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Abstract: Inspired by multimetallic assemblies and their role in enzyme catalysis, chemists have devel-
oped a plethora of heterobimetallic complexes for application in homogeneous catalysis. Starting with
small heterobimetallic complexes with σ-donating and π-accepting ligands, such as N-heterocyclic
carbene and carbonyl ligands, more and more complex systems have been developed over the past
two decades. These systems can show a significant increase in catalytic activity compared with their
monometallic counterparts. This increase can be attributed to new reaction pathways enabled by the
presence of a second metal center in the active catalyst. This review focuses on mechanistic aspects of
heterobimetallic complexes in homogeneous catalysis. Depending on the type of interaction of the
second metal with the substrates, heterobimetallic complexes can be subdivided into four classes.
Each of these classes is illustrated with multiple examples, showcasing the versatility of both, the
types of interactions possible, and the reactions accessible.

Keywords: heterobimetallic complexes; mechanism; electronic interaction; steric scaffolding; tandem
catalysis; synergistic catalysis

1. Introduction: Multimetallic Catalysis: From Enzymes to Complexes

Humanity is currently facing two existential and inherently connected challenges:
on the one hand, the ever-increasing demand for energy and, on the other hand, the
consequences of anthropogenic greenhouse gas emissions [1]. In particular, the increased
intensity of the global climate crisis shows the necessity to move away from energy sources
based on the combustion of fixed carbon towards carbon-neutral production of fuels [2].
A particularly desirable goal is the direct reduction of carbon dioxide into an energy
carrier [3,4]. Considering that energy demand, specifically the global consumption of
energy per hour, is predicted to reach 1.1 × 1021 J by 2050, of which only 20% could be
derived from fossil fuel resources, the need to gain access to new sources of energy is
underpinned even more [5,6].

The reduction of carbon dioxide can be thermodynamically unfavorable, depending
on the level of reduction, but is always associated with a high kinetic barrier; thus, the
use of a catalyst is quintessential [4,7–9]. While there are industrial processes that use
catalysts for carbon dioxide reduction, to a certain level of success, both their scale and
efficiency pale in comparison to biological carbon dioxide fixation (the transformation of
gaseous carbon dioxide into higher energy compounds, such as formic acid, methanol, or
glucose) [3,10]. The most notable example is photosynthesis, which is arguably the only
catalytic process for carbonaceous fuel production on a global scale [11]. The autotrophic
organisms performing the reduction of carbon dioxide have developed multiple different
pathways to do so. Currently, six conceptually different autotrophic CO2 metabolizing
pathways are known; the most important of these is the Calvin cycle found in all plants,
algae, and cyanobacteria [10,11]. It accounts for ~90% of the biological carbon fixation
worldwide, and the key enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (Ru-
BisCO) is the most abundant protein on earth [12].
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Originally found in heterotrophic bacteria but now also shown to be significant for
chemoautotrophic organisms, such as methanogens, the Wood-Ljungdahl pathway is less
common [13,14]. However, it is considered to be the oldest of all carbon dioxide fixation
pathways and possibly the energy metabolism of the last universal ancestor of all cells [15].
The metabolic product of the Wood-Ljungdahl pathway is acetyl-coenzyme A (acetyl-CoA,
Scheme 1), which is produced from coenzyme A, a methyl-transferring enzyme (CoIII-CH3),
and carbon monoxide, generated by Ni-dependent carbon monoxide dehydrogenase ([Ni]
CODH, Scheme 2) [16].
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Scheme 1. Schematic reduction of CO2 to CO during the Wood-Ljungdahl pathway and subsequent
incorporation into coenzyme A (CoA-SH), together with Co-containing methyl transferring enzyme
(CoIII-CH3) to form acetyl-coenzyme A (acetyl-CoA) [16].

The active site of [Ni] CODH contains a unique cluster, called the C-cluster. The
structure derives from a [4Fe4S] cluster with a nickel replacing one of the iron atoms and
an additional iron pendant to the cluster. All the metal atoms in the cluster are ligated by
cysteine and a cluster sulfide, while the pendant iron is ligated by a histidine, a cysteine,
and a hydroxyl ligand [17]. Four different states of the C-cluster have been spectroscopically
identified [18]. Of these four states, two are believed to be the active states for the oxidation
of CO to CO2. Through kinetic, spectroscopic, and structural studies, the following catalytic
cycle for CO2 reduction by [Ni] CODH (Scheme 2) is proposed [17,19–21]. A two-electron
process (A) likely occurs via an ECE mechanism: First, an electron transfer to form NiI (E),
followed by a chemical step (C), binding of CO2 to Ni, and then a second electron transfer
step (E). Alternative pathways may be possible, resulting in a CO2 adduct stabilized by
hydrogen bonding with a protonated histidine residue. One of the oxygen atoms of CO2
then coordinates at the pendant iron, which is associated with the loss of a water molecule
from the iron center (B). The adduct is stabilized by a hydrogen bond with a protonated
lysine moiety. Cleavage of the C-O single bond (C) results in a NiIICO species, which loses
CO (D) to regenerate [Ni] CODH and complete the catalytic cycle.
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Scheme 2. Proposed mechanism of CO2 reduction to CO by [Ni] CODH [17,19–21].

It is apparent from the catalytic cycle presented in Scheme 2 that the interaction
between the two metals, Ni and Fe, is detrimental to the overall activity of the enzyme. The
pendant iron is in relatively close spatial proximity (2.7 Å) to the coordinatively unsaturated
Ni species [22]. This motif of cooperative catalysis is not unique to [Ni] CODH but can rather
be found in multiple different enzymes catalyzing reactions with small molecules such
as H2, N2, O2, or CO [7]. A few notable examples of such multimetallic metalloenzymes,
including the reaction each enzyme catalyzes, are shown in Figure 1 [23,24].
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While the intermetallic distance at all four active sites is relatively short, the structural
motif of how these multimetallic enzymes are assembled is conceptually different. Where
[Ni] carbon monoxide dehydrogenase (dNi···Fe = 2.7 Å) is a multimetallic cluster, [NiFe]
hydrogenase (dNi···Fe = 2.9 Å) consists of a heterobimetallic dimer. In [CuZn] superoxide
dismutase (dCu···Zn = 6.3 Å), the heterobimetallic structure is held together by a bridging
imidazolato ligand, and in cytochrome c oxidase (dFe···Cu > 4.6 Å) the interaction occurs
entirely through space [22,28,29,33].

