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Abstract: Herein, a four-coordinated organoboron compound, aminoquinoline diarylboron (AQDAB),
is utilized as the photocatalyst in the oxidation of silane to silanol. This strategy effectively oxidizes
Si–H bonds, affording Si–O bonds. Generally, the corresponding silanols can be obtained in moderate
to good yields at room temperature under oxygen atmospheres, representing a green protocol to
complement the existing preparation methods for silanols.
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1. Introduction

Silanols are widely used in the silicone industry [1,2]. Furthermore, in organic synthe-
sis [2,3], silanols also play an important role as nucleophiles in cross-coupling reactions [3,4],
as directing groups to guide C–H bond activation [5,6], or as catalysts to activate the car-
bonyl moiety [7,8]. In the field of pharmaceutical chemistry, compounds containing the
Si–OH moiety are widely used in enzyme inhibitors [9] and isosteres of pheromones [10,11].
Because of these important applications of silanol compounds, their synthesis has become
the focus of continuous attention for the organic community. In the past half-century, silanol
has been usually prepared by hydrolysis of chlorosilanes (Scheme 1a) [12,13], nucleophilic
substitution [14] of siloxanes, or oxidation of silanes (Scheme 1b) [15–18]. However, these
synthetical strategies generally require strict buffer conditions to avoid the production
of siloxane, transition metal catalysts, and/or strong oxidants such as permanganates,
silver salts, and osmium tetroxides. This damages the atomic economy of such strategies
and limits their substrate scope and practical application [15–21]. Specifically, the use of
transition metals can lead to products containing metal residues, which are difficult to clear
away and seriously influence the bioactive application of the obtained silanols [22–33]. In
this regard, the development of new strategies for silanols is highly desired, especially
metal-free and more atom-economic and sustainable strategies.

With the development of photoredox catalysis in the last decade, the photo-induced
oxidation of silane has also progressed significantly (Scheme 1c) [34–37]. In 2021, Chen,
Fan, and their colleagues reported that under the irradiation of white light, Ru(bpy)3Cl2
could catalyze the formal dehydrogenative reactions between silanes and water to produce
silanols [38]. In 2022, Zhang, Li, and their colleagues reported that silanes could be oxidized
to silanols using Au-TiO2 as a photocatalyst [35]. In 2018, Wang reported that the conver-
sion of silanes to silanols could be accomplished using Rose Bengal as a photocatalyst,
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oxygen as an oxidant, and water as an additive [37]. Subsequently, He and Zhang reported
the conversion of silane to silanol using eosin Y as a photocatalyst [34]. The study of
photoinduced synthesis of silanol inspired us to consider whether the photocatalyst amino-
quinolate B,B-diphenyl complex AQDAB [39,40], which was developed by our group and
applied in photooxidation reactions [40–42], could induce such transformations. Herein,
the success of this hypothesis is reported. A range of diverse silanols can be obtained via
the catalysis of this boron-based photocatalyst in the absence of metals and additives like
strong bases, acids, and oxidants (Scheme 1d).
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2. Results and Discussion

We initiated the study by investigating the hydroxylation reaction of triphenylsilane
1a (Table 1). Through screening different reaction conditions, the optimal reaction con-
ditions are obtained as follows: aminoquinolate B,B-diphenyl complex AQDAB as the
photocatalyst (1.0 mol%), O2 atmosphere, irradiation by a 456 nm blue Kessil lamp, in
DMSO/H2O (1 mL/50 µL) at room temperature for 36 h (Entry 1). Under optimal con-
ditions, triphenylsilanol 2a can be isolated with a yield of 88%. Then, the effect of each
factor under these conditions was explored through control experiments. In the absence of
AQDAB, O2, and light sources (Entries 2–4), the reaction will not take place. This indicates
that these factors play an important role in the photocatalysis process. Using air instead
of O2 caused the yield to drop to 17% (Entry 5). Then, we also explored the role of the
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solvent. Several other polar aprotic solvents, such as DMF and DMA, also afforded the
product, albeit in lower yields (entries 6, 7). The use of DCM and MeCN as solvents
results in very low reaction yields (Entries 8, 9). When the reaction time was reduced to
24 h, the yield dropped to 68% (Entry 10). This is because the triphenylsilane didn’t react
completely. When white light is used as the light source, the reaction cannot proceed at all
(Entry 11). Increasing or decreasing the amount of catalyst equivalent decreases the yield of
product 2a (Entry 12, 13).

