are excellent reviews on both the
technologies [1–3]. However, the traditional CO2 capture and utilization processes are
separated, which inevitably increases the transportation cost. To reduce or even eliminate
such cost, the integration of CO2 capture and utilization is greatly desirable. This review
focuses on the integration of CO2 capture and utilization. The relevant processes and the
materials involved will be discussed.

2. Integration of CO2 Capture and Utilization

Integrated CO2 capture and utilization aims to capture CO2 from gas streams and
other emission sources and convert it into valuable chemicals or energy sources. The key
is to find the match between the CO2 separation process and the CO2 utilization process,
including the temperature and pressure, etc.
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2.1. Integration of CO2 Absorption and Conversion

CO2 can be captured via physical or chemical absorption depending on the interaction
between CO2 and the absorbent. The former mainly utilizes the solubility of each gas
component in the solvent whereas the latter involves chemical reactions between CO2
and the absorbent. Chemical absorption is mostly employed with organic amine, hot
potash, and liquid ammonia solvents considering its easy operation and mild working
conditions [4]. Accordingly, it can be integrated with CO2 hydrogenation for the production
of formic acid or methanol.

Amine-based CO2 capture and conversion integrated reactors consist of a series of
amine sorbents and metal ions that form a pincer complex, such as pincerpentaethylene-
hexamine (PEHA), pyrrolizidine, N,N,N′,N”,N”-pentamethyldiethylenetriamine (PMDTA)
and polyethyleneimine (PEI). These are coupled with metal pincer-based homogeneous
catalysts [5–8]. Due to the presence of multiple amine sites [9], PEI can be used as a supe-
rior CO2 absorber [10], which can absorb both high and low concentrations of CO2 [11].
Li et al. [12] used PEI/RhCl3·3H2O/CyPPh2 to capture CO2 and convert it in situ
(Figure 1a). PEI absorbs CO2 from air in an ethylene glycol solution containing PEI and
converts it into amino formate esters and alkyl carbonate esters. CO2 is hydrogenated in
situ to form formate salts (TON = 260) in the presence of RhCl3-3H2O/CyPPh2, demonstrat-
ing the first in situ CO2 capture and conversion to formate. Multifunctional materials can
be synthesized by modifying the PEI backbone with iminophosphine ligand functionality
and subsequently metallizing it with Ir precursors. About 65% of the available primary
amines on PEI can be modified to form iminophosphine/Ir (PN/Ir) for balanced CO2
capture and conversion, resulting in higher formic acid yields. PEI with relatively lower
molecular weight has better CO2 capture ability and catalytic activity (Figure 1b) [13].
Kothandaraman et al. [14] reported, for the first time, a green and simplified method for in
situ conversion of captured CO2 to formate in aqueous media in the presence of Ru- and
Fe-based pincer complexes without excess alkali, with yields of up to 95% of the formate.

In addition to formate, the captured CO2 can be converted into methanol. In 2015,
Rezayee et al. [15] prepared methanol by tandem CO2 capture and in situ conversion of
dimethylamine with homogeneous ruthenium complexes under basic conditions. Dimethy-
lamine can react with CO2 and inhibit the formation of formic acid. The conversion of CO2
is >95% (Figure 1c). Moreover, Kothandaraman et al. [5] first proposed and demonstrated a
system for capturing CO2 from air (~400 ppm) and converting it in situ (Figure 1d), which
consisted of PEHA and Ru–PNP complex, with a methanol yield of 79%. Integrated systems
for CO2 capture and conversion into methanol are still uncommon. The major obstacle
is the harsh reaction conditions to produce methanol, which involves a high-pressure
gas-phase catalyst reactor at relatively low temperatures of 200–300 ◦C and high pressures
of 50–100 atm.

The amine-based materials offer the potential to capture and convert CO2 under mild
conditions. Due to the relatively high CO2 capture capacity of PEI, it can directly capture
CO2 from the air, which also removes the limitation of constructing CO2 capture equipment.
However, the high selectivity of some materials to carbon dioxide poses a challenge for
the regeneration of amines. Furthermore, the toxicity and corrosiveness of amine solvents
limit their industrial application. To drive future research, it is essential to explore systems
that are highly efficient and recyclable, enabling CCU to establish a reliable foundation for
industrial applications.

