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Abstract: Bacterial secondary metabolites are a valuable source of various molecules that have
antibacterial and anticancer activity. In this study, ten endosymbiotic bacteria of aphids, aphid
predators and ants were isolated. Bacterial strains were identified according to the 16S rRNA gene.
Ethyl acetate fractions of methanol extract (EA-ME) were prepared from each isolated bacterium
and tested for their antibacterial activities using the disk diffusion method. The EA-ME of three
bacterial species, Planococcus sp., Klebsiella aerogenes, Enterococcus avium, from the pomegranate aphids
Aphis punicae, Chrysoperia carnea, and Tapinoma magnum, respectively, exhibited elevated antibacterial
activity against one or several of the five pathogenic bacteria tested. The inhibition zones ranged from
10.00 ± 0.13 to 20.00 ± 1.11 mm, with minimum inhibitory concentration (MIC) values ranging from
0.156 mg/mL to 1.25 mg/mL. The most notable antibacterial activity was found in the EA-ME of
K. aerogenes against Klebsiella pneumonia and Escherichia coli, with an MIC value of 0.156 mg/mL. The
cytotoxic activity of EA-ME was dependent on the cell line tested. The most significant cytotoxicity
effect was observed for extracts of K. aerogenes and E. avium, at 12.5 µg/mL, against the epithelial
cells of lung carcinoma (A549), with a cell reduction of 79.4% and 67.2%, respectively. For the EA-ME
of K. aerogenes and Pantoea agglomerans at 12.5 µg/mL, 69.4% and 67.8% cell reduction were observed
against human colon cancer (Hct116), respectively. Gas chromatography–mass spectrometry (GC-
MS) analysis of three EA-ME revealed the presence of several bioactive secondary metabolites that
have been reported previously to possess antibacterial and anticancer properties. To the best of our
knowledge, this is the first study to examine the biological activities of endosymbiotic bacteria in
aphids, aphid predators and ants. The promising data presented in this study may pave the way
for alternative drugs to overcome the continued emergence of multidrug-resistant bacteria, and find
alternative drugs to conventional cancer therapies.

Keywords: GC-MS; secondary bioactive; anticancer activities; antibacterial activities; Taif-pomegranate;
endosymbiotic bacteria; Aphis punicae; predator; protector

1. Introduction

Cancer diseases and the antibiotic resistance phenomenon are two common challenges
facing the public health sectors. Various cancers are responsible for millions of deaths
each year worldwide Dube, Sakle [1,2]. Traditional therapeutic approaches such as surgery,
radiation and chemotherapy are associated with adverse consequences such as anemia,
alopecia, hormonal fluctuations, gastrointestinal mucositis and brachial plexopathy [3].
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Such deleterious effects have prompted the search for alternative treatment methods [4].
Additionally, antibiotic-resistant bacteria continue to emerge despite the discovery and
production of novel antibiotics [5]. Infections with multidrug-resistant bacteria (MDR)
usually lead to serious complications, hospitalizations and deaths, and pose challenges to
public health authorities around the world. It is therefore urgent to find new antibiotics to
address this phenomenon of antibiotic resistance.

Endophytes are considered to be an outstanding source of bioactive natural com-
pounds with anticancer and antimicrobial activities [6]. Endophyte bacteria are less careful
than fungal endophytes because of the lower yield concentration of crude extracts in the
former [7]. The review by Abdelghani et al. provides information on the raw extracts of bac-
teria that can be used as antibacterial and anticancer therapies [8]. It is estimated that Acti-
nomycetes are responsible for the production of 70% of secondary microbial compounds [9],
while Bacilli and other bacteria produce around 7% and 1–2%, respectively [10]. Examples
of secondary metabolites used as antibacterial compounds include prodigiosin, methanol-
pigmented daptomycin, daptomycin and 3-benzyl-hexahydropyrrolo[1,2-a] pyrazine-1,4-
dione from Serratia marcescens [11], Micrococcus sp. [12], Streptomyces roseospours [13] and
Exiguobacterium indicum [14], respectively. However, anthracyclines, peptides, aureolic
acids and antimetabolites produced by Actinomycetes [15], and bleomycin from Streptoallote-
ichus hindustanus [16] are also cytotoxic against multiple cancer cells. Isolation of secondary
metabolites from natural sources (e.g., insects such as aphids) could be an alternative
source of antimicrobial and anticancer chemotherapy that would contribute to reducing
problematic infections affecting human health.

Aphids (Hemiptera: Aphididae) are a group of insects of agricultural importance
which feed on many plant species. Most aphids establish mutualistic relationships with
endosymbiotic bacteria, mainly known as obligate (i.e., primary) and facultative relation-
ships, which are housed in specialized cells called bacteriocytes [17,18]. Buchnera aphidicola
is a primary model of the obligate symbiont and can be found in almost all aphid species
within three clades: Aphidinae, Lachninae, and Fordini [17,19]. B. aphidicola plays an essential
role in providing amino acids and nutrients lacking in the aphid diet [19]. Nine facultative
symbionts, Serratia symbiotica, Hamiltonella defensa, Regiella insecticola, Rickettsia, Rickettsiella,
PAXS, Spiroplasma, Wolbachia, and Arsenophonus, have been shown to have positive effects
on their hosts such as aphid fitness, immune pathway function and responses to natural
enemies (e.g., defense against parasitoid attacks) [20,21] and environmental stress (e.g.,
adaptation to thermal stress) [22–25]. However, the biological activities in these endosym-
bionts have received much less attention. Recent studies have demonstrated antibacterial
and antifungal activity in the gall bile tissue of the aphid [26,27], and that the antimicrobial
peptide against the pea aphid is a bio-insecticide [28,29]. To the best of our knowledge, no
studies have been conducted to investigate the antibacterial and anticancer activities of the
endosymbiotic bacteria of aphids, especially in Taif, Saudi Arabia. Only a few attempts
have been made to study the morphological identification of aphids in Taif [30], or the
control of aphids infesting the Taif rose [31] and Taif pomegranates [32].

It is worth understanding the ecology of aphids to take advantage of the entire envi-
ronment around the aphid for medical purposes. Aphids are usually associated with ants
for the purpose of protection; therefore, the aphid–ant relationship is a typical example
of symbiosis [33]. Aphids are also attacked by bioenemies such as lady beetles [34], and
lacewing larvae [35].

Here, we hypothesize that the raw extract from the endosymbiont bacteria in aphids
and their surrounding insects, whether they are protectors such as ants or bioenemies
such as lady beetles and lacewing larvae, exhibit antimicrobial qualities. To test this
hypothesis, we first isolated the endosymbiotic bacteria associated with aphids collected
from pomegranates, grapes and Taif roses, along with aphid predators (lady beetles and
lacewing larvae) and ants, and then we investigated the significant biological activities of
the EA-ME extracted from five strains of pathogenic bacteria (S. aureus, S. epidermidis, E-coli,
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K. pneumoniae and E. cloacae), and their anticancer activities against two cancer cell lines
(adenocarcinoma human alveolar epithelial cells and human colon carcinoma).