Independently, with the growing understanding of intermetallic interactions and
their role in enzyme catalysis, conceptually similar activation modes have been utilized
in heterogeneous catalysis, usually referred to as promoter-modified metallic surfaces. In
these catalytic systems, small molecules are activated by multiple metal centers through
cooperative mechanisms, thus enabling processes such as steam reforming, ammonia
synthesis, and catalytic converters [34–37].

However, in synthetic homogeneous catalysis, the main paradigm was the develop-
ment of single-site catalysts. To avoid the formation of multimetallic assemblies, elaborate
ligand scaffolds were designed, synthesized, and used with great success [38]. Forming bi-
or polynuclear complexes was even described as a possible deactivation pathway [39,40].
The field of homogeneous multimetallic catalysis has its origins in the works of Muetterties
and his concept of cluster surface analogy [41–43]. Here, the properties of metallic surfaces
were mimicked by low-valent, often late-transition metal cluster compounds, many of
which used simple ligands such as carbonyl, hydride, or phosphine ligands (Figure 2,
left) [43–47]. More recently, σ-donating and π-accepting ligands have been employed to
form various heterometallic complexes for small molecule activation [48–53]. One example
is Mankad’s bimetallic catalytically active complex [(DippNHC)Cu-FeCp(CO)2] (DippNHC
= N,N′-bis(2,6-diisopropylphenyl)imidazole-2-ylidene, Figure 2, right) [54]. However, all
these complexes use ligand systems developed for, or commonly employed in, mononu-
clear transition metal chemistry. Motivated by the great success of targeted ligand design,
specific scaffolds have been developed to not only control the stereoelectronic environment
of the metal centers but also allow specific interactions between them and thus enable new
reactivities or activation modes of small molecules [55–60].
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Considering that the distinction between a cluster, a multimetallic assembly, and a
polymetallic complex can be difficult and that the combinatorial possibilities between
metals are virtually endless, the focus of this article is on heterobimetallic complexes with
well-defined ligand scaffolds.

2. Heterobimetallic Complexes in Homogeneous Catalysis

Introducing a second metal into a well-defined transition metal complex has two main
advantages from a catalytic point of view. First, it allows for an additional parameter with
which to influence the overall reactivity of the system. Second, it allows new reaction
pathways that are inaccessible to single-site catalysts [58]. In the following text, these
unique reaction pathways and catalytic mechanisms will be presented. The focus will be
on the catalytic application of heterobimetallic complexes and the opportunities they offer.
Stoichiometric reactions, preparatory aspects, and structural features of heterobimetallic
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complexes will not be the main aspects. Furthermore, as this is an underdeveloped field
with a non-standardized nomenclature, both for the complexes themselves and the types of
mechanisms, this article, while thorough, is not comprehensive.

Heterobimetallic catalysts can be classified according to their interaction with the
substrate or substrates. This mode of classification was first proposed by Page, Walker,
and Messerle and later picked up and specified by Mankad and Tomson et al. [59,61]. In
the following, a slight variation of these classification systems will be proposed and used
throughout this work [55].

In general, there are two classes of heterobimetallic catalysts (Figure 3). Class 1
systems have one metal Ma, performing substrate activations and transformations, with the
second metal Mb playing an auxiliary role. Within class 1 systems, two types of auxiliary
interactions are possible [61].

Class 1a (Figure 3, top left): All transformations of the substrate(s) are performed
by Ma. The second metal Mb has an electronic interaction with the active metal Ma.
This stereoelectronic influence could either be via a direct metal-metal bond or through a
shared ligand group. This is the most commonly employed strategy in heterobimetallic
catalysis [53,62,63].

Class 1b (Figure 3, bottom left): All transformations of the substrate(s) are performed by
Ma. The second metal Mb directs the substrates into an advantageous alignment but does not
participate directly in the bond formation/breaking process [64]. This strategy is most common
in asymmetric heterobimetallic catalysis, significantly increasing the selectivity [60,65].

In class 2 systems (Figure 3) on the other hand, both metals Ma and Mb interact
with the substrate(s) and participate in the bond-breaking and bond-formation process.
Depending on when and how they participate in the reaction, they can be subdivided into
two further categories.

Class 2a (Figure 3, top right): Each metal performs a separate transformation on the
substrate, usually in a subsequential or tandem fashion. Ma can transform substrate X into
Y, which is then the substrate for a different reaction to Z catalyzed by Mb. This type of
cooperative interaction has received increasing attention in the past few years [57,66].

Class 2b (Figure 3, bottom right): Both metals Ma and Mb participate in the bond-
breaking and bond-formation processes of one single reaction. This could be achieved
through the simultaneous activation of one substrate by both metals, thus lowering the
activation barrier of one elemental step even further. Alternatively, substrate X is activated
by Ma while substrate Y is activated by Mb, resulting in a double activation process. Both
will be referred to as synergistic catalysis or activation throughout this work. A synergistic
mechanism is the least utilized of the four possible heterobimetallic mechanisms [67,68].
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All these interactions depend on the spatial proximity of the two metals. An intermetallic
distance of 3.5 to 6 Å is considered ideal [69]. Heterobimetallic mechanisms are also not
mutually exclusive. Particularly, electronic interactions are very common even in systems
where the overall reactivity is dictated by tandem catalysis. Due to a very short intermetallic
distance and/or shared conjugated ligand systems, Mb can influence the stereoelectronic
properties of Ma, increasing its activity. It is further necessary to point out that there are
many heterobimetallic catalysts for which the mechanisms are not well understood, or it is
not even clear if the active species is truly a heterobimetallic complex, further complicating
classification. In the following sections, each of these four classes will be elucidated with a few
selected examples of heterobimetallic catalysts for which the mechanism has been expounded.
While most of these systems are well studied, the homogeneity of the reaction has not been
assessed for every single example presented. However, considering the in-depth mechanistic
investigation conducted for almost all of the presented examples, the formation of cluster
compounds or nanoparticles should have been detected.