2.2. CO2 Adsorption and Conversion Integration

Similar to absorption, adsorption separation can also be divided into chemisorption
and physisorption according to the interaction between CO2 and the adsorbate, with the
former forming covalent bonds whilst the latter forms bond with electrostatic attraction
and van der Waals forces. Here, we mainly focus on the physisorption and the subsequent
utilization of CO2.
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Porous organic polymers (POPs) are a series of new two- or three-dimensional net-
worked polymeric materials formed by covalent bonding of organic small molecule sub-
strates through specific chemical reactions, usually with microporous, mesoporous or
multistage pore structures. They have promising applications in separation, sensor and
catalysis [16]. The ionic porous organic polymers (IPOPs) are generally classified as porous
organic materials, whose backbone typically includes anions or cations. They can be di-
vided into IPOPs with cationic moieties, IPOPs with anionic moieties, and IPOPs with
zwitterionic moieties. Common cationic moieties include imidazolium, pyridinium, vi-
ologen, and quaternary phosphonium, whereas more common anionic moieties include
tetrakis(phenyl)borate and tris(catecholate) phosphate. The inclusion of these ionic moi-
eties in porous materials can enhance their CO2 capture capacity and catalyze the in situ
CO2 conversion.

In 2011, tetrakis(4-ethynylphenyl)methane and diiodoimidazolium salts were used to
prepare tubular microporous organic via Sonogashira coupling reaction networks bearing
imidazolium salts (T-IM) (Figure 2a). The material, with a microporous structure of specific
surface area (620 m2 g−1), shows good catalytic activity towards the conversion of CO2 to
cyclic carbonates [17]. Wang et al. [18] utilized the Friedel–Crafts reaction to synthesize
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imidazole-based IPOPs. The specific surface area can reach up to 926 m2 g−1; however, its
CO2 capture capacity is only 14.2 wt%. Nevertheless, the polymer exhibits good stability
and repeatability. Sun et al. [19] demonstrated, for the first time, the capture and in
situ conversion of CO2 into cyclic carbonates under relatively mild room temperature
conditions using a metal-free solvent followed by a heterogeneous catalytic system. The
effect of halogen anions (Cl, Br, and I) and quaternary phosphonium cations on the catalytic
activity was investigated. The catalytic activity follows the order Cl− > Br− > I− (Figure 2b),
because the rate-controlling step of the reaction is ring opening by anion attack on the
epoxide [20].
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Figure 2. (a) Preparation of porous organic networks bearing imidazolium salts [17]; (b) Yields of
chloropropene carbonate from the cycloaddition of epichlorohydrin and CO2 catalyzed by PIPs with
corresponding QPs and PIP-Me-X, PIP-Et-X, and PIP-Bn-X (X = Cl, Br, and I). Reaction conditions:
epichlorohydrin (1.0 g, 10.9 mmol), catalyst (0.05 mmol, based upon the quaternary phosphonium
salt), 323 K, CO2 (ambient pressure), and 24 h [19].

In addition to IPOP, the porphyrin-based organic polymer (POP-TPP) can also be
used. Xiao et al. [21] synthesized a hierarchically porous organic polymer (POP-TPP) by
polymerizing vinyl-functionalized tetraphenylporphyrin monomer, and then metalated
it with different metals (Co3+, Zn2+, and Mg2+). The resulting heterogeneous catalysts
have rich active sites and exhibit higher activity than the homogenous Co/TPP catalyst
at relatively low CO2 concentrations, primarily due to the favorable enrichment of CO2
in the porous structure (micropores and nanochannels) of Co/POP-TPP. The TOF of the
catalysts decreases in the following order: Co/POP-TPP (436 h−1) > Zn/POP-TPP (326 h−1)
> Mg/POP-TPP (171 h−1) (Table 1). Later, a series of high surface area hollow tubular metal
(Al, Co, Fe, and Mn) porphyrin-based hypercrosslinked polymers (HCP) were synthesized
via Friedel–Crafts alkylation reactions. Al-HCP can catalyze the formation of propylene
carbonate with a selectivity of approximately 99% after only 1 h with 2.0 mol% TBAB
catalyst [22].
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Table 1. Cycloaddition of epichlorohydrin with CO2 to form cyclic carbonate over various catalysts
at 29 ◦C [21].