2. Results
2.1. Collection of Insects and Isolation of Insects Endosymbiotic Bacteria

Three species of aphids were collected and identified molecularly based on the se-
quence variation in the COI; A. punicae, M. rosae and A. illinoisensis (Figure 1). The identified
aphid predators used in this study included C. carnea, C. undecimpunctata. In addition, one
protective species of ant, T. magnum. Isolation of endosymbiotic bacteria from insects was
attempted over nutrient agar plates. A total of 13 samples of bacteria were isolated and
identified through the 16S rRNA gene sequences. The resultant sequences were introduced
into the BLAST search tool of the gene bank, resulting in several bacterial genera. As
shown in Figure 1, phylogenetic analysis has confirmed the identification of related species
grouped into the same clade. Of the identified bacteria, only ten different species were
selected to test their antibacterial and antiproliferative activities (Table 5).
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2.2. Antibacterial Activities of Endosymbiotic Bacteria

No antibacterial activities were recorded for EA-ME after three days of incubation.
However, after seven days of incubation, the EA-ME of three endosymbionts, Planococ-
cus sp., K. aerogenes, and E. avium, from A. punicae, C. carnea and T. magnum, respectively,
were effective against both Gram-positive and Gram-negative bacteria, with inhibition
zones ranging from 10 to 20 mm. The effect of these EA-ME was comparable to the effect
of tetracycline against some tested pathogenic bacteria. Extracts of Enterobacter sp., Serra-
tia odorifera, Pantoea agglomerans, and Bacillus megaterium had no antimicrobial activities
against the tested pathogenic bacteria. The EA-ME of K. aerogenes was the most effective
against four pathogenic bacteria, S. aureus, S. epidermidis, K. pneumoniae, and E. coli, with
inhibition zones of 15.00 ± 0.41, 16.00 ± 0.29, 20.00 ± 1.11, and 18.00 ± 0.65 mm, respec-
tively. The EA-ME of Planococcus sp. was effective against Gram-positive bacteria; S. aureus
(17.00 ± 0.75 mm) and S. epidermidis (16.00 ± 0.91 mm), with weak antimicrobial activity
against K. pneumoniae (11.00 ± 0.35 mm).

The EA-ME of the endosymbiont Bacillus safensis displayed moderate antibacterial
activity against S. aureus. According to the MIC values, the EA-ME of Planococcus sp.
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displayed the lowest MIC value (0.3125, p≤ 0.01 mg/mL) against S. aureus and S. epidermidis.
Similarly, the EA-ME of E.s avium was effective against S. epidermidis, and K. pneumoniae,
at an MIC value of 0.3125 mg/mL, and the EA-ME of K. aerogenes was effective against
S. epidermidis, at the same MIC value (Table 1). Interestingly, the three EA-MEs displayed
low MIC values comparable with those of ampicillin and the second reference antibiotic,
tetracycline (Table 1).

Table 1. Antibacterial activities of the EA-ME of the endosymbiont at 10 mg/mL concentration, and
MIC values.

EA-ME
Pathogenic Bacteria

S. aureus S. epidermidis E. cloacae K. pneumoniae E. coli

Planococcus sp.

Inhibition zone 17.00 ± 0.75 16.00 ± 0.91 - 11.00 ± 0.35 -

MIC 0.3125 0.3125 0.625

MBC 0.3125 0.3125 1.25

Enterobacter sp. - - - - -

S. odorifera - - - - -

K. aerogenes

Inhibition zone 15.00 ± 0.41 16.00 ± 0.29 - 20.00 ± 1.11 18.00 ± 0.65

MIC 0.625 0.3125 0.156 0.156

MBC 0.625 0.3125 0.625 0.3125

S. fonticola - - - - -

P. stuartii

Inhibition zone 09.00 ± 0.22 - - - -

MIC 1.25

MBC 2.5

E. avium

Inhibition zone 10.00 ± 0.13 17.00 ± 0.37 11.00 ± 0.39 - -

MIC 1.25 0.3125 0.625

MBC 2.5 0.625 1.25

P. agglomerans - - - - -

B. megaterium - - - - -

B. safensis

Inhibition zone 10.00 ± 0.45 - - - -

MIC 1.25

MBC 2.5

Ampicillin 19.00 ± 0.52
0.3125

16.00 ± 0.95
0.625

15.00 ± 0.37
0.625 - 11.00 ± 0.33

0.625

Tetracycline 35.00 ± 0.54
0.039

33.00 ± 0.36
0.039

25.00 ± 0.22
0.078

29.00 ± 0.63
0.078

30.00 ± 0.54
0.039

Data presented in the table are means of three replicates SD (n = 3). MIC/MBC values are measured as mg/mL.

2.3. Antiproliferative Activities of Endosymbiotic Bacteria

The cytotoxic activities of ten endosymbiont ethyl acetate fractions of methanolic
crude bacterial extracts (EA-ME) were tested against A549 and Hct116 using an MTT assay.
In general, the intensity of the cytotoxicity was directly proportional to the concentration of
the extracts. A high concentration of EA-ME (100 µg/mL) was effective in reducing the cell
growth of A549 and Hct116 cells. The EA-ME of P. stuartii displayed the lowest cytotoxic
activity against Hct116 (34.1% cell reduction) at a concentration of 100 µg/mL, whereas the
same concentration resulted in a 50.1% cell reduction against A549 cells. The EA-ME of
K. aerogenes displayed the highest cytotoxic activity against A549 cells (92.9% cell reduction)
at a concentration of 100 µg/mL. This was followed by the EA-ME of P. agglomerans and
Enterococcus avium, with which cell reduction was 90.9 and 90.0%, respectively. In the case
of Hct116 cells, the EA-ME of K. aerogenes at a concentration of 100 µg/mL showed an
89.5% cell reduction, followed by the EA-ME of P. agglomerans (87.8% cell reduction) and
E. avium (86.7% cell reduction) (Figure 2A).
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Figure 2. MTT cytotoxic activity assay of insect endosymbiotic bacterial EA-ME tested at different
concentrations from 100 µg/mL to 0.39 µg/mL on (A) A549 lung carcinoma cells and (B) Hct116
human colon carcinoma cells. Bars represent means ± standard deviations (SD) measured for each
concentration (n = 3). The statistical significance of the IC50 values of different extracts and the
positive control, dasatinib, were calculated using an unpaired Student’s t-test, where (•) p < 0.05,
(••) p < 0.01 and (•••) p < 0.001.

At a low concentration of 12.5 µg/mL, the EA-ME of K. aerogenes and E. avium dis-
played the highest cytotoxicity against A549 cells, with a cell reduction of 79.4% and 67.2%,
respectively. This was followed by the EA-ME of P. agglomerans and S. odorifera, with which
cell reduction was about 59.2%. The EA-ME of S. fonticola and P. stuartii had no impact on
A549 cells above a concentration of 50 µg/mL. For Hct116 cells (Figure 2B), the EA-ME
of K. aerogenes and P. agglomerans at a concentration of 12.5 µg/mL showed a 69.4% and
67.8% cell reduction, respectively. This was followed by the EA-ME of Planococcus sp. and
B. megaterium, with which cell reduction was 60% and 49.8% at the same concentration,
respectively. At a concentration of 6.25 µg/mL, only the EA-ME of Planococcus sp. resulted
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in a 49.8% cell reduction of Hct116 cells. In the case of A549 cells (Figure 2A), the EA-ME of
K. aerogenes and E. avium showed the highest cytotoxicity, with a cell reduction of 59.5% and
45%, respectively. The remaining EA-MEs were ineffective or displayed weak cytotoxicity
against both cells at the same concentration. The IC50 values were determined for the
EA-ME of Planococcus sp. (25 ± 8.22) µg/mL against A549 and (48 ± 11.62) µg/mL against
Hct116 cells. For the EA-ME of K. aerogenes, the IC50 values were (67 ± 13.82) µg/mL and
(38 ± 9.20) µg/mL for A549 cells and Hct116 cells, respectively. The EA-ME of E. avium
showed the lowest IC50 values of (13 ± 14.13) µg/mL and (22 ± 11.13) µg/mL against
A549 cell and Hct116 cells, respectively. The positive control, dasatinib, resulted in a 94.7%
(IC50: 25 ± 9.1 µg/mL) and 93.7% (IC50: 28 ± 13.2 µg/mL) reduction in A549 and Hct116
cells, respectively. The significance of the anticancer activity of the different EA-ME ranged
from p < 0.001 to <0.05, which is comparable to the positive control, dasatinib.