2.1. Electronic Interaction between Ma and Mb

In 1964, Cotton described the first metal-metal multiple bond, sparking vibrant and
active research in the field [70]. Inspired by the possibilities that metal-metal bonds offer in
terms of new reactivities, a plethora of compounds has been synthesized and studied [71,72].
Of particular interest in this work are catalytically active heterobimetallic compounds.

A prominent example of novel reactivities and reaction mechanisms enabled by hetero-
bimetallic complexes was reported by Thomas et al. [73,74]. Complex [ZrIV;CoI] ([Ma;Mb]
refers to a heterobimetallic complex in which Ma is located in one pocket of the ligand and
Mb in the other pocket) is obtained by reacting CoI2 with metalloligand [ZrIV;O] (Scheme 3),
which was already employed for the synthesis of similar heterobimetallic [ZrIV;CuI] and
[ZrIV;Mo0] systems by Nagashima [75]. Interestingly, the Co center undergoes in-situ
reduction from CoII to CoI in complex [ZrIV;CoI] [73]. This reduction does not occur when
CoI2 is reacted directly with three equivalents of the phosphinoamine Ph2PNH(iPr), indi-
cating a reduction-aiding behavior of the ZrIV center in this reaction. It is proposed that
one iodide ion acts as a reductant, assisted by the Lewis acidic ZrIV center in proximity
to the Co ion. The resulting [ZrIV;CoI] complexes have Zr-Co distances from 2.628 to
2.731 Å confirmed by X-ray crystallography, showing a Co→Zr interaction. The presence
of an interaction was also supported by cyclic voltammetry, where all three compounds
(shown in Scheme 3) had comparatively low reduction potentials (−1.65 V to −2.05 V vs.
FcH/FcH+) due to the electron density withdrawn from Co by Zr [73]. More interesting
than the unusual metal-metal bond is the catalytic activity of [ZrIV;CoI] towards Kumada
cross-coupling reactions (Scheme 4) [74].
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Palladium-catalyzed cross-coupling reactions of aryl and vinyl halides are ubiquitous
methods in preparative organic chemistry, but cross-coupling reactions between two alkyl
compounds remain challenging up to this day [76]. Particularly Co-based complexes have
emerged as promising catalysts for Kumada cross-coupling reactions between Grignard
reagents (R′MgCl or R’MgBr; R′ = alkyl, aryl) and alkyl halides, but are not able to employ
more readily available alkyl chlorides [77–79].
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Scheme 4. Kumada cross-coupling catalyzed by [ZrIV;CoI]; TMEDA = N,N,N′,N′-tetramethylethy-
lendiamine [74].

As for the mechanism of the reaction, the precatalyst [ZrIV;CoI] is first reduced to
the catalytically active species [ZrIV;Co−I] via a reaction with two equivalents of R’MgX
(Scheme 5, A). The active catalyst can also be obtained by direct reduction of [ZrIV;CoI]
with sodium amalgam (Scheme 3). X-ray crystallographic characterization of the active
catalyst [ZrIV;Co−I] revealed a very short Co-Zr distance of 2.4112(3) Å and thus an even
stronger interaction between the two metals compared with [ZrIV;CoI]. Furthermore,
density functional theory (DFT) calculations showed that this interaction occurs through σ-
and π-orbital overlaps [73,80].
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After the formation of the active catalyst, the addition of the alkyl halide proceeds
via single electron transfer (SET, B) to the alkyl halide, yielding a radical that rapidly
recombines with the oxidized complex (C). Using (2,2,6,6-tetramethylpiperidin-1-yl)oxyl
(TEMPO) as a radical trap, the formation of alkyl radicals in the mixture was confirmed.
After this formal oxidative addition, a transmetallation (D) with the Grignard reagent
R’MgX takes place. It is followed by a reductive elimination (E), regenerating the active
catalyst and liberating the desired product R-R’. During the reductive elimination, the
Zr plays a pivotal role by withdrawing electron density and aiding the rate-determining
step (RDS) of the reaction [74]. This pivotal role is further proven by replacing Zr with its
heavier homologue Hf. Analogous [HfIV;CoI] showed significantly diminished activity,
most likely due to weaker electron withdrawal from Co by Hf compared to Zr. This was
confirmed through an elongation of the Co-Hf bond of 0.04 Å compared with the Zr-Co
bond [81].

Employing the same ligand system and an overall similar structural motif in [TiIV;PdII],
Nagashima showed the high catalytic activity of this complex for allylic amination reactions
(Scheme 6) [82]. Ess and Michaelis followed up on these findings, utilizing computational
studies to provide a plausible mechanism. They could also show experimentally that
the structurally similar monometallic [PdII] is significantly less active by comparing the
Turnover Frequency (TOF), which is 70 times higher for [TiIV;PdII] compared with [PdII]
(Scheme 6) [83]. Michaelis further optimized the reaction conditions and broadened the
substrate scope to sterically hindered secondary amines, further underpinning the advan-
tage of heterobimetallic [TiIV;PdII] compared with monometallic [PdII], which can only
utilize sterically unencumbered amines [84].
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Scheme 6. Allylic amination catalyzed by heterobimetallic [TiIV;PdII] or monometallic [PdII]
complex [83].