Entry Catalysts Additives Time (h) Conv. (%) a Select. (%) a

1 b POP-TPP n-Bu4NBr 24 52.1 >99.0
2 c Co/POP-TPP n-Bu4NBr 24 95.6 99
3 c Co/TPP n-Bu4NBr 24 97.5 99
4 Co/POP-TPP None 24 9.7 99
5 Co/TPP None 24 18.5 99
6 None n-Bu4NBr 24 34 99

7 d Co/POP-TPP n-Bu4NBr 96 96.1 99
8 e Co/POP-TPP n-Bu4NBr 24 88.9 99
9 f Zn/POP-TPP n-Bu4NBr 24 93.2 >99.0
10 f Zn/TPP n-Bu4NBr 24 93.5 >99.0
11 g Mg/POP-TPP n-Bu4NBr 24 80.5 >99.0
12 g Mg/TPP n-Bu4NBr 24 99.3 >99.0
13 h Co/POP-TPP n-Bu4NBr 24 93.6 99

Note: a Determined using GC analysis. b 48 mg of POP-TPP was used. c 50 mg of Co/POP-TPP (1.6 mg Co) or
19 mg of Co/TPP (1.6 mg Co) was used. d Co/POP-TPP catalyst (12.5 mg, 0.4 mg Co). e 50 mg of n-Bu4NBr.
f 50 mg of Zn/POP-TPP (2.3 mg Zn) or 23.5 mg of Zn/TPP (2.3 mg Zn) was used. g 50 mg of Mg/POP-TPP
(1.4 mg Mg) or 37.0 mg of Mg/TPP (1.4 mg Mg) was used. h Recycled for 18 times.

Metal–organic frameworks (MOFs) are porous crystalline materials formed by coordi-
nation between metal ions or metal clusters and organic ligands, which are characterized
by high porosity, high surface area, tunable pore size and geometric configuration, and
functionalizable pore surface [23]. Consequently, they can be employed for CO2 capture
and utilization. The imidazolium-based poly(ionic liquid)s (denoted as polyILs) and ortho-
divinylbenzene were used as cross-linking agents to polymerize in the pores of MIL-101
(Figure 3a), resulting in polyILs@MIL-101 materials with dual functions of CO2 capture and
conversion [24]. For MOFs materials, ordered nanochannels can effectively promote the
enrichment of CO2 at the active sites and accelerate the CO2 conversion; Lewis basic sites
(LBSs) can supply electrons to activate CO2 [25,26]. In order to restore the real CO2 capture
process, a CO2 capture and in situ conversion system was designed by simulating the flue
gas feed, where the lanthanide (III) complex of 1-vinylimidazole (Vim) was immobilized
with DUT-5 by a combination of ligand and in situ polymerization (Figure 3b). This work
opens up a general pathway for future research and validates the effectiveness of MOFs for
practical applications in CO2 capture and conversion [27].

Although the integrated materials have demonstrated good CO2 capture and en-
richment capabilities, their performance under the real industrial exhaust emissions that
contain acidic gases, such as SOx, NOx, and steam, remain to be explored.