2.4. Chemical Analyses for Endosymbiotic Bacterial EA-ME

The GC-MS results revealed several chemical compounds in each EA-ME; there were
31 compounds in the EA-ME of Planococcus sp., 16 compounds in E. avium, and 22 com-
pounds in K. aerogenes. Among the principal natural compounds identified in the AE-ME of
Planococcus sp. are folinic acid, benzoic acid, 4-(1,1-dimethylethoxy), 16-octadecadiynoic acid,
methyl ester, Z-8-methyl-9-tetradecenoic acid, oleic acid, octadecanoic acid, 9,10-dihydroxy,
and methyl ester (Table 2). The EA-ME of K. aerogenes also has a number of major compounds:
pregnane-3,11,20,21-tetrol, cyclic 20,21-(butyl boronate), acetamide, n-(p-methoxybenzyl),
hydrocinnamic acid, o-[(1,2,3,4-tetrahydro-2-naphthyl)methyl], 2,4-dimethylhexanedioic acid,
dl-2,6-diaminoheptanedioic acid, and esteoleic acid, (Table 3). In the case of E. avium, the most
important compounds are 13,16-octadecadiynoic acid, methyl ester, pyrrolo[1,2-a] pyrazine-
1,4-dione, hexahydro-3-(2-methylpropyl), pentadecanoic acid, 8,11-octadecadiynoic acid,
methyl ester, arachidonic acid, cholest-5-en-3-ol, and cholest-5-en-3-yl (9z)-9-octadecenoate
(Table 4). Some of the identified compounds were reported in all three EA-MEs.

The GC/MS of the EA-ME of E. avium bacteria isolated from A. punicae feeding on
pomegranate tree shows the presence of two compounds: mono(2-ethylhexyl) phthalate,
which may be detected as a secondary metabolite of di(2-ethylhexyl) phthalate (DEHP), and
pregnane-3,11,20,21-tetrol, cyclic 20,21-(butyl boronate) of plant origin (Table 3). Likewise, the
GC/MS of the EA-ME from K. aerogene bacteria (Table 4), shows the presence of two synthetic
contaminants: acetamide, n-(p-methoxybenzyl), and didodecyl phthalate (Table S1).

Phthalic acid esters (PAEs) are lipophilic chemicals widely used as plasticizers and
additives to improve the mechanical extensibility and flexibility of various polymers. They
have been easily detected in the air, water, soil and sediment not only from synthetic materi-
als but also from living organisms, such as microbes, algae, plants, etc., suggesting they may
be biosynthetic in nature [36]. The major PAEs identified from natural sources generally
include di-n-butyl phthalate, diethyl phthalate, dimethyl phthalate, di(2-ethylhexyl) phtha-
late, diisobutyl phthalate, and diisooctyl phthalate. Therefore, di(2-ethylhexyl) phthalate
(DEHP) is a plasticizer largely detected in the bio-organism. However, Ref. Bhattacharyya,
Dhar [37] shows that the cell-less extract from a cultured Mycolicibacterium sp. strain (MBM)
grown on DEHP was found to convert DEHP to MEHP and phthalic acid (PA).

Pregnane-3,11,20,21-tetrol, cyclic 20,21-(butyl boronate) was detected in the n-hexane
fraction of Phlomis stewartia [38] and the methanolic extract of Epilobium angustifolium L. [39],
and in our study was detected in the EA-ME of E. avium bacteria isolate from A. punicae
feeding on pomegranate tree. Ref. Jansen, Allwood [40] shows that the metabolic interface
between the two organisms, the metabolome of the caterpillar, can be modified by the
vegetable metabolome via these metabolites. Many studies have focused on several topics
of plant–insect interaction at nutrient, molecular, physiological and evolutionary levels [41].
However, a small chemical difference between host plant sources can affect the overall
metabolome of specialized herbivores. Significant nutritional changes in herbivorous
tissues could cause larger changes in food web structure [40]. The chemical compositions,
retention times (RT) and molecular weights are shown in Tables 2–4.
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Table 2. Chemical compositions of Planococcu. sp. ethyl acetate fraction of methanol extract.

Compound Name RT Molecular Formula Molecular Weight

2-(2,5-Hexadiynyloxy) tetrahydro-2H-pyran ?? 4.10 C11H14O2 178

Dimethyl diphenyl tethylidyl pyrrolidine ?? 4.97 C20H23N 277

2-Aminoethanethiol hydrogen sulfate ester ?? 6.27 C2H7NO3S2 157

3-Methyl-4-nitro-5-(1-pyrazolyl) pyrazole ?? 6.48 C7H7N5O2 193

4a,5,8,8a-Tetrahydro-4,4a-dimethyl-2(1H)-naphthalenone ?? 8.00 C12H16O 176

Folinic acid ?? 8.15 C20H23N7O7 473

2,3-Dihydro-2-thioxo-3-diallylaminom ethyl benzoxazol ?? 9.14 C14H16N2OS 260

1-(á-d-Arabinofuranosyl)-4-O-difluoro methyl uracil ??? 14.79 C10H12F2N2O6 294

4-(1,1-Dimethylethoxy) benzoic acid ?? 15.05 C11H14O3 194

Methyl 13,16-octadecadiynate ? 19.09 C19H30O2 290

(2-Phenyl-1,3-dioxolan-4-yl)methyl 9-octadecenoate ??? 20.96 C28H44O4 444

Leukotriene D4 methyl ester ?? 22.65 C26H42N2O6S 510

Z-8-Methyl-9-tetradecenoic acid ?? 22.72 C15H28O2 240

9,10-Dihydroxy methyl octadecanoat?? 23.38 C19H38O4 330

2,3-Bis(acetyloxy)propyl dodecanoic acid,?? 23.90 C19H34O6 358

Estra-1,3,5(10)-trien-17á-ol ?? 24.80 C18H24O 256

D-Fructose, diethyl mercaptal, pentaacetate ?? 25.17 C20H32O10S2 496

7,8,15,16-Tetramethyl-1,9-dio
xacyclohexadeca-4,13-diene-2,10-dione ??? 25.27 C18H28O4 308

D-Fructose, diethyl mercaptal, pentaacetate 25.58 C20H32O10S2 496

(z,z,z)-6,9,12-Phenylmethyl octadecatrienoate, ester,? 39.05 C25H36O2 368

Cholest-5-en-3-ol (3á) ? 39.57 C27H46O 386

Structures with a reverse match between 800 and 700 were tagged with a “?”, structures with a reverse match
between 700–600 with “??”, and structures with a reverse match below 600 with “???”. Reverse match factors
below 500 was not accepted.

Table 3. Chemical compositions for E. avium ethyl acetate fraction of methanol extract.