Table 1. Optimization of the reaction conditions (a).
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6 DMA instead of DMSO 20%
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11 white Kessil lamp N.R.
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(a) Standard conditions: 1a (0.20 mmol), AQDAB (1.0% mol), O2 (1 atm), light source, DMSO/H2O (1.0 mL/50 µL),
rt, 36 h; (b) Isolated yields. N.R.—no reaction.

After obtaining the optimal reaction conditions, we began to explore the substrate
scope of this transformation. As summarized in Table 2, generally, the reaction conditions
showed good compatibility with diverse silanes and led to the corresponding silanols in
moderate to excellent yields. In the beginning, triaryl silanes were explored. For triphenyl
silanes, when one phenyl was substituted at para-positions, the corresponding silanols
could be obtained in good to excellent yields (2b–2i, 75–94%), regardless of the electron-
rich (-Me, -OMe) or electron-deficient (-CF3, -CN, -COOEt) properties of the attached
substituents. In addition, the meta-substituted triphenyl silanes could also be converted
into desired products with good yields (2j–2m, 78–85%). The compatibility with chloride
and cyano groups also provided powerful scaffolds to enable further decoration of the
obtained silanols. In addition, diphenyl(o-tolyl)silanol 2n was obtained in 82% yield,
and [1,1′-biphenyl]-2-yldiphenylsilanol 2o with a sterically bulky group was obtained in
70% yield, demonstrating this protocol was not sensitive to the steric environment of the
silicon-centers. In addition to phenyl-substituted silanes, naphthyl substrate also led to
high yield (2p, 94%). Heteroaromatic substituents, such as thiophene, dibenzothiophene,
and dibenzofuran cycles, had also been found to be compatible with this photooxidation
process, resulting in products 2q–2s in 78–90% yields. Finally, methyldiphenyl silane and
tert-butyldiphenyl silane were also effective substrates to generate silanols 2t and 2u in
60% and 52% yields, respectively. Dimethyl(phenyl)silanol 2v could also be obtained in a
57% yield.
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Table 2. Substrate scope of silanes.
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Reaction conditions: 1a (0.20 mmol), AQDAB (1.0% mol), O2 (1 atm), light source, DMSO/H2O (1.0 mL/50 µL), rt,
36 h, isolated yields.

The success of this photooxidation process prompted us to investigate the possibility of
a larger-scale synthesis. Delightedly, taking triphenylsilane (1a) as a prototype, the yield of
triphenylsilanol (2a) was 82% when the oxidation was performed using gram-scale starting
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materials (Scheme 2). This could prove the efficiency and demonstrate the application
potential of this protocol.
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Scheme 2. Gram-scale photocatalytic oxidation reaction.

Subsequently, we conducted a series of controlled experiments to elucidate the mecha-
nism of this transformation. First, when the radical quenchers TEMPO (2,2,6,6-tetramethyl-
1-piperi-dinyloxy) or BHT (butylated hydroxytoluene) were present in the mixture, the
target product 2a could be obtained in only 23% isolated yield, implying that free radical
species might be involved in the reaction pathway (Scheme 3a,b). When the reaction
was performed under N2, the reaction could not proceed at all (Scheme 3c), indicating
oxygen could participate in the reaction. When newly-opened dry DMSO was used
as the solvent, the isolated yield decreased to 15% (Scheme 3d), showing H2O might
also play an important role in the conversion from silanes to silanols. Furthermore,
an 18O labeling experiment was carried out using triphenylsilane (1a) as the substrate
with H2

18O under standard conditions (Scheme 3e). HRMS (ESI) analysis [see Supple-
mentary Materials; m/z calcd for C18H15

18OSi− (M − H)− 277.0940, found 277.0938;
m/z calcd for C18H15OSi− (M − H)− 275.0898, found 275.0900] clearly verified H2O
and O2 as the oxygen sources. Moreover, the on and off reaction of light showed that
light was always required to promote the formation of the product during the reaction
process (Figure 1).
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Figure 1. Summary of the on and off reaction of light.

