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Abstract: Cu-catalyzed reactions of N-alkoxy-2-methylanilines and alcohols in the presence of cat-
alytic amounts of IPrCuBr and AgSbF6 afforded the corresponding meta-aminophenol derivatives in
good to high yields. These reactions proceed via a [1,3]-rearrangement, in which the alkoxy group
migrates from the nitrogen atom to the methyl-substituted ortho position, followed by an oxa-Michael
reaction of the resulting ortho-quinol imine intermediate.
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1. Introduction

meta-Aminophenol derivatives are frequently used in pharmaceutical science
(Figure 1) [1–5]. For example, SEA0400 exhibits inhibitory activity on the Na+/Ca2+ ex-
changer [1], while tetrapetalone A [2] and tenaspimycin [3] inhibit lipoxygenase and Hsp90,
respectively. However, performing the synthesis of meta-aminophenol scaffolds in an
efficient and selective manner has been challenging because electrophilic substitution reac-
tions, the most common approach to the functionalization of anilines and phenols, exhibit
ortho/para preference. The radical hydroxylation of nitrobenzene, which occurs at the
meta position, has significant drawbacks in terms of regioselectivity, reaction efficiency,
and functional group compatibility (Figure 2a) [6–8]. The enzymatic oxidation of nitroben-
zene can synthesize meta-nitrophenol with excellent site-selectivity, although this method
suffers from the poor generality of substrates [9]. In this regard, transition metal-catalyzed
cross-coupling reactions using meta-haloanilines and meta-halophenols are among the most
frequently employed methods (Figure 2b) [10–15]. For example, Buchwald–Hartwig am-
ination reactions of meta-halophenol derivatives using palladium catalysts [10–13] and
Ullman-type reactions using copper catalysts [14,15] have been frequently used for the
synthesis of meta-aminophenol derivatives. Catalytic C–O bond-forming reactions using
meta-haloanilines have also been employed as an alternative approach to cross-coupling
reactions by employing various transition metal catalysts, such as palladium [16,17], cop-
per [18,19], nickel [20], and gold [21]. However, these reactions are also inherently as-
sociated with the selectivity issue in meta-haloaniline/phenol preparations. Although
other approaches to functionalized meta-aminophenol derivatives have been recently re-
ported [22], the development of efficient and robust methods for the synthesis of multiply
substituted meta-aminophenol derivatives is a pressing issue.
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Figure 1. meta-aminophenol derivatives. 

 
Figure 2. Conventional methods for the synthesis of meta-aminophenol derivatives: (a) radical 
hydroxylation and (b) cross coupling. 

Against this backdrop, we designed cascade reactions, including the Cu-catalyzed 
[1,3]-rearrangement, as a potential approach to overcome issues related to selectivity 
(Figure 3) [23–32]. We have recently reported that N-heterocyclic carbene (NHC)-ligated 
cationic copper catalysts efficiently promote the [1,3]-rearrangement of N-alkoxyanilines 
[23–27]. Specifically, N-alkoxyanilines 1 having an electron-donating group (EDG) at the 
ortho position selectively generated functionalized ortho-quinol imine intermediates A via 
a [1,3]-rearrangement of the alkoxy group to the EDG-substituted ortho position [25–28]. 
ortho-quinol imine intermediates A underwent favorable transformations, including a 
[1,2]-rearrangement (Figure 3a) [25]; a Michael addition with carbon nucleophiles such as 
N-methylindole, 1,3,5-trimethoxybenzene, and dimethyl malonate (Figure 3b) [26]; and a 
Diels‒Alder reaction with electron-rich and electron-deficient olefins [27]. It should be 
emphasized that the Cu-catalyzed [1,3]-rearrangement can generate functionalized quinol 
imine intermediates A, which had been inaccessible via conventional methods, such as 
thermally induced rearrangement [33] and oxidation [34]. Accordingly, we envisioned 
that the reactions with alcohols as oxygen nucleophiles would give functionalized meta-
aminophenol derivatives in a selective manner through an oxa-Michael addition of 
generated ortho-quinol imine intermediates A (Figure 3d) [35,36]. Here, we report the Cu-
catalyzed [1,3]-rearrangement—oxa-Michael addition—aromatization cascade reactions 
of N-alkoxyanilines 1 and alcohol nucleophiles 2, which afforded meta-aminophenol 
derivatives 3 in good-to-acceptable yields (Figure 4). 