2.3. CO2 Electrochemical Membrane Separation and Conversion Integration

Electrochemical membrane separation is a technology that achieves gas separation
through electrochemical reaction. The membrane can be mixed oxide ion-carbonate conduc-
tor (MOCC), such as Y0.16Zr0.84O2-δ-molten carbonate (YSZ-MC), Ce0.8Sm0.2O1.9-MC (SDC-
MC), Ce0.9Gd0.2O1.9-MC (GDC-MC), and Bi1.5Y0.3Sm0.2O3-δ-MC (BYS-MC); mixed electron-
carbonate conductor (MECC), such as stainless steel-MC (SS-MC), Ag-MC, and Ni-MC; or
mixed oxide ion-electron-carbonate conductor (MOECC), such as La0.6Sr0.4Co0.8Fe0.2O3-δ-
MC (LSCF-MC), La0.5Sr0.5Fe0.8Cu0.2O3-δ-MC (LSFCu-MC) and NiO-SDC-MC based on the
charge carriers [2]. Generally, the carbonates (Li-Na-K-based) show high electrical conduc-
tivity and low viscosity only at relatively high temperature, e.g., >600 ◦C. Accordingly, it
can be well integrated with the high temperature CO2 utilization processes, such as DMR
and reverse water–gas shift (RWGS) (Table 2).
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Lin and co-workers first modeled the high temperature tube shell membrane reactor
for separation and utilization of CO2 from the flue gas and for simultaneous production of
syngas using DMR. The membrane reactor is highly efficient for CCUS. The CH4 conversion
of 48.1% and an average CO2 permeation flux of 1.52 mL cm−2 min−1 can be obtained
at 800 ◦C with a 75 µm thick membrane and CH4 space velocity of 3265 h−1 [28]. Later,
Anderson et al. [29] experimentally studied the integration of CO2 separation and DMR
with LSCF-MC membrane and Ni/γ-alumina catalyst. The CO2 permeation rate above
750 ◦C matches the reaction rate of DMR catalyst, and the order of syngas production activ-
ity is blank system < LSCF combustion catalyst < Ni/γ-alumina reforming catalyst. The
conversion of CO2 and CH4 is 88.5 and 8.1%, respectively, generating a syngas H2:CO ratio
of about 1 [30]. To improve the performance, Zhang et al. [31] employed MOCC membrane
(GDC-MC) (Figure 4a), and NMP (Ni-MgO-1 wt% Pt) and LNF (LaNi0.6Fe0.4O3-δ) catalysts.
The yield of H2 and CO and the conversion of CH4 in the reactor with NMP catalyst is
higher than that with LNF catalyst (Figure 4b,c), while the reactor with LNF catalyst shows
better anti-coking performance and no significant degradation within 200 h. In addition,
Zhang et al. [32] investigated the MECC membrane reactor (Ag-MC) coupled with dry-oxy
methane reforming (DOMR) over an NMP catalyst. The CH4 conversion is >82% and is
stable over 115 h at 800 ◦C (Figure 4d). Similar reactor models can be applied to integrate
CO2 separation and oxidative dehydrogenation of ethane (ODHE) to prepare ethylene [33].
CO2 can react with H2 to make the reaction of ethane dehydrogenation forward, which can
increase the selectivity of O2-ODHE to produce ethylene [33].

The coupling of a dual-phase membrane reactor with a RWGS reaction was first re-
ported by Chen et al. [34] to capture CO2 and produce CO. Under a sweep gas condition of
1% H2/He, the CO selectivity over LaNiO3 (LNO) catalyst is >96% at 550–750 ◦C. Addi-
tionally, La0.9Ce0.1NiO3-δ (LCNO) catalyst displays almost 100% CO selectivity and good
thermal stability. The introduction of H2 during the purge test enhances the permeation of
CO2. H2O in dual-phase membrane systems can reduce the activation energy, possibly due
to the conduction of hydroxide ions through the membrane [35].

The dual-phase membrane reactor can also increase the H2 yield by removing CO2.
The concept of CO2 removal was first applied to the steam reforming of methane reaction
(SMR) to produce high concentration of H2 by Wu et al. [36]. The asymmetric BYS-SDC-MC
membrane reactor can convert methane into hydrogen via SMR reaction while simultane-
ously removing CO2 to achieve a high concentration of hydrogen, with 84% CO2 recovery
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(Figure 5a). The results of the mathematical model (Figure 5b) demonstrate that CO2
recovery from SMR in the CO2 permeated membrane reactor exceeds 99% and a pure H2
gas stream without CO gas can be achieved [37].
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Figure 4. (a) Schematic illustration of a MOCC membrane reactor with a catalyst bed for electro-
chemical CO2 capture and catalytic DMR. TPB: triple phase boundary [31]. (b) Effect of temperature
on the DMR performance of a GDC–MC membrane reactor with an NMP catalyst [31]. (c) Effect of
temperature on the DMR performance of a GDC–MC membrane reactor with an NMP catalyst and
an LNF catalyst [31]. (d) Stability of DOMR performance of the Ag–MC MECC membrane reactor
at 800 ◦C with NMP catalyst. Feed gas: 75 mL min−1 N2, 15 mL min−1 CO2, and 10 mL min−1 O2;
sweep gas: 0.94 mL min−1 CH4 and 50 mL min−1 Ar [32]. The dotted circles and arrows in the figure
represent the axes corresponding to the curve.