Mechanistically, the secondary amine adds nucleophilically to a terminal η3-allyl
carbon atom (Scheme 7, A). This results in the reduction of PdII to Pd0. The allyl ammonium
intermediate dissociates and is deprotonated by a second amine equivalent, while an allyl
chloride coordinates at the Pd center (B). A backside attack of the Pd0 at the carbon-chloride
bond regenerates the catalyst (C). The RDS of the reaction is the addition of the amine to
the catalyst. Similar to [ZrIV;Co−I], the Lewis acidic TiIV withdraws electron density from
the electron-rich transition state, thus lowering it by ~33 kJ mol−1, compared with [PdII]
(Scheme 6). X-ray structural analysis also gave experimental proof of this metal-metal
interaction [83].
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Scheme 7. Calculated mechanism for the allylic amination catalyzed by heterobimetallic
[TiIV;PdII] [82,83].

Interestingly, calculations indicate that this heterobimetallic interaction is stronger
when both metals are from the same row of the periodic table, meaning that a Ni analogue
of [TiIV;PdII] should show even higher catalytic activity than its Pd counterpart [85]. While
the catalytic activity of such Ni systems was conceptually proven, no optimization of
catalytic conditions was completed [82].

Lu et al. utilized a double pincer-type ligand to develop a whole class of complexes,
among them heterobimetallic [Ni0;GaIII] and [Co−I;GaIII] (Figure 4) [86–88]. Both of
these complexes were found to be active catalysts for homogeneous carbon dioxide hydro-
genations to formate salts when a super basic proazaphosphatrane base (Vkd, VERKADE

base, Figure 4) was employed. While [Ni0;GaIII] achieved impressive turnover numbers
(TON) and turnover frequencies (TOF) for a Ni-based catalyst, it was outperformed by
[Co−I;GaIII].
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By isolating reactive intermediates and performing in-situ high-pressure NMR (HP-
NMR) spectroscopic and theoretical studies, the mechanism presented in Scheme 8 was
proposed. The dinitrogen ligand in [Co−I;GaIII] is readily replaced by hydrogen, forming a
masked dihydride in which the oxidative addition of dihydrogen to Co−I occurs readily (A).
This is followed by the RDS, the hydride transfer to CO2 (B), and quick isomerization to the
O-bound formate complex (C). After the liberation of the formate anion (D), dihydrogen
binds to the CoI intermediate (E). A deprotonation of the complex by a formate anion (F)
formally reduces the CoI center back to a Co−I

, thus closing the catalytic cycle. Interestingly,
the non-ionic superbase Vkd does not participate directly in the mechanism due to steric
interactions but rather participates in a secondary cycle, deprotonating formic acid and
thus generating a smaller base in situ that reacts readily with the complex.
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Scheme 8. Proposed catalytic cycle for carbon dioxide hydrogenation, using [Co−I;GaIII] as catalyst
and Vkd as a base [87].

Replacing GaIII with AlIII or InIII lowered the activity significantly. While an aluminum
analogue still had diminished activity, the indium complex was inactive. Comparing the
reactivity of the corresponding intermediates showed that for the [Co−I;AlIII] complex, the
hydride transfer to carbon dioxide is thermodynamically less favorable, as is deprotonation
for regeneration of the active catalyst. This emphasizes the significance of the Z-type
interaction between the two metals [87].

2.2. Steric Scaffolding by Mb for Ma

The concept of a metalloligand is quite common in preparatory organic chemistry.
Ferrocene-based ligand systems are, for example, employed in asymmetric allyl substitution
reactions together with copper or palladium pre-catalysts, asymmetric aldol reactions
catalyzed by gold, and asymmetric hydrogenations, to name just a few [89–92]. Ferrocene
as a ligand scaffold holds many advantages, such as high stability, both chemically and
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thermally, a rigid structure, ease of substitution, and planar chirality. Particularly, the
latter is ideal for asymmetric catalysis, forcing substrates into a certain alignment and thus
achieving asymmetric induction. Their recognition led them to industrial applications
of up to 10,000 tons a−1 [93]. Notable examples of ferrocene-based ligands are Josiphos,
Taniaphos, and BPPFA (Figure 5). However, in most reactions, the active catalyst is not
isolated or even identified [94–96].
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Figure 5. Structures of Josiphos, Taniaphos and BPPFA [94–96].

Contrary to ferrocene-based systems, there are well-defined catalyst classes that use
Mb for steric scaffolding, according to Figure 3. While electronic interactions (class 1a,
Figure 3) are dominated by Z-type interactions between the metalloligand Mb and the
active metal Ma, steric scaffolding is dominated by a Lewis acidic interaction between a
substrate and Mb aligning it for the reaction [60,65].

The first pioneering efforts to use heterobimetallic complexes for asymmetric catalysis
were completed by Kumada, who developed a chiral ligand for asymmetric palladium-
catalyzed allylic alkylation of 1,3-diketones (Scheme 9) [97]. Using an additional chelating
function significantly improved the enantioselectivity (52% ee vs. 15% ee), as it puts the
alkali metal ion in a crucial position to enhance the stereoselectivity. Although the active
catalyst was never isolated and no in-depth mechanistic studies were undertaken, Park
and Hong rationalized the asymmetric induction via a heterobimetallic transition state
[NaI;PdII]‡ [60].
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Scheme 9. Enantioselective allylic alkylation and proposed mechanism with transition state
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Following these explorative studies, Shibasaki and coworkers developed a whole
class of 1,1′-bi-2-naphthol (BINOL)-based complexes (Figure 6) and demonstrated their
versatility [98–101]. Particularly the multimetallic rare earth (RE)-alkali metal complexes
(Figure 6, left) can catalyze a variety of reactions, such as nitroaldol reactions, conjugate
addition of malonates, aza-Henry reactions, and direct aldol reactions [102–107]. Later, a
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heterobimetallic [LiI;AlIII] complex was successfully employed for conjugate additions of
malonates (Scheme 10) and 1,4-addition of Horner-Wadsworth-Emmons reagents [108–110].
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Figure 6. BINOL-based multimetallic catalysts (left) and heterobimetallic [LiI;AlIII] catalyst
(right) [98–101].