Based on the above observations and previous reports [43,44], a plausible mechanism
for this photooxidation process was proposed, which is shown in Scheme 4. First, AQADB
was excited to generate AQADB* species under visible light irradiation. Then, AQADB*
interacted with 3O2 to generate 1O2 through the energy transfer (ET) process. Through
this pathway, the excited state of the used photocatalyst AQADB* returned to its ground
state. Subsequently, the generated 1O2 would react directly with silanes 1a, abstracting a
hydrogen atom and forming a transient silil radical A plus a hydroperoxy radical HOO•.
These two radical species would recombine to generate the Si–O bond, leading to the
production of silylperoxide B. H2O might act as a nucleophile to attack silylperoxide B,
thus forming a pentavalent ate complex C, which could decompose into silanol 2. The
proposal that C was involved in was based on the observed different yields between the
reactions with or without external water.
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3. Materials and Methods
3.1. Materials and Instruments

Unless otherwise noted, all the reactions of silanes to silanes were carried out under an
oxygen atmosphere and a 25 W blue kessil lamp, as well as room temperature. Analytical
thin layer chromatography (TLC) was performed on a glass plate uniformly coated with
0.25 mm 230–400 mesh silica gel containing a fluorescence indicator. Visualization was
accomplished by exposure to a UV lamp. All the products in this article are compatible
with standard silica gel chromatography. Column chromatography was performed on silica
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gel (200–300 mesh) using standard methods. NMR spectra were measured on a Bruker
Ascend 400 spectrometer, and chemical shifts (δ) are reported in parts per million (ppm).
1H NMR spectra were recorded at 400 MHz in NMR solvents and referenced internally
to the corresponding solvent resonance; 13C NMR spectra were recorded at 101 MHz and
referenced to the corresponding solvent resonance; 19F NMR spectra were recorded at
376 MHz and referenced to corresponding solvent resonance. Coupling constants are
reported in Hz, with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet),
m (multiplet), and br (broad). Commercial reagents and solvents were purchased from
Adamas, J&K, Energy, Sigma-Aldrich, Alfa Aesar, Acros Organics, Innochem, Matrix, Trc,
Apinno, Macklin, Ark, Aladdin, Achem-block, Acmec, Coolpharm, Key Organics, and TCI
and used as received unless otherwise stated.

3.2. General Procedure for the Synthesis of Silanols

A flame-dried 25-mL quartz reaction tube was placed on a magnetic stir bar. Then,
silane 1 (0.2 mmol, 1.0 equiv.) were added to the flame-dried 25 mL quartz reaction tube, A
triple oxygen replacement process was then performed using a double row of tubes. After that,
a mixture of AQDAB (0.9 mg, 0.002 mmol, 1.0 mol%), DMSO (1 mL) and H2O (50 µL) was
rapidly added into the flame-dried 25 mL quartz reaction tube. The reaction tube was placed on
a 25 w blue Kessil reactor. Then the reaction mixture was stirred at 400–500 RPM and exposed
to a blue case lamp at room temperature for 36 h. After taking out the reaction tube, transfer
the reaction mixture to the separator funnel and add 10 mL of water to the separator funnel.
Then, the reaction mixture was extracted with ethyl acetate (3× 10 mL). The combined organic
phase was washed with brine (2 × 5.0 mL) and then dried over anhydrous Na2SO4. After
concentration, the silanol crude product was purified by column chromatography (silica gel)
to give silanol 2, using petroleum ether/ethyl acetate (20:1) as the eluent.

3.3. General Procedure for the Synthesis of AQDAB

The preparation methods of photocatalyst AQDAB used in this paper are methods
disclosed by us in the previous literature [39,41]. In order to facilitate the synthesis of
AQDAB, the preparation process of AQDAB was recorded in detail in this paper. In
addition, UV-vis, CV, and fluorescence data are disclosed in the references [39].