The dual-phase membrane reactors can also be utilized for the oxidative coupling of
methane (OCM) reaction. The high oxygen partial pressure in conventional OCM reactors
often results in low C2 selectivity. Li et al. [38] combined CO2/O2 transport membrane
(CTM) and OCM reaction to build a new membrane reactor model (Figure 5c), which shows
higher conversion of CH4 than the traditional fixed-bed reactor model and better coking
resistance. Based on this, Zhang et al. [39] developed a membrane reactor combining
SDC-NiO-MC and 2%Mn–5%Na2WO4/SiO2 catalyst. The co-captured CO2/O2 mixture
converts CH4 into C2H6 over the 2%Mn–5%Na2WO4/SiO2 catalyst, followed by thermal
cracking into C2H4 and H2. In the presence of CO2, the O2 partial pressure is reduced,
thereby reducing the possibility of re-oxidation of C2 products, which leads to a higher
C2 selectivity.
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Figure 5. (a) Schematic illustration of membrane reactor [37]. (b) Comparison of CO2 flux and
recovery of the membrane reactor between experimental results and modeling results. Conditions:
sweep: He = 200 mL min−1; feed: CH4 = 5 mL min−1; S/C = 3; both sides of the membrane were
at 1 atm [37]. (c) Schematic illustration of (c1) Membrane reactor; (c2) Co-fed fixed bed reactor;
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Table 2. Summary of electrochemical membrane materials integrated reactors.

Membrane Catalyst Reaction Ref.

La0.6Sr0.4Co0.8Fe0.2O3-δ
Li-Na-K 10 wt%Ni-/γ-Al2O3 DMR [29]

Ce0.8Gd0.2O1.9
Li-Na Ni-MgO-1 wt% Pt LaNi0.6Fe0.4O3-δ DMR [31]

Ag
Li-Na Ni-MgO-1 wt% Pt DOMR [32]

NiO-SDC
Li-Na Ni-MgO-1 wt% Pt DOMR [40]

Ce0.8Gd0.2O1.9
Li-Na 5 wt% Cr2O3- ZSM-5 Ethane-to-Ethylene [33]

Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.5Co0.5O3-δ
Li-Na-K 10 wt%Ni-/γ-Al2O3 DOMR [41]

LNO/SDC
Li-Na LNO/LCNO RWGS [34]

BYS-SDC
Li-Na-K Ni-based catalyst (HiFUEL R110) SMR [36]

γ-LiAlO2-Ag
Li-Na-K γ-LiAlO2-Ag Syngas production [42]

NiO-SDC
Li-Na 2%Mn-5%Na2WO4/SiO2 OCM [39]

Note: Li-Na-K = Li2CO3: Na2CO3:K2CO3 with ratio of 42.5:32.5:25 mol%; Li-Na = Li2CO3: Na2CO3 with ratio of
52:48 mol%.
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2.4. CO2 Capture and Conversion over Dual-Function Materials (DFMs)

Inorganic metal dual-functional materials (DFMs) combine the capture and conversion
of CO2 into organic compounds. DFMs consist of the CO2 absorption component and
the catalytic CO2 conversion component. The former is usually composed of alkali metal
oxides or carbonates whilst the latter comprises metal-based catalysts, such as Ru, Rh, and
Ni for DMR, dry ethane reforming (DER), RWGS reaction, and CO2 methanation [43–45].
Those processes can be well integrated with CO2 absorption considering their similar
operating temperatures.