The mechanism is exemplified by the conjugate additions of malonates presented
in Scheme 10. The Brønsted basic ligand backbone deprotonates the malonate and thus
generates the nucleophile; the Lewis acidic Al center activates the electrophile. Mean-
while, the stereoselectivity is generated by the Li ion, which directs the malonate into an
advantageous position [111,112].
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2.3. Sequential Tandem Catalysis

A fundamentally different approach to heterobimetallic catalysis, from a conceptual
point of view, is to utilize the reactivity of both metals instead of using Mb as an extension
of the ligand system for Ma. As presented in Figure 3, there are two different approaches
to involving both metals directly in the bond-breaking and/or bond-formation processes.
One is via tandem catalysis, for which heterobimetallic complexes are particularly suitable
as they can incorporate two different metal centers that can each perform a different type
of reaction. Tandem reactions are especially interesting as they can reduce the amount of
contamination, purification, and solvent involved in a multistep process [113–116].

Hahn and Peris have made major contributions in this field. Utilizing 1,2,4-triazol-di-
ylidene (ditz) as a di-carbene ligand, they obtained a series of heterobimetallic complexes
consisting of two different platinum group metals, studied their catalytic behavior in
various reactions, and analyzed the interaction between the metals [57,66]. A few notable
examples will be given here, demonstrating the versatility of their approach.

Using a [PdII;IrIII] catalyst, they could perform a dehalogenation/transfer hydro-
genation tandem reaction, yielding 1-phenylethanol (Scheme 11). Through variation
of the reaction conditions, more complex tandem processes were possible, namely a
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Suzuki-Miyaura coupling/transfer hydrogenation, by introducing phenylboronic acid
and a Suzuki-Miyaura coupling/α-alkylation by substituting the secondary for a primary
alcohol. These reactions not only proceeded with excellent yields but also demonstrated a
degree of intramolecular cooperativity between the two metals [117].
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tion/transfer hydrogenation reactions (top), Suzuki-Miyaura cross-coupling/transfer hydrogenation
(middle), and Suzuki-Miyaura cross-coupling/α-alkylation reaction (bottom, R = Ph, iPr, nPr) [117].

A first indication of the cooperativity between the two different metals is that a mixture
of the two homobimetallic complexes performs worse than the heterobimetallic complex
under the same reaction conditions. Considering that the distance between Pd and Ir in
[PdII;IrIII] is 6.039 Å and therefore at the upper limit of what is ideal for interaction, this
is somewhat surprising [117]. Cyclic voltammetry and DFT studies of similar ditz-based
heterobimetallic systems indicate that a certain degree of electronic interaction might be
responsible. Diruthenium ditz complexes showed a separation of 120 mV between the
oxidation peaks, which corresponds to a class II system according to the Robin and Day
classification [118,119]. Using DFT, the Tolman Electronic Parameters (TEPs) of the free
ditz ligand and ditz systems, in which one coordination site was occupied by a metal,
were calculated [120,121]. A clear shift of the TEP value based on the second metal could
be observed, further indicating an electronic interaction between the two metals [122].
However, the electronic interaction is too small to account for the strong cooperative
effect in the heterobimetallic complexes, and further investigation into the nature of the
interaction and the overall mechanism is still ongoing [57].

Using a chiral coligand, resulting in a chiral heterobimetallic [PdII;IrIII]* complex,
an enantioselective isomerization/hydrophosphination tandem reaction was catalyzed
(Scheme 12). While the activity of the system is high and the regioselectivity is very good,
the enantioselectivity is poor (max. 17% ee). However, to this day, this is the only example
of a chiral tandem reaction catalyzed by a heterobimetallic complex [123].



Molecules 2023, 28, 4233 14 of 29Molecules 2023, 28, x FOR PEER REVIEW 15 of 33 
 

 

 
Scheme 12. Enantioselective isomerization/hydrophosphination reaction, catalyzed by chiral 
[PdII;IrIII]* (* refers to a stereogenic center) [123]. 

Utilizing a ditopic ligand system with two very different coordination environments, 
Marks obtained a series of heterobimetallic [TiIV;CrIII] complexes with varying distances 
between the two metal centers, depending on the length (n; n = 0, 2, 6) of the alkyl spacer 
([TiIV;CrIII]n (Scheme 13) [124]. These systems are active catalysts for 
oligomerization/polymerization tandem reactions of ethylene, resulting in linear low-
density polyethylene (LLDPE) with exclusive n-butyl branches when methyl aluminum 
oxide (MAO) is employed as a cocatalyst for activating the Ti center. Here, the CrIII center 
catalyzes the oligomerization of ethylene to 1-hexene selectively, while TiIV catalyzes the 
polymerization. 

 
Scheme 13. Oligomerization/polymerization tandem reaction, catalyzed by [TiIV;CrIII]n (n = 0, 2, 6). 
n = 0: highest activity, highest Mn, highest α-olefin incorporation; n = 6: lowest activity, lowest Mn, 
lowest α-olefin incorporation [124]. 

The complex with the shortest intermetallic distance (n = 0) exhibited the highest 
activity, average molecular weight (Mn), and branch density; all three values dropped with 
an increasing n. Compared with the mixture of the monometallic analogues, the branch 
density and Mn are higher for [TiIV;CrIII]0. However, the overall activity is higher in the 
mixture of the monometallic complexes. When 1-pentene was introduced as competition 
for incorporation in the polymer chain against the in-situ generated 1-hexene, only 1-
hexene enchainment was observed, indicating a favorable interaction between the two 
metals towards binding of the latter. Combined with DFT calculations, these insights lead 
to the proposition of the mechanism presented in Scheme 14. Multiple different pathways 
for the formation of 1-hexene and copolymerization with ethylene are possible, but only 
the main pathway is discussed. After the coordination of two ethylene molecules by the 
CrIII center, an oxidative addition (A) leads to the formation of a five-membered 
metallacycle, which is expanded to a seven-membered metallacycle with a third ethylene 
molecule (B). Reductive elimination (C) leads to the formation of 1-hexene, which forms 
a hydrogen bridge to the TiIV center, thus positioning it ideally for incorporation into the 
growing polymer chain (D) [124]. 