Compound Name RT Molecular Formula Molecular Weight

5.Alpha pregnane-3.alpha.,11.beta.,20.beta.,21-tetrol, cyclic
20,21-(2-methyl-2-propaneboronate) ?? 4.09 C25H43BO4 418

2-Octyl methyl cyclopropanedodecanoiate ?? 14.77 C24H46O2 366

Methyl-16-hydroxy-hexadecanoate ?? 19.06 C17H34O3 286

Methyl hexandecanoiate ? 22.11 C17H34O2 270

N-(3-Chlorobenzylidene)-10-undecenoic acid hydrazide ??? 23.40 C18H25ClN2O 320

Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) ?? 24.85 C11H18N2O2 210

Pentadecanoic acid ?? 24.95 C15H30O2 242

13-Methyl oxacyclotetradecan-2-one ?? 26.00 C14H26O2 226

Methyl-8,11-octadecadiynoic acid ?? 27.14 C19H30O2 290

1,2-Benzene dicarboxylic acid ? 33.57 C24H38O4 390

Mono(2-ethylhexyl) phthalate ?? 36.42 C16H22O4 278

Arachidonic acid ?? 39.41 C20H32O2 304

Cholest-5-en-3-yl (9z)-9-octadecenoate ? 39.57 C45H78O2 650

Structures with a reverse match between 800 and 700 were tagged with a “?”, structures with a reverse match
between 700–600 with “??”, and structures with a reverse match below 600 with “???”. Reverse match factors
below 500 was not accepted.
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Table 4. Chemical compositions for K. aerogenes ethyl acetate fraction of methanol extract.

Compound Name RT Molecular Formula Molecular Weight

2-(2,5-Hexadiynyloxy) tetrahydro-2H-pyran ?? 4.09 C11H14O2 178

N-(p-methoxybenzyl) acetamide ?? 4.62 C10H13NO2 179

1-(1-Cyclopenten-1-yl)- pyrrolidine ? 14.74 C12H16S 192

Methyl 13,16-octadecadiynoiate? 19.07 C19H30O2 290

2,4-Dimethyl hexanedioic acid ?? 23.42 C8H14O4 174

Oleic acid ? 24.87 C18H34O2 282

(Z)-9-Methyl octadecenoate? 26.30 C19H36O2 296

Methyl cyclopentane undecanoiate ? 26.81 C17H32O2 268

Didodecyl phthalate ? 33.58 C32H54O4 502

2-Aminoethanethiol hydrogen sulfate ? 39.57 C2H7NO3S2 157

Structures with a reverse match between 800 and 700 were tagged with a “?”, and structures with a reverse match
between 700–600 with “??”. Reverse match factors below 500 was not accepted.

3. Discussion

The continuous emergence of MDR bacteria and the deleterious effects of traditional
cancer treatments have directed researchers to seek alternative approaches. In the past
few decades, natural products have made up more than 40% of the drugs approved as
anti-microbial or anti-proliferative agents [42]. Bioactive compounds of natural origin have
received much attention due to their safety profile, effectiveness, and availability. A huge
body of research focuses mainly on medicinal plants, and investigates their anticancer and
antibacterial activities against a wide range of pathogenic bacteria and cancer cells [43–45].
Another important source of bioactive compounds is endophytic bacteria [6,46–50]. Few
studies have investigated the antibacterial and anticancer activities of endosymbiotic
bacteria. In these studies, endosymbiotic bacteria such as bacilli were isolated from many
arthropods [51,52], Enterobacter sp. from Dysidea granulosa [53] and Bacillus brevis, and
Bacillus choshinensis from the earthworm Pheretimasp [54].

In this study, the EA-ME collected after three days of incubation showed neither
antibacterial activity nor anticancer activity. Strong biological activities against bacteria
andcell lines were obtained from EA-MEs collected after seven days of incubation. After
seven days, nutrient depletion in the medium forces bacteria to enter the stationary phase
and release secondary metabolites. In several studies, secondary metabolites were obtained
after a seven-day bacterial incubation period [5,49,55]. Among the tested EA-ME, K.
aerogenes’s extract displayed strong antibacterial activities against both Gram-positive and
Gram-negative bacteria. Such an antibacterial effect is greater than that of the EA-ME of the
Raoultella ornithinolytica endophytic bacteria, against E. coli and K. pneumoniae, for which
the MIC values were 0.5 and 0.25 mg/mL, respectively [5]. In another study, the EA-ME of
earthworm endosymbiotic bacteria, Bacillus sp., resulted in an inhibition zone of 16.88 mm
for Staphylococcus aureus [54].

In our study, the EA-ME of Planococcus sp. and K. aerogenes inhibited the growth of
S. aureus with inhibition zones of 17.0 and 15.0 mm, respectively. The EA-ME of Bacillus
amyloliquefaciens isolated from a marine sponge showed strong antibacterial activity against
S. aureus (inhibition zones 20.0 mm). In the same study, the EA-ME of Alcaligenes faecalis
displayed high activity against E. coli (inhibition zone 16.0 mm) [56]. The EA-ME of
B. safensis displayed moderate activity against S. aureus (MIC 1.25 mg/mL), and its extract
had no impact on the remaining tested bacteria (Table 1). In the study of Sebola et al., the
EA-ME of endophytic B. safensis extract showed activity against E. coli at a concentration of
0.25 mg/mL [5].

In another study, B. safensis isolated from Ophioglossum reticulatum displayed antibac-
terial activity against S. aureus and E. coli, with inhibition zones of 15.0 mm and 11.33 mm,
respectively [57]. Such a difference in antibacterial activity could be attributed to the host,
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in which bacteria, in some instances, share the chemistry of their hosts to some extent [58].
In the study of Sebola and Mukherjee, B. safensis was isolated from ethnomedicinal plants
in which bacteria may mimic the chemistry of their host plants and produce more bioac-
tive and effective chemicals [58]. The association of bacteria with aphids was reported to
perform several functions, such as providing essential amino acids, reproductive manipu-
lations, and thermal adaptation [59]. In addition, chemicals produced by these symbiotic
bacteria also help in defence against pathogenic microbes and predators [60–63].

For the antiproliferative activities, the data of the MTT assay showed the strong cytotox-
icity of some EA-ME, including those of K. aerogenes (IC50: 67 ± 13.82 µg/mL for A549 cells
and 38 ± 9.2 µg/mL for Hct116 cells) P. agglomerans, E. avium (IC50: 13 ± 14.13 µg/mL for
A549 and 22 ± 11.13 µg/mL for Hct116 cells) and Planococcus sp. (25 ± 8.22 µg/mL for
A549 cells and 48 ± 11.62 µg/mL for Hct116 cells). The EA-ME of endophytic B. safensis
displayed notable cytotoxicity against A549 cells, with a 50% cell reduction at a concentra-
tion of 100 µg/mL [5]. In another study, the EA-ME of B. safensis isolated from sponges
was reported to have cytotoxic activity against HepG2, HCT, and MCF7 [64]. However, in
our study, the EA-ME of B. safensis showed weak or no cytotoxic activity against A549 and
Hct116 cells at low concentrations (Figure 2A,B). Only at a high concentration of 100 µg/mL
did the EA-ME result in 67.7% and 57.8% cell reduction in A549 cells and Hct116, respec-
tively. The difference in EA-ME activity across the studies could be attributed the host from
which the bacteria was isolated [58]. Interestingly, the EA-ME of Bacillus sp. was able to
reduce the cell viability of A549 cells to 0% at 100 µg/mL [65]. The activity of Bacillus sp.
against various types of cancer cells was reported [66–70]. These findings highlight the
importance of Bacillus sp. as a source of biologically active compounds against cancer cells.