Figure 1. meta-aminophenol derivatives.
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Against this backdrop, we designed cascade reactions, including the Cu-catalyzed [1,3]-
rearrangement, as a potential approach to overcome issues related to selectivity
(Figure 3) [23–32]. We have recently reported that N-heterocyclic carbene (NHC)-ligated cationic
copper catalysts efficiently promote the [1,3]-rearrangement of N-alkoxyanilines [23–27]. Specif-
ically, N-alkoxyanilines 1 having an electron-donating group (EDG) at the ortho posi-
tion selectively generated functionalized ortho-quinol imine intermediates A via a [1,3]-
rearrangement of the alkoxy group to the EDG-substituted ortho position [25–28]. or-
tho-quinol imine intermediates A underwent favorable transformations, including a [1,2]-
rearrangement (Figure 3a) [25]; a Michael addition with carbon nucleophiles such as
N-methylindole, 1,3,5-trimethoxybenzene, and dimethyl malonate (Figure 3b) [26]; and
a Diels–Alder reaction with electron-rich and electron-deficient olefins [27]. It should
be emphasized that the Cu-catalyzed [1,3]-rearrangement can generate functionalized
quinol imine intermediates A, which had been inaccessible via conventional methods,
such as thermally induced rearrangement [33] and oxidation [34]. Accordingly, we envi-
sioned that the reactions with alcohols as oxygen nucleophiles would give functionalized
meta-aminophenol derivatives in a selective manner through an oxa-Michael addition of
generated ortho-quinol imine intermediates A (Figure 3d) [35,36]. Here, we report the
Cu-catalyzed [1,3]-rearrangement—oxa-Michael addition—aromatization cascade reac-
tions of N-alkoxyanilines 1 and alcohol nucleophiles 2, which afforded meta-aminophenol
derivatives 3 in good-to-acceptable yields (Figure 4).
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Figure 3. Cu-catalyzed [1,3]-alkoxy rearrangement: (a) domino [1,3]/[1,2] rearrangement, (b) [1,3]-
rearrangement—Michael addition, (c) [1,3]-rearrangement—Diels-Alder reaction, and (d) [1,3]-
rearrangement—oxa-Michael addition (this work). 

 
Figure 4. Cu-catalyzed [1,3]-rearrangement—oxa-Michael addition cascade reaction. 

2. Results and Discussion 
Initially, the reaction of N-methoxy-2-methylaniline 1a having a p-

trifluoromethylbenzoyl group on the nitrogen atom and one equivalent of methanol 2a in 
the presence of catalytic amounts of IPrCuBr [IPr: N,N′-bis(2,6-diisopropylphenyl)-
imidazol-2-ylidene, 10 mol%] and AgSbF6 (10 mol%) in chlorobenzene at 70 °C afforded a 
mixture of the following four regioisomers: desired 6-methyl-3-anisidine 3aa; 2-methyl-3-
anisidine 4aa, which was derived from the oxa-Michael addition to the meta position next 
to the ortho-methyl group; 3-methyl-2-anisidine 5a, which was derived from domino 
[1,3]/[1,2]-rearrangement reactions [25]; and 6-methyl-2-anisidine 6a, which was derived 
from the [1,3]-rearrangement reactions of the methoxy group to the unsubstituted ortho 
position (namely, [1,3]′-rearrangement) to generate ortho-quinol imine intermediate 7a′ 
(Scheme 1). Attempts to optimize the reaction conditions to selectively synthesize 3aa 
were unsuccessful. 
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rearrangement—oxa-Michael addition (this work).
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Figure 4. Cu-catalyzed [1,3]-rearrangement—oxa-Michael addition cascade reaction.

2. Results and Discussion

Initially, the reaction of N-methoxy-2-methylaniline 1a having a p-trifluoromethylbenzoyl
group on the nitrogen atom and one equivalent of methanol 2a in the presence of catalytic
amounts of IPrCuBr [IPr: N,N′-bis(2,6-diisopropylphenyl)-imidazol-2-ylidene, 10 mol%]
and AgSbF6 (10 mol%) in chlorobenzene at 70 ◦C afforded a mixture of the following four re-
gioisomers: desired 6-methyl-3-anisidine 3aa; 2-methyl-3-anisidine 4aa, which was derived
from the oxa-Michael addition to the meta position next to the ortho-methyl group; 3-methyl-
2-anisidine 5a, which was derived from domino [1,3]/[1,2]-rearrangement reactions [25];
and 6-methyl-2-anisidine 6a, which was derived from the [1,3]-rearrangement reactions of
the methoxy group to the unsubstituted ortho position (namely, [1,3]′-rearrangement) to
generate ortho-quinol imine intermediate 7a′ (Scheme 1). Attempts to optimize the reaction
conditions to selectively synthesize 3aa were unsuccessful.
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Scheme 1. Cu-catalyzed reaction of 1a and methanol 2a.