3.3.1. Method A for the Synthesis of AQDAB

A flame-dried 25-mL quartz reaction tube was placed on a magnetic stir bar. After
that, 3-phenyl-N-(quinolin-8-yl)propanamide (41.4 mg, 0.15 mmol, 1.0 equiv), phenyl
trifluoroborate (138.0 mg, 0.75 mmol, 5.0 equiv), Mn (24.7 mg, 0.45 mmol, 3.0 equiv),
4-toluenesulfonyl chloride (71.5 mg, 0.375 mmol, 2.5 equiv.), Na2CO3 (7.9 mg, 0.075 mmol,
0.5 equiv) and CH3CN (1.5 mL) were added. Then the reaction mixture was stirred at
400–500 RPM at 130 ◦C for 24 h. After concentration, the AQDAB crude product was
purified by column chromatography (silica gel) to give 62.7 mg of the photocatalyst in 95%
yield, using petroleum ether/ethyl acetate (3:1) as the eluent.

3.3.2. Method B for the Synthesis of AQDAB

A flame-dried 125-mL quartz reaction tube was placed on a magnetic stir bar. Then,
3-phenyl-N-(quinolin-8-yl)propanamide (276.3 mg, 1.0 mmol, 1.0 equiv.), phenylboronic
acid (1100.0 mg, 9.0 mmol, 9.0 equiv.), K3PO4 (636.8 mg, 3.0 mmol, 3.0 equiv.) and
1,4-dioxane (15 mL) were added. After that, the reaction mixture was stirred at 300–400 RPM
at 130 ◦C for 36 h. After concentration, the AQDAB crude product was purified by col-
umn chromatography (silica gel) to give 286.2 mg of the photocatalyst in 65% yield, using
petroleum ether/ethyl acetate (3:1) as the eluent.

3.3.3. Characterization Data of the AQDAB
1H NMR (400 MHz, CDCl3) δ 8.99 (d, J = 7.6 Hz, 1H), 8.43 (dd, J = 5.2, 0.8 Hz, 1H),

8.38 (d, J = 8.4 Hz, 1H), 7.80 (t, J = 8.4 Hz, 1H), 7.56−7.52 (m, 1H), 7.52−7.46 (m, 5H),
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7.30−7.24 (m, 6H), 7.13 (t, J = 7.2 Hz, 2H), 7.10−7.03 (m, 1H), 6.83 (d, J = 6.8 Hz, 2H),
2.60 (dd, J = 9.5, 4.9 Hz, 2H), 2.57−2.49 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 176.2, 142.0,
141.5, 139.5, 139.1, 137.7, 133.5, 132.6, 128.5, 128.1, 127.9, 127.6, 127.2, 125.5, 122.5, 119.0,
117.2, 39.9, 31.5.

3.4. General Procedure for the Synthesis of Starting Materials [45]
3.4.1. The Synthesis of the Starting Materials of 2a–2f, 2j, 2k, 2m–2r, 2v

A flame-dried 100-mL round-bottom flask was placed on a magnetic stir bar. Three
nitrogen replacement operations were performed on the round-bottomed flask. Then aryl
bromide (5.0 mmol, 1.0 equiv.) was dissolved in THF (10 mL) and injected into a round-
bottomed flask. After that, the round-bottomed flask is placed on the cryogenic reactor and
cooled to −78 ◦C. (-BuLi (3.2 mL, 1.6 M THF solution, 6.0 mmol, 1.2 equiv.) was slowly
injected into a round-bottomed flask over 30 min. The reaction mixture was stirred at
400–500 RPM at −78 ◦C for 2 h. Then slow injection of chlorodiphenylsilane (6.0 mmol,
1.2 equiv.) into a round-bottomed flask. Heat the reactor to room temperature and stir
overnight. The reaction mixture was quenched with NH4Cl (15 mL, saturated aqueous
solution), and the mixture was extracted with ethyl acetate (3 × 10 mL). The combined
organic phase was washed with brine (2 × 5.0 mL) and then dried over anhydrous Na2SO4.
After concentration, the crude product was purified by column chromatography (silica gel)
to give silane, using petroleum ether/ethyl acetate (200:1) as the eluent.