In 2018, Kim et al. [46] proposed and demonstrated the feasibility of using DFM
to capture CO2 and convert it in situ with renewable CaO as an absorber of CO2 and
Ni/MgO-Al2O3 as a catalyst for DMR. The concentration of CO2 in the exhaust gas is
less than 0.08%, and the ratio of H2 to CO is 1.06. Tian et al. [47] synthesized CaO-Ni
DFM using a sol–gel method. The ratio of H2 to CO is 1.1, which is similar to Kim’s
results [46]. Methane decomposition can occur simultaneously during the reaction. The
deposited carbon facilitates the reaction of CO2 with CaO-Ni; the CH4 conversion rate can
reach 86%. Compared to other processes for DMR, the in situ consumption of CO2 on the
catalyst surface promotes a positive shift of equilibrium in favor of CaCO3 decomposition,
which allows the otherwise energy-intensive calcium cycling process to proceed at lower
temperatures, thus further alleviating the deactivation problem during calcination. The
energy consumed is 22% lower than the conventional consumption. In order to improve the
activity and stability of Ni-CaO in the DMR reaction [48], CeO2 was added to the support,
with a Ca:Ce molar ratio of 85:15. The resultant catalyst demonstrates good stability and
maintains ≈ 80–90% activity over nine cycles at 650 ◦C, which is over two times better
than the material without CeO2 modification (Figure 6a). The dispersion of Ni and the
reducibility of NiO are improved, enhancing the DMR activity. Due to the high mobility of
lattice oxygen in CeO2, the CeO2 modification can inhibit the accumulation of non-active
carbon on Ni.
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In addition to DMR, the captured CO2 can be also converted into methane over DFM
(Table 3). The Farrauto group is a pioneer in the study of CO2-Met DFM. They prepared
DFM using Ru as the metal catalyst, CaO as the CO2 absorbent, and γ-Al2O3 as a carrier [51].
At 320 ◦C and 10% CO2/N2, CO2 capture was carried out followed by methane production
reaction for 2 h with 4% H2/N2. The 5% Ru-10% CaO/γ-Al2O3 exhibits the highest activity.
In the CO2 capture cycle test with presence of steam, the purity of obtained methane
can reach up to 99%. Duyar et al. [52,53] synthesized Ru- and Rh-based DFM from the
nitrates of Ru and Rh, respectively, via impregnation. The Rh-based DFMs show better
activity. However, their high cost limits large-scale application. In order to reduce the
cost, Bermejo-Lopez et al. studied DFMs using Ni as the catalyst [54,55]. Ni-CaO/γ-Al2O3
and Ni-Na2CO3/γ-Al2O3 with different Ni loadings were synthesized via impregnation.
The methane yield of 10% Ni-Na2CO3/γ-Al2O3 is 186 µmol CH4 g−1 at 400 ◦C and it is
142 µmol CH4 g−1 at 520 ◦C for 15% Ni-CaO/γ-Al2O3. In addition, Al-Mamoori et al. [56]
prepared DFMs using Ni-impregnated CaO- and MgO-based double salts as CO2 absorber
and catalyst, respectively, and γ-Al2O3 as the carrier. The CO2 absorption was first saturated
in a 10% CO2/N2 atmosphere at 650 ◦C and 1 bar, and then a 5% C2H6/N2 mixture was
passed into the reactor to react with CO2. The Ni@(K-Ca)/γ-Al2O3 system exhibits the
highest CO2 absorption and 100% C2H6 conversion. Nevertheless, Ni usually requires high
reduction temperature and is very sensitive to O2 in the feed gas, and its long-term stability
remains to be improved for the CO2-Met reaction.

Table 3. Carbon dioxide methanation dual-functional materials summary.

DFM
Condition (◦C)

Ref.
Absorption Reaction

Ni-CaO/Al2O3 280–520 10% CO2/Ar 280–520 10% H2/Ar
[55]Ni-Na2CO3/Al2O3 280–520 10% CO2/Ar 280–520 10% H2/Ar

Ni-Na2O/Al2O3 320 7.5% CO2/N2 and 7.5% CO2, 4.5% O2, 15% H2O/N2 320 15% H2/N2 [52]
Ru-Na2O/γ-Al2O3 320 15% CO2/N2 320 20% H2/N2 [57]Rh-CaO/γ-Al2O3 320 10% CO2/N2 320 2% H2/N2
Ru-CaO/γ-Al2O3 280–400 1.4% CO2/Ar and 11% CO2/Ar 280–400 10% H2/Ar