The chemical constituents of three EA-ME of Planococcus sp., E. avium, and K. aerogenes
were analysed using GC-MS. Many of the identified compounds (Tables 2–4) were reported
in several studies to have biological activities against pathogenic bacteria and cancer cells.
For example, 2H-pyran, 2-(2,5-hexadiynyloxy) tetrahydro, identified in the three extracts,
was isolated previously from Aspergillus terreus and reported to have antibacterial and
antifungal activity [71]. It was also identified in P. guajava, Pogostemon quadrifolius, and
many other medicinal plants with different biological activities [72–74]. In a recent study,
the pyran compound was reported to act against Salmonella enterica serovar Typhi [75]. The
compound dimethyl diphenyl tethylidyl pyrrolidine from Planococcus sp. was effective
against several pathogenic bacteria such as Porphyromonas gingivalis, S. aureus, S. pyrogenes
and E. coli, and reported to have antifungal activity against Aspergillus niger, Candida
albicans and Aspergillus clavatus [76,77]. 3-Methyl-4-nitro-5-(1-pyrazolyl) pyrazole, which
was identified in the EA-ME of Planococcus sp., was reported in the literature to have
antimicrobial activities against B. subtilis, S. aureus, P. fluorescens, P. aeruginosa and E. coli [78].
In addition, it had anticancer activities against various types of cell lines [79–81].

Long-chain fatty acids such as oleic acid, cholest-5-en-3-ol and were also identified
in one or more of the three EA-MEs. Oleic acid was reported to have antiproliferative
activity against hepatocellular carcinoma cell lines, tongue squamous cell carcinomas and
other cancer cells [82,83]. Ref. Dias, Raposo [84] suggested that this fatty acid has the
potential to synergistically modify antibiotic activity. In addition, it had antibacterial
activity against S. aureus and E. coli [85]. Cholest-5-en-3-ol was also reported to have
antitumor and antibacterial activities against several pathogens, including Acinetobacter
baumannii [86]. This biomarker is an identified sterol which has not been evaluated for its
antitumor properties, but it has been reported to have anti-oxidative and antimicrobial
properties [87]. Other compounds that were identified and reported to have major bioactive
metabolites include di-(2-ethylhexyl) phthalate, isolated from River Nile-derived fungus
Aspergillus awamori by Lotfy, Hassan [88], and pentadecanoic acid, which originates from
some plants. Ruminant milk fat and fish oils have also been evaluated for their in vitro
anticancer effects [89]. Therefore, some phenolic compounds, flavonoids and tannins in
insects have bioactive characteristics and maintain stability during processing [90,91].
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4. Materials and Methods
4.1. Aphid Sampling and Identification

Aphids were collected from different plant hosts including pomegranate, grapes and
Taif roses. Aphid predators such as the ladybird C. undecimpunctata, lacewing larvae
C. carnea, and ant T. magnum were collected from different sites located in Taif, Saudi
Arabia. The samples were collected from May to September of 2021 (Table 5). For
molecular identification of the collected insects, DNA extraction was accomplished using
the QIAamp® DNA Mini Kit (QIAGEN, Hilden, Germany) as described elsewhere [92].
The mitochondrial cytochrome oxidase gene (COI) was amplified with PCR, using the
primer set (LCO1490) (F-5′-GGTCAACAAATCATAAAGATATTGG-3′) and (R HCO2) (R-
5′-TAAACTTCAGGGTGACCAAAAAATCA-3′) [93]. The PCR reaction was performed as
described in our previous study [92]. PCR products were visualized on 1.5% agarose gel
using the BDA gel documentation system (Biometra, Göttingen, Germany). PCR products
corresponding to the size of the amplified COI gene were retrieved from the gel, and DNA
sequencing was performed on both strands using a 3130xl Genetic Analyzer (Biosystems;
Thermo Fisher Scientific, Waltham, MA, USA). The raw sequence data were edited and
assembled using Bio-edit software, version 7.2.5 (Ibis Biosciences, Carlsbad, CA, USA) and
the Edit Seq program of the Lasergene software package, version 3.18 (DNA Star, Madi-
son, WI, USA). The BLAST tool was used to identify the assembled sequences [94]. The
assembled sequences were deposited in GenBank with the following accession numbers
(aphids: MZ091377, MZ091379, and OL823183; aphid predators: ON149796, ON149797 and
ant: ON149799).

Table 5. Insect samples, collection dates and collection sites in the Taif governorate.

Insects Insects’ Species Collection Date Endosymbiotic Bacteria Accession Numbers

Pomegranate aphid A. punicae 27 June 2021
Planococcus sp. OP320679

Bacillus megaterium OQ351927

Taif rose aphid M. rosae 11 September 2021 Pantoea agglomerans OP320678

Bacillus safensis OQ351925

Grape aphid A. illinoisensis 21 May 2021 Bacillus sp. -

Lacewing C. carnea 27 June 2021

Klebsiella aerogene OP320677

Serratia fonticola OP320681

Providencia stuartii OP320680

Eleven-spot ladybird C. undecimpunctata 27 June 2021

Enterobacter sp. OP320676

Bacillus sp. -

Serratia odorifera OP320682

Ant T. magnum 27 June 2021
Bacillus sp. -

Serratia odorifera OP320682

4.2. Isolation of Insect Bacteria

Bacteria were isolated from the three identified aphid species, their two species of
predators and one species of ant. The insects were surface-sterilized with 70% ethanol for
3 min and washed three times with sterile PBS to get rid of any surface contamination. The
insects were then crushed and homogenized individually in nutrient broth media. Each
isolation procedure was carried out in triplicate for each cultivar. Each triplicate suspension
was diluted individually (10−1 through 10−5). Some 100 µL of each dilution was plated on
nutrient agar plates. Plates were incubated in an inverted position for 2–3 days at 30 ◦C.
Growing colonies were picked up, and then two rounds of purification were applied using
nutrient agar plates. Purified bacterial isolates were picked, inoculated into 5 mL nutrient
broth, and then incubated overnight at 37 ◦C. Following centrifugation, the pellets were
subjected to the DNA extraction step.
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4.3. DNA Extraction, Amplification and 16S rRNA Gene Sequencing

DNA was extracted individually from isolated bacteria using a DNeasy® Blood and
Tissue kit (QIAGEN) kit, following the manufacturer’s instructions. The V3 and V4 re-
gions of the 16S rRNA gene was amplified using the following primer sets: Bakt_341F
(CCTACGGGNGGCWGCAG), and Bakt_805R (GACTACHVGGGTATCTAATCC) [95]. The
PCR reaction mixture contained 4 µL of FIREPol® Ready to Load Master Mix (SolIS Bio-
Dyne, Tartu, Estonia), 0.6 µL of each primer, 2 µL of isolated DNA, and water to bring the
total volume to 20 µL. The PCR reaction conditions were initial denaturation at 95 ◦C for
5 min, followed by 30 cycles of denaturation at 95 ◦C for 40 s, annealing at 55 ◦C for 2 min
and extension at 72 ◦C for 1 min and a final extension step at 72 ◦C for 7 min. The resultant
PCR products were analyzed on 1.5% agarose gels and visualized using the BDA gel docu-
mentation system (Biometra, Göttingen, Germany). PCR bands corresponding to the 16S
rRNA gene were excised from the gel and purified using Illustra GFX PCR DNA and a gel
band purification kit (GE Healthcare). DNA sequencing was accomplished using 3130xl
Genetic Analyzer (Biosystems; Thermo Fisher Scientific, Waltham, MA, USA). The raw
sequence data were edited and assembled using Bioedit software, version 7.2.5 (Ibis Bio-
sciences, Carlsbad, CA, USA), and the EditSeq program of the Lasergene software package,
version 3.18 (DNAStar, Madison, WI, USA). Identification of bacterial isolates was achieved
using the BLAST tool [94] and the 16S rRNA gene sequences genes were deposited in Gen-
Bank with the following accession numbers (OP320676–OP320682, OQ351925–OQ351927),
as shown in Table 5.