To reduce the number of regioisomers prior to the optimization of reaction condi-
tions, we preliminary screened several starting materials 1. To our delight, the reaction
of substrate 1b having a fluorine atom at the para position of the aniline ring at 70 ◦C
generated two regioisomers, 3ba and 6b. Among the NHC ligands examined, IPr exhib-
ited the best reactivity and product selectivity (Table 1, entry 1), whereas the use of IMes
[1,3-Bis(2,4,6-trimethylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene] and SIPr [1,3-bis(2,6-
diisopropylphenyl)imidazolidine] resulted in low catalytic activity (entries 2 and 3). The
reactivity was significantly affected by counteranions; less coordinative counteranions such
as hexafluoroantimonate were effective for the present transformations. On the other hand,
when AgBF4 and AgNTf2 were used instead of AgSbF6, 3ba was formed in low chemical
yields along with a considerable amount of recovered 1b (entries 4 and 5). The reaction in
1,2-dichloroethane (DCE) proceeded quickly to afford product 3ba in the best yield among
the solvents examined (entries 6–9). Neither the chemical yield nor the product selectivity
was improved when the temperature of the reaction of 1b and 2a was changed from 70 ◦C
to 60 ◦C and 80 ◦C, respectively (entries 10 and 11). The reaction in the absence of either Cu
or Ag did not yield desired product 3ba; N-methoxyaniline 1b was quantitatively recovered
(entries 12 and 13).

The protecting group on the nitrogen atom significantly affected the product selectivity
(Table 2, entries 1–4); desired meta-anisidines 3 were obtained with better product selectivity
with carbamate-type protecting groups (entries 2–4) than with the amide-type protecting
groups (Table 1 entry 6, and Table 2, entry 1). The use of one equivalent of methanol 2a was
effective, whereas the use of a large excess (five equivalents) of methanol 2a diminished
the catalytic activity (entry 2 versus entry 6). It should be noted that the reaction using
half an equivalent of methanol at 80 ◦C afforded 3da in the 71% yield, suggesting that the
methoxy group eliminated from substrate 1d participated in the reaction as a nucleophile
(entry 8). Finally, the chemical yield was improved by increasing the scale from 0.2 mmol
to 0.5 mmol (entry 9, Appendix A).
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The optimized conditions (Table 2, entry 9) were applied to the reactions of various
N-methoxyanilines 1, as summarized in Table 3. The reactions of substrates 1g and 1h,
having a methyl and a phenyl group, respectively, at the para position, proceeded at
70 ◦C, affording corresponding meta-anisidines 3ga and 3ha in good yields (entries 1 and
2). Substrate 1j, having a bromo group, was converted into desired product 3ja when
the loading amount of the Cu catalyst was increased (20 mol%, entry 7). The chemical



Molecules 2023, 28, 4251 6 of 11

yield of 3ia, which has a chloro group at the para position, was slightly improved when
the reaction was performed at 90 ◦C using chlorobenzene instead of DCE as the solvent
(entries 3–5). An iodo group (1k) was tolerated under the present reaction conditions,
affording multi-substituted meta-aminophenol derivative 3ka in an acceptable yield (entry
8). 3-Anisidine 3la, which has an alkynyl group at the para position of the nitrogen atom,
could also be generated (entry 9). In contrast, substrate 1m having a methoxycarbonyl
group at the para position, exclusively afforded domino-rearrangement byproduct 5m
(entry 10). The reaction of N-ethoxyaniline 1n and ethanol 2b afforded corresponding
3-ethoxyaniline 3nb in a good yield (Scheme 2).

Table 3. Cu-catalyzed reactions of N-methoxyanilines 1g-m and methanol 2a a.
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The reaction of N-methoxyaniline 1d and one equivalent of 2-phenethyl alcohol 2c
afforded 3-phenylethoxyaniline 3dc in a 51% yield, along with 3da, which was produced
through the oxa-Michael addition of methanol derived from 1d, in a 14% yield (Table 4,
entry 1). The use of two equivalents of 2c did not improve the product selectivity (entry
2). The reaction of 1d and allyl alcohol 2d also afforded 3-allyloxyaniline 3dd as the major
product (entry 3). These results suggest that substrates 1 react more preferentially with
external alcohols 2c and 2d than with methanol 2a derived from 1, although the product
selectivity depends on the structure of 2. When tert-butanol (2e) and phenol (2f) were
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employed as an alcohol nucleophile, the reactions gave a mixture of unidentified products
(entries 4 and 5).