Scheme 12. Enantioselective isomerization/hydrophosphination reaction, catalyzed by chiral
[PdII;IrIII]* (* refers to a stereogenic center) [123].

Utilizing a ditopic ligand system with two very different coordination environments,
Marks obtained a series of heterobimetallic [TiIV;CrIII] complexes with varying distances
between the two metal centers, depending on the length (n; n = 0, 2, 6) of the alkyl
spacer ([TiIV;CrIII]n (Scheme 13) [124]. These systems are active catalysts for oligomeriza-
tion/polymerization tandem reactions of ethylene, resulting in linear low-density polyethy-
lene (LLDPE) with exclusive n-butyl branches when methyl aluminum oxide (MAO) is
employed as a cocatalyst for activating the Ti center. Here, the CrIII center catalyzes the
oligomerization of ethylene to 1-hexene selectively, while TiIV catalyzes the polymerization.
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Scheme 13. Oligomerization/polymerization tandem reaction, catalyzed by [TiIV;CrIII]n (n = 0, 2, 6).
n = 0: highest activity, highest Mn, highest α-olefin incorporation; n = 6: lowest activity, lowest Mn,
lowest α-olefin incorporation [124].

The complex with the shortest intermetallic distance (n = 0) exhibited the highest
activity, average molecular weight (Mn), and branch density; all three values dropped with
an increasing n. Compared with the mixture of the monometallic analogues, the branch
density and Mn are higher for [TiIV;CrIII]0. However, the overall activity is higher in the
mixture of the monometallic complexes. When 1-pentene was introduced as competition for
incorporation in the polymer chain against the in-situ generated 1-hexene, only 1-hexene
enchainment was observed, indicating a favorable interaction between the two metals
towards binding of the latter. Combined with DFT calculations, these insights lead to the
proposition of the mechanism presented in Scheme 14. Multiple different pathways for
the formation of 1-hexene and copolymerization with ethylene are possible, but only the
main pathway is discussed. After the coordination of two ethylene molecules by the CrIII

center, an oxidative addition (A) leads to the formation of a five-membered metallacycle,
which is expanded to a seven-membered metallacycle with a third ethylene molecule (B).
Reductive elimination (C) leads to the formation of 1-hexene, which forms a hydrogen
bridge to the TiIV center, thus positioning it ideally for incorporation into the growing
polymer chain (D) [124].
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Scheme 14. Proposed (simplified) mechanism for oligomerization/polymerization tandem reaction
catalyzed by [TiIV;CrIII]0 [124].

A different approach was taken by Rau and his coworkers. They developed photo-
chemical molecular devices (PMDs) and used them for various reduction reactions [125–133].
These PMDs consist of three structural units (Figure 7): a photoactive RuII complex fragment
that acts as a light absorber, a catalytic center (in the chosen example, a [RhIIICp*Cl] moiety,
Cp* = C5Me5), and a bridging unit that connects the two metals via a conjugated reducible
π-electron system [129,133].

Molecules 2023, 28, x FOR PEER REVIEW 16 of 33 
 

 

 
Scheme 14. Proposed (simplified) mechanism for oligomerization/polymerization tandem reaction 
catalyzed by [TiIV;CrIII]0 [124]. 

A different approach was taken by Rau and his coworkers. They developed 
photochemical molecular devices (PMDs) and used them for various reduction reactions 
[125–133]. These PMDs consist of three structural units (Figure 7): a photoactive RuII 
complex fragment that acts as a light absorber, a catalytic center (in the chosen example, 
a [RhIIICp*Cl] moiety, Cp* = C5Me5), and a bridging unit that connects the two metals via 
a conjugated reducible π-electron system [129,133]. 

 
Figure 7. [RuII;RhIII] as an example of a photochemical molecular device (Cp* = C5Me5) 
[129,132,133]. 
Figure 7. [RuII;RhIII] as an example of a photochemical molecular device (Cp* = C5Me5) [129,132,133].



Molecules 2023, 28, 4233 16 of 29

[RuII;RhIII] was used for the photochemical reduction of nicotinamide, with triethy-
lamine as a reducing agent and NaH2PO4 as a proton source (Scheme 15) [132]. The
mechanism of this reduction nicely demonstrates the underlying principle of PMDs.
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Scheme 15. Photocatalytic reduction of nicotinamide with triethylamine as reducing agent, NaH2PO4

as proton source and [RuII;RhIII] as catalyst. Corresponding charge of the complex not indicated. Ox-
idized triethylamine decomposes in a secondary reaction to undefined products (Cp* = C5Me5) [132].

First, the RuII center is photoexcited (A) which enables the abstraction of an electron from
triethylamine via single electron transfer (SET). The electron is then transferred to the RhIII

center via the reducible bridging unit. Replacing the bridging unit with a simpler bipyrimidine
led to a complete loss of catalytic activity, showing that the transfer of electrons from the
light absorber to the catalytic center is the important step [129,133]. The photoredox reaction
between the RuII center and triethylamine has to occur twice (B) to yield a reduced RhI species,
which can then oxidatively add a proton (C) to generate a rhodium(III) hydride species. A
hydride transfer then reduces nicotinamide. The advantage of these systems becomes clear
when they are compared with their monometallic counterparts. They show diminished to no
catalytic activity, as the reaction mixture is extremely diluted and two intermolecular electron
transfers would have to occur, in between which the catalytically active center has to be
stable [132,134,135].