4.4. Preparation of Ethyl Acetate Fraction of Methanolic Extract (EA-ME) from
Endosymbiotic Bacteria

Among the identified bacterial isolates, 10 out of 13 isolates (Table 5) were selected to
investigate their antibacterial and anticancer activities. Each bacterium was inoculated into
an Erlenmeyer flask containing 1 L of nutrient broth, and incubated in shaker incubator
for 3–7 days at 200 rcf and 30 ◦C. After seven days of incubation, bacterial cultures were
centrifuged, and sterile Amberlite® XAD16 (60 g/L; Sigma, BCBR6696V) was added to the
supernatant and shaken overnight at 200 rcf. The resin from each culture was collected indi-
vidually after cheesecloth filtration into Erlenmeyer flasks; 300 mL of methanol was added
to each flask and stirred for 2 h. The methanolic crude extract was completely dried using
a rotary evaporator, weighted, and the obtained dry mass was further fractionated using
2 mL of ethyl acetate, based on the procedure reported in the previous studies [96–99] to
yield the ethyl acetate fraction of methanolic extract (EA-ME). Some 5 µL of 1-bromodecane
(4 mmol/L in ethyl acetate) was added, as an internal standard (IS), to each sample. The
samples were stored at −80 ◦C.

4.5. Antibacterial Activities of EA-ME against Pathogenic Bacteria

The effect of each endosymbiont EA-ME was tested against five pathogenic bacteria,
Staphylococcus aureus (ATCC6538), Staphylococcus epidermidis (ATCC14990), Escherichia coli
(ATCC10536), Klebsiella pneumoniae (ATCC10031) and Enterococcus cloacae (ATCC13047),
using the disk diffusion method [100]. The EA-ME were filtered through a Millipore filter.
Sterile filter paper discs 8 mm in diameter were loaded with three different masses of
each EA-ME: 2, 5, and 10 mg. The discs were allowed to dry at room temperature and
placed over Mueller–Hinton Agar plates seeded with the pathogenic bacteria. Disks loaded
with ampicillin and tetracycline were used as positive control at a concentration of 30 µg
(Thermo Scientific, Applied Biosystems, Invitrogen, Gibco). The plates were incubated
for 2 h at −4 ◦C to allow diffusion of the EA-ME, and then transferred to the incubator at
37 ◦C for 24 h. The inhibition zones around the discs were measured and were considered
markers for antibacterial activity.
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4.6. Resazurin-Based 96-Well Plate Microdilution Assay for the Determination of MICs

The principle of this assay is based on the reduction of resazurin by living bacteria,
resulting in colour changes from blue to pink and finally to colourless, due to oxygen
deficiency in the medium. A slight colour change indicates the inability of bacteria to
grow, and hence the antibacterial activity of the tested substance. Endosymbiont EA-ME
that showed antibacterial activity were manipulated further to determine their minimum
inhibitory concentration (MICs) and minimum bactericidal concentration (MBCs) using a
microdilution assay. Serial dilutions from each EA-ME were prepared in MH broth, starting
from 10 down to 0.039 mg/mL. The inoculum (100 µL) from each pathogenic bacterium
was added to the assigned wells and the plate was incubated at 37 ◦C for overnight. On
the next day, 10 µL of resazurin sodium salt dye solution (0.02% w/v) was added to the
assigned wells and the plate was incubated for 2 h. After incubation, the plate was visually
checked for colour change, and wells with a known concentration showing slight colour
change were determined to be the MIC. The experiment was carried out in duplicate for
each concentration of the EA-ME. The concentration above the MIC value was considered
as that of MBC.

4.7. Antiproliferative Activity of the Endosymbiont EA m Extracts

The biological activity of the bacterial EA-ME against two types of cancer cell lines,
adenocarcinoma human alveolar epithelial cells (A549), and human colon carcinoma
(hct116), were tested in vitro using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium
Bromide (MTT) colorimetric assay. The cells were maintained in Dulbecco’s Modified
Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum, 2 mM L-glutamine,
and 1% penicillin/streptomycin. The test was performed in 96-well plates, and the cells
(5 × 104 cells/mL) were seeded into the assigned wells and were incubated overnight at
37 ◦C, 5% CO2, and 99% humidity. Two-fold serial dilutions of the EA-ME, starting from
100 µg/mL down to 0.39 µg/mL, were prepared in DMEM and added to the assigned
wells. Control wells received ethyl acetate only and the plates were incubated for four
days. The MTT was added to the cells, and the plates were incubated under growth con-
ditions for two hours. The medium was then removed, and the cells were washed two
times in phosphate-buffered saline (PBS). The formed formazan crystals were dissolved
in Isopropanol. The cytotoxic activity of the anticancer drug dasatinib against the two
cell lines A549 and Hct116 was used as a positive control for comparative purposes. The
compound was diluted to the same concentrations of the tested extracts. The experiment
was performed in triplicate for each concentration, the absorbance was measured at 595 nm
and the average values obtained were considered. The following formula was used to
calculate cell viability (Equation (1)) [101]:

% cell viability =
A1− A0
Ac− A0

× 100 (1)

where A0, Ac and A1 are, respectively, the absorbance of blank, control solution and the
EA-ME at 595 nm. The IC50 % cell viability values were determined from % cell viability
and the concentration curve, according to the following Equation (2) [102]:

IC50 =
a− c
b− c

× 100 (2)

where a, b and c are, respectively, the absorbance at each concentration of the anticancer
reagent, the absorbance at 0 µM of the anticancer reagent, and the absorbance of the blank.

4.8. Gas Chromatography–Mass Spectroscopy Analysis (GC-MS)

Samples were analysed sing gas chromatography–mass spectrometer GC-MS TSQ
(Thermo Scientific, Austin, TX, USA) with a direct capillary column TG–5MS (30 m ×
0.25 mm × 0.25 µm film thickness). The run was performed according to the protocol of
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Abd El-Kareem, Rabbih (2016) [103]. The column oven temperature was initially held at
50 ◦C and then increased by 5 ◦C/min to 250 ◦C hold for 2 min, and then increased to a
final temperature of 300 ◦C by 30 ◦C/min, and hold for 2 min. The injector and MS transfer
line temperatures were kept at 270 ◦C. Helium was used as a carrier gas at a constant flow
rate of 1 mL/min. Some 1 µL of samples was injected automatically using an autosampler
AS1300 coupled with GC in the spitless mode. The mass spectrometry conditions were
as follows: the electron ionization source was set at 70 eV, the MS source temperature at
200 ◦C, and the solvent cut time was 4 min. The MS transfer line temperatures were kept at
260 ◦C. The mass spectrometer was run in full scan mode (m/z 50–650).

The components were identified using comparison of their mass spectra with those of
Wiley09 and the National Institute of Standard Technology (NIST 14) mass spectral database.
The strategy of accepting the identification of compounds based on the reverse match for
untargeted analysis was adopted from Alsufyani et. al., (2021) [104]. The retention time of
compounds was adjusted to that of IS (Rt ≈ 23:09–23:13 min).

4.9. Statistical Analysis

Antibacterial and anticancer results were statistically analysed using Microsoft Excel.
The measurements of inhibition zones, MIC values, and IC50 values were calculated and
expressed as means± of standard deviations of the triplicates. The IC50 values of the tested
extracts and the positive control, dasatinib, against the two cell lines were compared with
the control cells using an unpaired Student’s t-test to calculate the statistical significance.
p values of ≤0.05 were considered as statistically significant.