3.4.2. The Synthesis of the Starting Materials of 2g–2i, 2l

A flame-dried 100-mL round-bottom flask was placed on a magnetic stir bar. Three
nitrogen replacement operations were performed on the round-bottomed flask. Then
aryl iodide (5.0 mmol, 1.0 equivalent) was dissolved in THF (10 mL) and injected into a
round-bottomed flask. After that, the round-bottomed flask is placed on the cryogenic
reactor and cooled to −78 ◦C. i-PrMgCl (3 mL, 2.0 M THF solution, 6.0 mmol, 1.2 equiv.)
was slowly injected into a round-bottomed flask over 15 min. The resulting mixture was
heated to −40 ◦C within 2 h and held at −40 ◦C for another 2 h. Then, slow injection
of chlorodiphenylsilane (6.0 mmol, 1.2 equiv.) into a round-bottomed flask. Heat the
reactor to room temperature and stir overnight. The reaction mixture was quenched with
NH4Cl (15 mL, saturated aqueous solution), and the mixture was extracted with CH2Cl2
(3 × 10 mL). The combined organic phase was washed with brine (2 × 5.0 mL) and then
dried over anhydrous Na2SO4. After concentration, the crude product was purified by
column chromatography (silica gel) to give silane, using petroleum ether/ethyl acetate
(200:1) as the eluent.

3.5. Characterization Data of Products

Triphenylsilanol (2a) [45]: Following the General Procedure with triphenylsilane
(52.0 mg, 0.2 mmol), 2a was obtained as colorless oil (48.6 mg, 88%).1H NMR (400 MHz,
CDCl3) δ 7.71–7.61 (m, 6H), 7.49–7.44 (m, 3H), 7.43–7.36 (m, 6H), 2.63 (s, 1H).13C NMR
(101 MHz, CDCl3) δ 135.1, 135.0, 130.1, 127.9.

Diphenyl(p-tolyl)silano (2b) [45]: Following the General Procedure with diphenyl(p-
tolyl)silane (54.8 mg, 0.2 mmol), 2b was obtained as pale yellow oil (54.5 mg, 94%). 1H NMR
(400 MHz, CDCl3) δ 7.62–7.55 (m, 4H), 7.52–7.47 (m, 2H), 7.43–7.37 (m, 2H), 7.36–7.30 (m, 4H),
7.17 (d, J = 7.6 Hz, 2H), 2.85 (s, 1H), 2.34 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 140.0, 135.3,
135.0, 134.9, 131.4, 129.9, 128.6, 127.7, 21.5.

(4-(tert-butyl)phenyl)diphenylsilanol (2c) [45]: Following the General Procedure with
(4-(tert-butyl)phenyl)diphenylsilane (62.2 mg, 0.2 mmol), 2c was obtained as colorless oil
(59.8 mg, 90%). 1H NMR (400 MHz, CDCl3) δ 7.69–7.63 (m, 4H), 7.61–7.57 (m, 2H), 7.49–7.36
(m, 8H), 2.69 (s, 1H), 1.34 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 153.1, 135.4, 135.0, 134.9,
131.6, 130.0, 127.9, 124.9, 34.8, 31.2.

(4-methoxyphenyl)diphenylsilanol (2d) [45]: Following the General Procedure with
(4-methoxyphenyl)diphenylsilane (58.0 mg, 0.2 mmol), 2d was obtained as pale yellow
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oil (50.0 mg, 82%). 1H NMR (400 MHz, CDCl3) δ 7.63–7.58 (m, 4H), 7.54–7.50 (m, 2H),
7.39–7.32 (m, 6H), 6.93–6.87 (m, 2H), 3.79 (s, 3H), 2.66 (s, 1H).13C NMR (101 MHz, CDCl3) δ
161.2, 136.6, 135.5, 134.9, 130.0, 127.9, 126.1, 113.7, 55.0.