2.4. Synergistic Catalysis

Out of the four classes of heterobimetallic complexes, synergistic complexes are the
least developed (Figure 3) [68]. While the other three classes have been recognized as viable
options to design novel catalysts and thus reviewed extensively, the first example of a
synergistic interaction in a heterobimetallic complex was reported in 2003 by Lau [136].
However, most of the progress in this field has occurred over the last decade [68]. The
potential of synergistic interactions is apparent when considering the mechanism of CO2
reduction by [Ni] CODH (Scheme 2). Both metals participate directly in the activation of
the substrate and thus enable the overall reactivity. Reviewing this field is compounded by
the inconsistent use of the term synergism. While it is narrowly defined in this work as
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two metals working together in the same bond-breaking and/or bond-formation process
of a single reaction, it is sometimes used to describe any increase in reactivity when a
heterobimetallic complex is used or to describe any kind of interaction between the two
metals without further specification [57,61,118].

Most synergistic heterobimetallic systems use synergistic interactions for the activation
of small molecules. The very first system in which a synergistic interaction was found
([RuI;MoI], Scheme 16) is active for both the decomposition of formic acid to carbon dioxide
and dihydrogen and the reverse CO2 hydrogenation yielding formate salts, although both
with very low TON (<43) [136].
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Scheme 16. Proposed mechanism of CO2 hydrogenation and formic acid dehydrogenation catalyzed
by [RuI;MoI] (Cp = C5H5; Cp* = C5Me5) [136].

[RuI;MoI] first activates H2 across the Ru-Mo bond (A), followed by the insertion of
CO2 into the more hydridic Ru-H bond (B). The resulting complex liberates the anionic
formate (C), which, in the last step, abstracts the bridging H atom, regenerating the catalyst
(D). The reaction was monitored using HP-NMR, and the only species observed throughout
the reaction was [RuI;MoI]. This, together with the studies completed on isolated inter-
mediates, indicates that the low activity is due to a non-facile reaction of [RuI;MoI] with
H2 to form the dihydride species. However, the monometallic counterparts and mixtures
thereof were all inactive for the same reactions, showing that the heterobimetallic assembly
is essential for catalytic activity [136].

Inspired by heme-containing nitrite reductases, Peters and coworkers developed a het-
erobimetallic [CoII;MgII] complex for the electrochemical reduction of NO2

− (Scheme 17).
Using −1.2 V vs. SCE and Et3NHCl as proton sources, N2O was produced selectively.
Based on stoichiometric reactions and isolated intermediates, a rudimentary mechanism
was proposed (Scheme 17). Quintessential for the overall activity is the initial binding of
nitrite by both the MgII and CoII centers, as it not only activates the nitrite but also stabilizes
the NO2

− adduct, which is the presumed active catalyst. A single electron reduction (A)
activates the N-O bond, which then readily undergoes N-O bond cleavage (B) with a mild
acid, accompanied by a significant increase in the Mg-Co distance from 3.3 Å in the reduced
nitrite complex to 3.7 Å in the nitrosyl aqua complex. The nitrosyl aqua complex liberates
N2O after successive reductions and H2O after further protonation (C) [137].
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Scheme 17. Proposed catalytic cycle for 2 e−/3 H+ reduction of NO2
−, catalyzed by [CoII;MgII] [137].

Nakao used this principle of double activation of a single substrate to catalytically
activate relatively inert C-O and C-F bonds [138,139]. Through the isolation of reactive
intermediates, isotopic labeling studies, and DFT calculations, the mechanism presented in
Scheme 18 was proposed. Anisole initially coordinates to the RhI center in an η2 fashion,
which is directly followed by activation of the methoxy function by the AlI center with
simultaneous η1 coordination of the phenyl rest to the RhI center (A). Once the C(sp2)-O
bond has been broken (B), the OMe moiety is bound as a bridging moiety, AlIII(µ-OMe)RhI,
formally oxidizing the aluminum center. Reduction of the AlIII species with a silane (C)
regenerates the catalyst and yields the final product [139].
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The unusual reactivity of [AlI;RhI] is enabled by two types of interactions. On the one
hand, the Z-type interaction of Al with Rh facilitates the catalytic reduction of AlIII to AlI with
mild reductants, but more importantly the simultaneous activation of the substrate at both
metal centers [138]. Additionally, the sterically hindered ligand system induces orthogonal
chemoselectivity compared with a conventional Ni catalyst [Ni]0 ([Ni(COD)2] (20 mol%),
1,3-bis(2,6-diisopropylphenyl)imidazolinium chloride (SIPr·HCl, 40 mol%), Scheme 19) [139].
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Scheme 19. Two examples of different chemoselectivities of [AlI;RhI] compared to conventional
[Ni0] [139]. (a) [AlI;RhI] (5 mol%), HSiMe(OSiMe3)2 (1.2 equiv.), toluene, 120 ◦C, 2 h. (b) [Ni(COD)2]
(20 mol%), 1,3-bis(2,6-diisopropylphenyl)imidazolinium chloride (SIPr·HCl, 40 mol%), HSiEt3

(25 equiv.), NaOtBu, toluene 140 ◦C, 3 h.

Similar to the heterobimetallic cobalt magnesium system employed by Peters et al. for
nitrite reduction, Zhang and coworkers performed catalytic electrochemical water oxidation
using a heterobimetallic [NiII;FeIII] system (Scheme 20). While the heterobimetallic [NiII;FeIII]
system displayed significant catalytic activity, the monobimetallic [FeIII;FeIII] shows no activ-
ity, and the monobimetallic [NiII;NiII] easily breaks down into nanoparticles. Using ZnII to
replace either NiII or FeII and analyzing the activity of the resulting complexes indicated that
the bimetallic NiFe center is responsible for the overall catalytic activity rather than one single
NiII or FeIII site. Using DFT calculations in combination with electrochemical measurements,
the mechanism proposed in Scheme 20 was proposed. Through several single electro oxida-
tions, the high-valent [NiII(µ-O)FeIV(O)] species is obtained. Here, the radical character of
the oxygen is maintained, and thus the rate-determining oxyl-oxo coupling can occur. This
pathway echoes the important role of lattice oxygen in heterogeneous NiFe catalysts [140,141].
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Hong and coworkers developed a series of heterobimetallic IrIII-based metal com-
plexes, most notable among them the [NiII;IrIII] complex depicted in Scheme 21. First, they
studied their catalytic behavior towards formic acid dehydrogenation, yielding carbon
dioxide and dihydrogen, and found that the heterobimetallic complexes significantly in-
creased the rate of dihydrogen production. Of the studied complexes, the heterobimetallic
[NiII;IrIII] complex was the most active [142]. In the next step, the resulting hydride species
was not just protonated but instead used for the reduction of oxygen. After optimizing the
reaction conditions, intermediates were isolated, and kinetic analysis and DFT calculations
were completed, culminating in the mechanism presented in Scheme 21.
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Scheme 21. Proposed mechanism of O2 reduction using heterobimetallic [NiII;IrIII]
(Cp* = C5Me5) [142,143].