5. Conclusions

In conclusion, this study highlights the importance of aphid endosymbiotic bacteria,
predators and ants as sources of bioactive compounds for cancer and bacterial pathogens.
Among the bacteria tested, the EA-EM from Planococcus sp., K. aerogenes, and E. avium were
the most effective against pathogenic bacteria and cancerous cell lines. Large-scale studies
to investigate more endosymbiotic bacteria of aphids and other insects may lead to the
discovery of new bacterial species with potent anticancer and antimicrobial activities.
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mdpi.com/article/10.3390/molecules28104255/s1, Figure S1: GC-MS chromatograms of bioactive
compounds extracted from the ethyl acetate fraction of the following bacteria (A) Planococcus sp.,
(B) K. aerogenes, and (C) E. avium. 1-bromodecane is IS (RT = 23.09–23.13); Table S1: Other chemical
compounds detected by GC/MS of EA-ME of E. avium and K. aerogene bacteria isolated respectively
from ant A. punicae and Lacewing (C. carnea). References [36,38,39,88,105–111] are cited in the
Supplementary Materials.
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Appendix A

Table A1. GenBank accession numbers of the data.

No Species Sequence Accession Number

Aphid and aphid predators and ants sequences of Cytochrome oxidase subunit I

1 Aphis illinoisensis

GGATCTTCACTTAGAATTTTAATTCGATTAGAATTAAGTCAAAT
TAATTCAATTATTAACAATAATCAATTATATAATGTAATCGTAACA
ATTCATGCTTTTATTATAATTTTTTTTATAACTATACCTATTGTAATT
GGAGGATTTGGAAATTGGTTAATTCCTATAATAATAGGATGTCC
AGATATATCTTTCCCACGACTAAATAATATTAGATTTTGGTTAC
TACCACCATCATTAATAATAATAATTTGTAGATTTATAATTAATA
ATGGAACAGGAACAGGATGGGCTATTTATCCACCTTTATCAA
ATAATATTGCTCACAATAATATTTCAGTTGATCTAACTATTTTTT
CTCTTCATATAGCAGGAATTTCATCAATTTTAGGAGCAATTAA
TTTTATTTGTCAATTTTAAACATAATACCACATAATATAAAACTA
AATCAAATTCCTTTATTCCCATGGTCAATCTTAATTACAGCCAT
ATTATTAATTTTATCTTTACCAGTTTTAGCTGGTGCTATTACAA
TATTATTAACTGATCGAAATTTAAATACATCATTTTTTGATCCA
GCAGGAGGAGGAGACCCTATTCTTTATCAACATTTATTCTGG
TTTTTT

MZ091377

2 Aphis punicae

GGTTCTTCTCTTAGAATTTTAATCCGATTAGAATTAAGTCA
AATTAATTCAATTATTAATAATAATCAACTATATAATGTAAT
TGTTACAATTCATGCTTTTATTATAATTTTTTTTATAACTA
TACCAATCGTTATTGGAGGTTTTGGAAATTGGTTAATTC
CTATAATAATAGGATGCCCAGATATATCTTTCCCACGACT
AAATAATATTAGATTCTGGTTATTACCACCCTCATTAATAAT
AATAATTTGCAGATTTATAATTAATAATGGAACAGGAACA
GGATGGACTATTTATCCACCTTTATCAAATAACATTGCTC
ATAATAATATTTCAGTAGACTTAACTATTTTTTCTTTACAT
TTAGCAGGTATTTCATCAATTTTAGGAGCAATTAATTTCAT
CTGCACTATCTTAAATATAATACCCAATAATATAAAATTAA
ATCAAATTCCTTTATTTCCATGGTCAATTTTAATTACAGC
TATATTATTAATTTTATCCTTACCCGTATTAGCTGGTGCTA
TTACTATATTATTAACAGATCGAAATTTAAATACATCATTT
TTTGATCCAGCAGGTGGTGGAGACCCTATTCTTTATCAA
CATTTATTTTGGTTTTTT

MZ091379

3 Macrosiphum rosae

ACTCTTAGAATTTTAATTCGATTAGAATTAAGACAAATTAA
TTCTATTATTAATAATAATCAATTATATAATGTAATTGTTACA
ATTCATGCTTTTATTATAATTTTTTTTATAACTATACCAATT
GTAATTGGAGGATTTGGAAATTGGTTAATTCCTATAATAA
TAGGATGCCCTGATATATCATTTCCACGTTTAAATAATATT
AGATTTTGGTTATTACCTCCATCATTAATAATAATAATTTG
TAGATTTTTAATTAATAACGGTACAGGAACAGGATGGAC
AATTTATCCACCTTTATCAAACAATATTGCACACAATAAT
ATTTCAGTTGATTTAACTATTTTTTCTCTGCATTTAGCA
GGAATTTCATCAATCTTAGGAGCAATTAACTTTATTTGT
ACAATTCTTAATATAATACCAAATAATTTAAAACTTAATC
AAATTCCTCTCTTTCCTTGGTCAATTTTAATTACAGCTA
TTTTACTAATTTTATCTTTACCAGTTTTAGCCGGTGCTA
TTACAATATTACTAACTGATCGTAATTTAAATACATCATT
TTTTGATCCAGCAGGAGGAGGAGACCCTATTTTATATC
AACATTTATTTTGGTTTTTG

OL823183
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4 Chrysoperla carnea

GGATCATCTCTAAGTTTATTGATTCGAGCTGAATTAGG
TCAACCAGGTTCTTTAATTGGTGATGATCAAATTTATA
ATGTAATTGTTACAGCACATGCTTTTATTATAATTTTTT
TTATAGTAATACCTATTGTAATTGGAGGTTTTGGTAATT
GGTTAGTTCCTTTAATATTAGCTGCTCCTGATATAGCT
TTTCCACGAATAAATAATATAAGTTTCTGGATATTACCT
CCTTCATTAACTTTATTACTTGCTTCTTCTATAGTAGAA
AGAGGAGCTGGAACTGGTTGGACAGTTTACCCTCCT
TTATCATCAAGAATTGCTCATGCTGGAGCTTCTGTTG
ATTTAGCTATTTTTAGTTTACATCTTGCCGGTATTTCAT
CAATTTTAGGAGCAGTAAATTTTATTACAACAGTAATTA
ATATACGATTAAGTTATATAACATTAGATCGTATACCATTA
TTTGTATGGTCAGTAGTAATTACAGCTTTATTATTATTACT
TTCATTACCTGTATTAGCTGGTGCTATTACTATATTATTAA
CTGATCGTAATTTAAATACTTCATTTTTTGA

ON149796

5 Coccinella undecimpunctata

GGATCATCTCTAAGAATCTTAATTCGGCTAGAACTTGGTACT
ACAAACAGATTAATTGGAAATGACCAAATTTATAATGTTATT
GTAACAGCTCATGCATTTATTATAATTTTTTTCATAGTAATAC
CAATTATAATTGGAGGATTTGGAAATTGGTTAGTTCCCCTA
ATAATTGGGGCACCTGATATAGCTTTCCCACGTTTAAATAA
TATAAGATTCTGGTTATTACCTCCTGCATTAACTCTCTTAAT
CATTAGAAGATTAGTAGAAATAGGGGCAGGAACAGGTTGG
ACTGTTTACCCACCTTTATCTTCTAATTTAGCTCATAATGG
GCCTTCTGTAGATTTAGTAATTTTTAGATTACACTTAGCAG
GAATTTCTTCAATTCTTGGAGCTGTAAATTTCATCTCTACA
ATTATAAATATACGCCCCTTTGGAATAAATTTGGATAAAACT
CCTTTATTTGTTTGGTCAGTACTTATTACTGCTATTTTATTA
CTTCTTTCATTACCAGTTTTAGCTGGGGCTATTACAATACT
ATTAACTGACCGTAATATTAATACATCTTTTTTTGA