[1,1’-biphenyl]-4-yldiphenylsilanol (2e) [45]: Following the General Procedure with
[1,1’-biphenyl]-4-yldiphenylsilane (67.2 mg, 0.2 mmol), 2e was obtained as white solid
(62.7 mg, 89%). 1H NMR (400 MHz, CDCl3) δ 7.76–7.68 (m, 6H), 7.67–7.61 (m, 4H),
7.53–7.46 (m, 4H), 7.46–7.36 (m, 5H), 3.08 (s, 1H).13C NMR (101 MHz, CDCl3) δ 142.7,
140.8, 135.5, 135.1, 135.0, 133.8, 130.1, 128.8, 127.9, 127.5, 127.1, 126.6.

2-methyl-4-phenylquinoline (2f) [45]: Following the General Procedure with (4-
chlorophenyl)diphenylsilane (58.8 mg, 0.2 mmol), 2f was obtained as pale yellow oil
(52.7 mg, 85%). 1H NMR (400 MHz, CDCl3) δ 7.64–7.57 (m, 4H), 7.56–7.44 (m, 4H),
7.42–7.33 (m, 6H), 3.16 (s, 1H).13C NMR (101 MHz, CDCl3) δ 136.5, 136.3, 134.9, 134.6,
133.5, 130.2, 128.1, 128.0.

Diphenyl(4-(trifluoromethyl)phenyl)silanol (2g) [45]: Following the General Procedure
with diphenyl(4-(trifluoromethyl)phenyl)silane (65.6 mg, 0.2 mmol), 2g was obtained as
pale yellow oil (51.6 mg, 75%). 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 7.6 Hz, 2H),
7.65–7.57 (m, 6H), 7.51–7.45 (m, 2H), 7.44–7.36 (m, 4H), 2.92 (s, 1H).13C NMR (101 MHz,
CDCl3) δ 140.1, 135.2, 134.9, 134.2, 131.9 (q, J = 32.2 Hz), 130.5, 128.1, 124.4 (q, J = 3.7 Hz),
124.1 (q, J = 273.7 Hz). 19F NMR (376 MHz, CDCl3) δ −62.91.

Ethyl 4-(hydroxydiphenylsilyl)benzoate (2h) [45]: Following the General Procedure
with ethyl 4-(diphenylsilyl)benzoate (66.4 mg, 0.2 mmol), 2h was obtained as colorless
oil (59.2 mg, 85%). 1H NMR (400 MHz, CDCl3) δ 8.04–7.96 (m, 2H), 7.73–7.68 (m, 2H),
7.65–7.58 (m, 4H), 7.48–7.35 (m, 6H), 4.36 (q, J = 7.2 Hz, 2H), 3.59 (s, 1H), 1.38 (t, J = 6.8 Hz,
3H). 13C NMR (101 MHz, CDCl3) δ 166.8, 141.3, 134.90, 134.88, 134.6, 131.5, 130.2, 128.5,
127.9, 61.1, 14.2.

4-(hydroxydiphenylsilyl)benzonitrile (2i) [45]: Following the General Procedure with
methyl 4-(diphenylsilyl)benzonitrile (57.0 mg, 0.2 mmol), 2i was obtained as colorless
oil (51.78 mg, 86%). 1H NMR (400 MHz, CDCl3) δ 7.70–7.69 (m, 2H), 7.64–7.54 (m, 6H),
7.51–7.25 (m, 2H), 7.43–7.36 (m, 4H), 3.38 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 142.1, 135.3,
134.8, 133.8, 131.0, 130.5, 128.1, 118.7, 113.3.

Diphenyl(m-tolyl)silanol (2j) [45]: Following the General Procedure with diphenyl(m-
tolyl)silane (54.8 mg, 0.2 mmol), 2j was obtained as white solid (45.3 mg, 78%). 1H NMR
(400 MHz, CDCl3) δ 7.63–7.58 (m, 4H), 7.46–7.39 (m, 4H), 7.38–7.32 (m, 4H), 7.28–7.22
(m, 2H), 2.76 (s, 1H), 2.31 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 137.3, 135.4, 135.3, 135.0,
132.1, 130.9, 130.0, 127.9, 127.8, 21.5.