Table 4. Cu-catalyzed reactions of N-methoxyanilines 1d and alcohols 2.
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Entry 2 ROH 3 (%) a 3da (%) a

1 2c PhCH2CH2OH 3dc (51) 14
2 2c b PhCH2CH2OH 3dc (51) 7
3 2d H2C=CHCH2OH 3dd (35) 23
4 2e tBuOH - c - c

5 2f PhOH - c - c

a The reaction of 1d (0.5 mmol) and 2 (0.5 mmol) was carried out in the presence of IPrCuBr (10 mol%) and AgSbF6
(10 mol%) in PhCl at 90 ◦C for 42 h. b Two equivalents of 2c were used. c A mixture of unidentified products
was obtained.

A proposed mechanism for the Cu-catalyzed reactions of N-methoxyanilines 1 and
alcohol nucleophiles 2 is illustrated in Figure 5a. The cationic copper catalyst coordinates to
1 to form chelate complex 8, and this is followed by an oxidative addition of the N–O bond
to the Cu(I) catalyst to form Cu(III) complex 9 [29]. Because of the contribution of canonical
form 9′, a C–O bond is formed at the methyl-substituted ortho position, generating ortho-
quinol imine intermediates 10 that coordinate to the cationic Cu catalyst. Electrophilically
activated ortho-quinol imine intermediates 10 undergo nucleophilic addition of 2 to form Cu
enamide species 11. Finally, proton transfer and elimination of methanol 2a give products
3 along with the regenerated cationic Cu catalyst. Byproducts 5 are formed via a Cu-
catalyzed [1,2]-rearrangement of ortho-quinol imine intermediates 12 [25]. The product
selectivity of the present reaction system was greatly influenced by the para substituent;
a fluorine atom (1d) was effective in suppressing the formation of the domino [1,3]/[1,2]-
rearrangement product (5, Table 2, entry 9). This is possibly because the mesomeric
electron-donating effect of the fluorine atom increases the electron density of the carbon
next to the quaternary carbon in ortho-quinol imine intermediates 10d/10d′, decelerating
the [1,2]-rearrangement of the methyl group (Figure 5(bi)). In contrast, when an ester
group was present, the selective formation of the domino rearrangement product (5m)
occurred even in the presence of methanol (Table 3, entry 10), presumably because of
the undesired [1,2]-rearrangement reaction facilitated by the electron-withdrawing effect
(Figure 5(bii)). In addition, because substrate 1m reacted with stronger carbon nucleophiles,
such as 1,3,5-trimethoxybenzene, via [1,3]-rearrangement/Michael addition [26], the low
nucleophilicity of alcohols 2 also causes the selective formation of byproduct 5m. Our
preliminary DFT calculations for the [1,2]-rearrangement of para-substituted ortho-quinol
imine intermediates 10 were in good agreement with these experimental results (Figure 5c).
The reaction of N-methoxyaniline 1d and alcohol 2c afforded 3dc (51%) in a higher yield
than 3da (14%) derived from the reaction of 1d and generated methanol 2a (Table 4, entry
1). Because the product selectivity is dependent on the structure of external alcohols 2c
and 2d, the elimination of methanol 2a from enamide intermediates 11 may be mediated
by external alcohol 2, affecting the concentration of methanol 2a. Further investigations to
understand the reactivity of key intermediates 10 are under way in our laboratory.
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3. Materials and Methods

The general procedure for the Cu-catalyzed reactions of N-methoxyaniline 1d and
methanol 2a is as follows: DCE (1.0 mL) and methanol 2a (20.3 µL, 0.5 mmol) were added to
a mixture of IPrCuBr (26.6 mg, 0.05 mmol), AgSbF6 (24.0 mg, 0.05 mmol), and 1d (144.8 mg,
0.5 mmol) under an argon atmosphere, and the mixture was stirred at 70 ◦C for 48 h. After
complete consumption of 1d, as monitored via TLC, the mixture was passed through a pad
of silica gel with ethyl acetate (50 mL). The solvents were removed in vacuo, and the crude
product was purified via silica gel column chromatography using hexane/ethyl acetate
(20/1) as an eluent to afford 3da (123.3 mg, 0.426 mmol, 85% yield) in an analytically pure
form (Supplementary Materials).

4. Conclusions

In conclusion, we have developed a new approach to prepare meta-aminophenol
derivatives via Cu-catalyzed cascade reactions involving [1,3]-rearrangement, oxa-Michael
addition, and aromatization in an efficient manner. Because a variety of functional groups
are tolerated in this transformation, the present method is potentially useful for synthesizing
a new class of meta-aminophenol derivatives.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28104251/s1, SI (pdf). All experimental data, detailed
experimental procedures, and 1H NMR, 13C NMR, 19F NMR spectral are available online.
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Appendix A

It is assumed that the larger reaction scale reduces influence of trace water on the
reaction system, which can cause deactivation of the Cu catalysts and byproduct formation.
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