ON149797

6 Tapinoma magnum

GGATCATCTCTAAGAATAATTATCCGTATTGAATTAGGAA
CATGTGGAGCATTAATTAATAATGATCAAATTTATAATTCA
ATTGTTACAGGACATGCTTTTATTATAATTTTTTTTATAG
TTATACCTTTTATAATTGGTGGATTTGGAAATTTTTTAGT
CCCATTAATATTAGGTGCACCAGATATGGCTTATCCTCG
AATAAATAATATAAGATTTTGGTTATTACCCCCATCAATT
TTATTATTAACTATTAGAAATTTTATCAGATCAGGGGTA
GGTACTGGTTGGACAGTATACCCACCCTTAGCATCTAA
TATTTATCATAACGGACCTTCAGTAGATTTAGCTATTTTT
TCTTTACATATTGCAGGAATATCATCAATCTTAGGCGCA
ATTAATTTTATTTCTACAATTATTAATATACATCATAAAAA
TTTTTCTATTGATAAAATTCCTTTATTAGTATGGTCAATT
TTAATTACTGCAATTTTATTACTTTTATCTCTTCCAGTTT
TAGCAGGAGCAATTACTATGTTATTAACTGATCGAAATTT
AAATACATCATTTTTTGA

ON149799

16s rRNA sequences of Bacterial isolates

7 Enterobacter sp.

ATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCC
GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCG
TTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCG
GTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAAC
CTGGGAACTGCATTCGAAACTGGCAGGCTAGAGTCT
TGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAA
ATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCG
GCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGC
GTGGGGAGCAAACAGGATTAGATACCCCGGTAGTCA

OP320676

8 Klebsiella aerogenes

ATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTC
CGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAG
CGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAG
GCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCT
CAACCTGGGAACTGCATTCGAAACTGGCAGGCTAG
AGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGC
GGTGAAATGCGTAGAGATCTGGAGGAATACCGGTG
GCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCA
GGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATA
CCCCGGTAGTCAA

OP320677
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9 Pantoea agglomerans

ATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTG
CCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCG
GAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAG
TCTGATGTGAAATCCCCGGGCTCAACCGGGGAACTGCATT
GGAAACTGGGAGGCTTGAGTCTTGTAGAGGGGGGTAGAA
TTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGA
ATACCGGTGGCGAAGGCGGCCCCCTGGACAGAGACTGA
CGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAG
ATACCCCCGGTAGTCAA

OP320678

10 Planococcus sp.

CTTGACGGTACCTCACCAGAAAGCCACGGCTAACTA
CGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAG
CGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCA
GGCGGTTCCTTAAGTCTGATGTGAAAGCCCACGGC
TCAACCGTGGAGGGTCATTGGAAACTGGGGAACTT
GAGTGCAGAAGAGGAAAGTGGAATTCCACGTGTAG
CGGTGAAATGCGTAGAGATGTGGAGGAACACCAGT
GGCGAAGGCGACTTTCTGGTCTGTAACTGACGCTG
AGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGA
TACCCCGGTAGTCA

OP320679

11 Providencia stuartii

ATTGACGTTACCGACAGAAGAAGCACCGGCTAACTCCG
TGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTA
ATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTG
ATTAAGTTAGATGTGAAATCCCCGGGCTTAACCTGGGA
ATGGCATCTAAAACTGGTCAGCTAGAGTCTTGTAGAGG
GGGGTAGAATTCCATGTGTAGCGGTGAAATGCGTAGAG
ATGTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGG
ACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAG
CAAACAGGATTAGATACCCCGGTAGTCAA

OP320680

12 Serratia fonticola

ATTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCG
TGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTT
AATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGT
TTGTTAAGTCAGATGTGAAATCCCCGAGCTTAACTTGG
GAACTGCATTTGAAACTGGCAAGCTAGAGTCTTGTAGA
GGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTA
GAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCC
CTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGG
GGAGCAAACAGGATTAGATACCCCGGTAGTCA

OP320681

13 Serratia odorifera

ATTGACGTTACTCGCAGAAGAAGCACCGGCTAACT
CCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCA
AGCGTTAATCGGAATTACTGGGCGTAAAGCGCACG
CAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCG
CGCTTAACGTGGGAACTGCATTTGAAACTGGCAA
GCTAGAGTCTCGTAGAGGGGGGTAGAATTCCAGG
TGTAGCGGTGAAATGCGTAGAGATCTGGAGGAAT
ACCGGTGGCGAAGGCGGCCCCCTGGACGAAGAC
TGACGCTCAGGTGCGAAAGCGTGGGGAGCAAAC
AGGATTAGATACCCCGGTAGTCAAGCG

OP320682

14 Bacillus safensis

CTTGACGGTACCTAACCAGAAAGCCACGGCTAA
CTACGTGCCAGCAGCCGCGGTAATACGTAGGTG
GCAAGCGTTGTCCGGAATTATTGGGCGTAAAGG
GCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAA
GCCCCCGGCTCAACCGGGGAGGGTCATTGGAA
ACTGGGAAACTTGAGTGCAGAATAGGAGAGTGG
AATTCCACGTGTAGCGGTGAAATGCGTAGAGAT
GTGGAGGAACACCAGTGGCGAAGGCGACTCTC
TGGTCTGTAACTGACGCTGAGGAGCGAAAGCG
TGGGGAGCGAACAGGATTAGATACCCTGGTAGTCC

OQ351925
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15 Enterococcus avium

CTTGACGGTATCTAACCAGAAAGCCACGGCTA
ACTACGTGCCAGCAGCCGCGGTAATACGTAGG
TGGCAAGCGTTGTCCGGATTTATTGGGCGTAA
AGCGAGCGCAGGCGGTTTCTTAAGTCTGATG
TGAAAGCCCCCGGCTCAACCGGGGAGGGTC
ATTGGAAACTGGGAAACTTGAGTGCAGAAG
AGGAGAGTGGAATTCCATGTGTAGCGGTGAA
ATGCGTAGATATATGGAGGAACACCAGTGGCG
AAGGCGGCTCTCTGGTCTGTAACTGACGCTG
AGGCTCGAAAGCGTGGGAGCAAACAGGATTA
GATACCCTGGTAGTCC

OQ351926

16 Bacillus megaterium

CTTGACGGTACCTAACCAGAAAGCCACGGCTA
ACTACGTGCCAGCAGCCGCGGTAATACGTAGG
TGGCAAGCGTTATCCGGAATTATTGGGCGTAAA
GCGCGCGCAGGCGGTTTCTTAAGTCTGATGTGA
AAGCCCACGGCTCAACCGTGGAGGGTCATTGG
AAACTGGGGAACTTGAGTGCAGAAGAGAAAAG
CGGAATTCCACGTGTAGCGGTGAAATGCGTAGAG
ATGTGGAGGAACACCAGTGGCGAAGGCGGCTTTT
TGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTG
GGGAGCAAACAGGATTAGATACCCTGGTAGTCC

OQ351927
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