(4-methoxyphenyl)diphenylsilanol (2k) [34]: Following the General Procedure with
(3-methoxyphenyl)diphenylsilane (58.0 mg, 0.2 mmol), 2k was obtained as white solid
(52.0 mg, 85%). 1H NMR (400 MHz, CDCl3) δ 7.67–7.58 (m, 4H), 7.45–7.40 (m, 2H),
7.39–7.34 (m, 4H), 7.33–7.28 (m, 1H), 7.21–7.12 (m, 2H), 7.00–6.93 (m, 1H), 3.75 (s, 3H),
2.61 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 159.0, 136.7, 135.00, 134.95, 130.1, 129.2, 127.9,
127.3, 120.1, 115.7, 55.1.

(3-chlorophenyl)diphenylsilanol (2l) [34]: Following the General Procedure with
(3-chlorophenyl)diphenylsilane (58.8 mg, 0.2 mmol), 2l was obtained as colorless oil
(50.2 mg, 81%). 1H NMR (400 MHz, CDCl3) δ 7.65–7.58 (m, 5H), 7.52–7.44 (m, 3H),
7.44–7.38 (m, 5H), 7.35–7.30 (m, 1H), 2.62 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 137.9, 134.9,
134.5, 134.4, 134.3, 134.2, 132.9, 130.4, 130.2, 129.4, 128.1.

(3-fluorophenyl)diphenylsilanol (2m) [45]: Following the General Procedure with
(3-fluorophenyl)diphenylsilane (55.6 mg, 0.2 mmol), 2m was obtained as white solid
(50.0 mg, 85%). 1H NMR (400 MHz, CDCl3) δ 7.66–7.59 (m, 4H), 7.50–7.44 (m, 2H),
7.43–7.31 (m, 7H), 7.17–7.10 (m, 1H), 2.97 (s, 1H).13C NMR (101 MHz, CDCl3) δ 162.5
(d, J = 248.6 Hz), 138.3 (d, J = 4.2 Hz), 134.9, 134.4, 130.5 (d, J = 3.1 Hz), 130.3, 129.8
(d, J = 6.9 Hz), 128.0, 121.3 (d, J = 19.1 Hz), 117.1 (d, J = 21.1 Hz). 19F NMR (376 MHz,
CDCl3) δ −113.04.
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Diphenyl(o-tolyl)silanol (2n) [45]: Following the General Procedure with diphenyl(o-
tolyl)silane (54.8 mg, 0.2 mmol), 2n was obtained as pale yellow oil (47.6 mg, 82%).
1H NMR (400 MHz, CDCl3) δ 7.61–7.54 (m, 4H), 7.46–7.39 (m, 3H), 7.38–7.31 (m, 5H),
7.20–7.11 (m, 2H), 2.65 (s, 1H), 2.30 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 144.6, 136.6, 135.6,
134.9, 133.5, 130.4, 130.0, 129.9 127.9, 124.8, 23.3.

[1,1′-biphenyl]-2-yldiphenylsilanol (2o) [37]: Following the General Procedure with
[1,1’-biphenyl]-2-yldiphenylsilane (67.2 mg, 0.2 mmol), 2o was obtained as white solid
(49.3 mg, 70%).1H NMR (400 MHz, CDCl3) δ 7.51–7.44 (m, 6H), 7.42–7.37 (m, 2H), 7.36–7.30
(m, 6H), 7.28–7.20 (m, 3H), 7.19–7.14 (m, 2H).13C NMR (101 MHz, CDCl3) δ 149.0, 143.6,
136.6, 136.4, 134.8, 134.1, 129.8, 129.72, 129.69, 129.0, 128.2, 127.8, 127.5, 126.3.

Naphthalen-1-yldiphenylsilanol (2p) [45]: Following the General Procedure with
naphthalen-1-yldiphenylsilane (62.0 mg, 0.2 mmol), 2p was obtained as pale yellow oil
(61.3 mg, 94%). 1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.0 Hz,
1H), 7.90 (d, J = 8.0 Hz, 1H), 7.72–7.63 (m, 5H), 7.49–7.36 (m, 9H), 2.84 (s, 1H). 13C NMR
(101 MHz, CDCl3) δ 137.1, 136.5, 135.7, 135.0, 133.4, 132.9, 131.1, 130.1, 128.9, 128.8, 128.0,
126.1, 125.6, 125.0.