The active catalyst is formed by the coordination of formate (A) to give an NiII(µ-
O2CH)IrIII complex, which readily releases CO2 (B) to form the hydride species on reaction
with ethylene glycol. The rate-determining step is the subsequent addition of oxygen (C) to
form the peroxyl species. Here, the NiII moiety again exerts an influence by increasing the
acidity of the protic ethylene glycol coordinated at the Ni center. This facilitates the release
of hydrogen peroxide coupled with the coordination of a new formate unit, regenerating
the active catalyst [143]. Similar [CuII;IrIII] complexes exhibited high catalytic activity for
the aerobic oxidation of olefins, especially compared with their monometallic counterparts,
but no indication of a synergistic mechanism was found. The increase in reactivity is
probably due to a tuning of the stereoelectronic environment of the IrIII center [144].

Polymerization reactions, in particular copolymerization reactions, have already uti-
lized multimetallic assemblies [145,146]. While early works focused on homobi- and
multimetallic complexes, Williams and coworkers created a group of heterobimetallic
macrocyclic complexes that proved to be excellent catalysts for copolymerization reactions
between epoxides and carbon dioxide [147–151]. Of these complexes, [CoII;MgII] is the
most active system and exemplifies the synergistic interaction (Scheme 22) [152,153].
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Scheme 22. Ring-opening copolymerization of cyclohexene oxide and carbon dioxide, catalyzed by
[CoII;MgII] [153].

Detailed kinetic studies showed that both metals have distinct roles in catalysis
(Scheme 23). The RDS of the copolymerization is the attack of the cobalt carbonate unit on
the epoxide (A). Here, the epoxide coordinated at the Mg center lowers the transition state
entropy, favoring polymerization versus back-biting and yielding a cyclic carbonate. Mean-
while, the coordination of the carbonate at the Co center increases its nucleophilicity and
thus reduces the transition state enthalpy. Carbon dioxide can replace the polymeric car-
bonate moiety at Co (B) and is then preorganized for the attack of the Mg alkoxide (C). This
alternating chain shuttling mechanism is responsible for perfect copolymerization [153].
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In analogy to the first synergistic heterobimetallic system, Hey-Hawkins and cowork-
ers published a series of heterobimetallic group 6/group 9 complexes [M0;M’III] (M = Cr,
Mo, W; M′ = Co, Rh, Ir) and tested their catalytic activity in homogeneous carbon dioxide
hydrogenation (Scheme 24). Here, [Mo0;IrIII] showed the highest activity and a marked
increase in activity when compared with its monometallic counterparts [154–156].
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Scheme 24. Comparison of catalytic activity of monometallic [Mo0], [IrIII] and heterobimetallic
[Mo0;IrIII] (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene, Cp* = C5Me5) [154].

Using spectroscopic methods such as IR and 31P{1H} NMR spectroscopy, but in partic-
ular cyclic voltammetry, the two metal centers in all [M0;M′III] complexes were found to be
electronically isolated, in contrast to all previously reported heterobimetallic complexes uti-
lizing synergistic mechanisms [154]. The mechanism depicted in Scheme 25 was proposed
based on NMR spectroscopic studies, kinetic measurements, the isolation of intermediates,
and the study of their reactivity in combination with DFT calculations.
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The low activity with a TON of 128 and a TOF of only 5.0 h−1 can be attributed to
the formation of the base adduct [Mo0;IrIII(TMG)]PF6, which lowers the concentration of
the active catalyst [Mo0;IrIII(NCMe)]PF6 below 1 ppm. The first productive step of the
catalytic cycle is the heterolytic activation of dihydrogen via [TS1], resulting in the hydride
intermediate [Mo0;IrIII(H)]. This intermediate is the resting state of the reaction, as the
following hydride transfer to CO2 is the rate-determining step of the reaction. The last step
is the liberation of formate from [Mo0;IrIII(HCO2)], regenerating the active catalyst. DFT
calculations revealed that the underlying mechanism of the reduction is a lowering of the
Pauli repulsion between the HOMO of CO2 and the HOMO of [Mo0;IrIII(H)] (Figure 8).
Throughout the mechanism, the octahedral Mo(CO)3P3 moiety does not participate actively
in the reaction but only plays an auxiliary role in the rate-determining step by optimizing
the orbital interaction between the active center and the substrate, thus increasing the
reactivity [155].
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3. Conclusions

The advantage of heterobimetallic catalysts over their monometallic counterparts has
long been established, and, while not comprehensive, this review presents an overview of
mechanistic aspects for this exceptional class of compounds. As illustrated by the examples,
the increase in activity can be attributed to interactions between the two metal centers.
Depending on how the metals interact with the substrates, the catalyst can be classified.
While an increase in activity by using the second metal as a metalloligand or an increase in
selectivity by using it to provide scaffolding are well established, using the two metals in a
cooperative way is still underdeveloped. However, using heterobimetallic catalysts in a
cooperative fashion enables unique reactivity and reactions and will undoubtedly be the
future of this field.
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