[54]Ru-Na2CO3/γ-Al2O3 280–400 1.4% CO2/Ar and 11% CO2/A 280–400 10% H2/Ar
Ru-CaO/γ-Al2O3 320 10% CO2/air and 8% CO2/21% H2O/air 320 5% H2/N2 [51]
Ru-CaO/γ-Al2O3 320 10% CO2/N2 320 4% H2/N2 [57]
Ru-CaO/γ-Al2O3 320 7.5% CO2, 4.5% O2, 15% H2O/N2 320 5% H2/N2 [58]

Ru-Na2CO3/γ-Al2O3 320 7.5% CO2/N2 and 7.5% CO2, 4.5% O2, 15% H2O/N2 320 5% H2/N2 [59]
Ru-Na2O/γ-Al2O3 250–350 7.5% CO2, 4.5% O2, 15% H2O/N2 250–350 15% H2/N2 [60]

DFMs can also convert the captured CO2 into valuable chemicals via RWGS reactions
and ethane reforming. To investigate the effect of preparation methods on the performance
of DFMs, Wang et al. [49] synthesized DFMs using three different methods, namely wet-
mixing, acidification/impregnation, and acidification/impregnation combined with citric
acid complexation. The Ni/CS-P30-C, prepared via acid pretreatment of carbide slag
followed by citric acid complex, exhibits a high CO2 sorption capacity (13.28 mmol g−1

DFMs) and a great CO productivity (5.12 mmol g−1 DFMs) at 650 ◦C, and also demonstrates
better CO2 capture and in situ conversion (Figure 6b). Sun et al. [50] investigated the effect
of Ce loading onto the Ca-Ni-based DFM on the performance of CO2 capture and RWGS.
The DFM with Ca:Ni:Ce = 1:0.1:0.033 (molar ratio) exhibits high cycling stability, and
100% CO selectivity (Figure 6c,d). The addition of CeO2 effectively prevents the growth
and aggregation of NiO and CaO species.

The primary concerns are catalyst deactivation during the reaction, carbon deposition,
and matching capture and conversion rates, along with the requirement of evaluating the
life cycle and economics of the integrated system. Therefore, further research is necessary
in the future on aspects, such as reaction atmosphere, temperature, life cycle, economic
analysis, and industrial applications.
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3. Conclusions, Challenges and Opportunities

In summary, the integration of CO2 capture and utilization is reviewed, namely the
absorption, adsorption, and electrochemical separation capture processes integrated with
several utilization processes. Initially, it is imperative to ensure that the operational condi-
tions of the CO2 capture process and the subsequent reaction process are fundamentally
congruent, encompassing factors, such as temperature, pressure, pH, and other relevant
parameters. Subsequently, the CO2 absorption materials can be more effectively combined
with the catalyst without impeding their respective performances. The point is to find the
match between the operating temperature of both processes. To improve the performance
of the integration system, one of the key factors is to achieve the match between the capture
rate and the conversion rate. For example, in the MOCC and DMR system, matching the
CO2 separation rate of the MOCC membrane and the conversion rate over DMR catalyst is
crucial. Unfortunately, such studies are very limited. Of course, improving the performance
(activity, and stability) of the single process, either the capture or the conversion process,
is desirable.

Although the integration of CO2 capture and conversion is very promising to lower
the CO2 concentration in the atmosphere, there are still many challenges ahead. The
amine-based absorption is currently employed by the industry, however, their toxicity,
corrosiveness and high cost limit their further market applications. Suitable amine-based
or solid amine-based materials with low-energy, low-cost integrated CO2 capture and
conversion capabilities remain to be developed. For POP-based materials, their long-
term and cycling stability, the impact of SOx, NOx, and other gases remain unclear. The
production cost and complexity should be evaluated for future commercial promotion.
The electrochemical membrane reactors integrated with catalysts is very promising for
high-temperature CO2 capture and conversion, but the CO2 permeation flux and long-term
stability are still needed to be improved. For the DFM-based materials, researching how to
achieve the match between CO2 capture and conversion is critical. The issues related with
catalyst deactivation and operational life also remain to be solved.

To expedite innovation in the chemical industry, an integrated approach combin-
ing chemical experimentation with machine learning algorithms can be pursued. This
paradigm shift will enable researchers to identify optimal materials faster and more effi-
ciently, ultimately accelerating the pace of innovation in the global chemical industry.
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