Diphenyl(thiophen-2-yl)silanol (2q) [45]: Following the General Procedure with
diphenyl(thiophen-2-yl)silane (53.2 mg, 0.2 mmol), 2q was obtained as colorless oil
(44.0 mg, 78%). 1H NMR (400 MHz, CDCl3) δ 7.71–7.54 (m, 5H), 7.44–7.24 (m, 7H), 7.22–7.14
(m, 1H), 3.06 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 137.6, 134.9, 134.7, 134.4, 132.5, 130.3,
128.3, 127.9.

Dibenzo[b,d]thiophen-4-yldiphenylsilanol (2r) [45]: Following the General Procedure
with dibenzo[b,d]thiophen-4-yldiphenylsilane (73.2 mg, 0.2 mmol), 2r was obtained as
white solid (62.7 mg, 82%). 1H NMR (400 MHz, CDCl3) δ 8.25 (d, J = 8.0 Hz, 1H), 8.20–8.15
(m, 1H), 7.77–7.69 (m, 5H), 7.65 (d, J = 7.2 Hz, 1H), 7.52–7.39 (m, 9H), 3.07 (s, 1H). 13C NMR
(101 MHz, CDCl3) δ 145.8, 139.7, 135.2, 134.9, 134.8 134.0, 130.4, 129.4, 128.0, 126.6, 124.2,
123.8, 123.5, 122.6, 121.4.

Dibenzo[b,d]furan-4-yldiphenylsilanol (2s) [45]: Following the General Procedure
with dibenzo[b,d]furan-4-yldiphenylsilane (70.0 mg, 0.2 mmol), 2s was obtained as white
solid (65.9 mg, 90%). 1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 7.6 Hz, 1H), 7.99
(d, J = 7.6 Hz, 1H), 7.74 (d, J = 8.0 Hz, 4H), 7.56–7.35 (m, 11H), 3.41 (s, 1H).13C NMR
(101 MHz, CDCl3) δ 160.8, 155.9, 135.0, 134.7, 134.2, 130.3, 127.9, 127.1, 123.9, 123.1, 122.8,
122.77, 122.69, 120.6, 118.2, 111.8.

Methyldiphenylsilanol (2t) [45]: Following the General Procedure with methyldiphenylsi-
lane (39.6 mg, 0.2 mmol), 2t was obtained as colorless oil (25.7 mg, 60%). 1H NMR (400 MHz,
CDCl3) δ 7.64–7.60 (m, 4H), 7.44–7.38 (m, 6H), 2.40 (s, 1H), 0.68 (s, 3H). 13C NMR (101 MHz,
CDCl3) δ 137.0, 133.9, 129.9, 127.9,−1.3.

Tert-butyldiphenylsilanol (2u) [37]: Following the General Procedure with tert-
butyldiphenylsilane (48.0 mg, 0.2 mmol), 2t was obtained as colorless oil (26.6 mg, 52%).
1H NMR (400 MHz, CDCl3) δ 7.77–7.70 (m, 4H), 7.44–7.36 (m, 6H), 2.17 (s, 1H), 1.08 (s, 9H).
13C NMR (101 MHz, CDCl3) δ 135.1, 134.8, 129.6, 127.7, 26.5, 19.0.

Dimethyl(phenyl)silanol (2v) [45]: Following the General Procedure with
dimethyl(phenyl)silane (27.2 mg, 0.2 mmol), 2u was obtained as colorless oil (17.3 mg,
57%). 1H NMR (400 MHz, CDCl3) δ 7.63–7.58 (m, 2H), 7.42–7.36 (m, 3H), 1.90 (s, 1H),
0.41 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 139.1, 133.0, 129.6, 127.9, 0.0.

4. Conclusions

In conclusion, we have developed a photocatalytic oxidation strategy to achieve
silanol synthesis. Four-coordinate aminoquinolate diarylboron compounds are used as
photocatalysts for this conversion, which can produce 1O under visible light irradiation.
This transformation bypasses the use of noble metal-based photocatalysts or oxidants. The
boron-based photocatalyst is demonstrated herein to be a sustainable supplement to the
noble metal-based photocatalysts. Research on its further application is also underway in
our laboratory.
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