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Abstract: With the aim to develop polymers with appealing, multifunctional characteristics, a series
of polyimides were designed by anchoring 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide
(DOPO) units on the main polymer chains containing 1,3,5-triazine and several flexible moieties, such
as ether, hexafluoroisopropylidene, or isopropylidene. A detailed study was conducted to establish
structure–property correlations, with a focus on the synergistic effectiveness of triazine and DOPO
moieties on the overall features of polyimides. The results evidenced good solubility of the polymers
in organic solvents, their amorphous nature with short-range regular-packed polymer chains, and
high thermal stability with no glass transition temperature below 300 ◦C. Spectrophotometric mea-
surements revealed the existence of a strong charge transfer complex in these polymers that led to a
“black” appearance, which generated broad absorption bands spanning on the overall visible range.
Nevertheless, these polymers displayed green light emission associated with 1,3,5-triazine emitter.
The electrochemical characteristics of the polyimides in solid state demonstrated their strong n-type
doping character induced by three different structural elements with electron-acceptance capability.
The useful properties of these polyimides, including optical, thermal, electrochemical, aesthetics,
and opaqueness, endow them with several possible applications in the microelectronic field, such as
protecting layers for the inner circuits against UV light deterioration.

Keywords: polyimide; 1,3,5-triazine; DOPO; “black” appearance; fluorescence; electrochemistry

1. Introduction

Polyimides belong to the well-known class of high thermostable polymers which have
continuously attracted the attention of academia and industry due to their unique and
appealing combination of physical and chemical properties. Since their discovery in 1908,
polyimides have been subjected to various modifications in order to render the designed
polymeric architectures with targeted properties for a wide range of applications. Relevant
reviews that have described the synthetic pathways for the development of polyimides,
their physico-chemical characterization, as well as the diverse range of applications have
been published over the last 10 years [1–7]. The characteristics of classical all-aromatic
polyimides include high-temperature resistance, mechanical and chemical stability, ele-
vated glass transition temperature, variable optical transmittance, as well as low dielectric
constants. All these properties can be tailored by altering the architecture of the polymer
chains, and they strongly depend on the functional groups inserted in the macromolecular
backbones which also influence the molecular weight, solubility, crystallinity, intermolec-
ular forces, or electron conducting/storage ability in addition to the above-mentioned
properties. All these characteristics make the newly developed polyimides valuable can-
didates for a wide range of applications in different forms, such as film, fiber, nanofiber,
membrane, foam, adhesive, or coating in aerospace, electronics, automotives, medicine,
information recording and new imaging technology, modern paper, solar cells, or other
green energy fields [8]. Thus, researchers have customized the polyimide macromolecular
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chain in order to obtain materials with specific properties for targeted applications. The
approaches that have been undertaken have mainly consisted of incorporating various
moieties into the starting monomer’s structure (kink, spiro, cardo, cycloaliphatic, bulky,
fluorinated, hetero, carbazole, perylene, chiral, nonlinear optical, or unsymmetrical units),
copolymerization reactions, functionalization of the already obtained polyimides, or use of
different fillers towards nanocomposite-based polyimide material development [5,7,9–14].
It has been proven that the incorporation of aromatic ether and isopropylidene units enables
increased processability and lowered glass transition temperature of the corresponding
polyimides, while maintaining increased thermal stability [15–18]. On the other hand,
bulky hexafluoroisopropylidene moieties are known for their ability to enhance flame
resistance properties and gas separation characteristics through increased free volume, as
well as to improve the electrical insulation ability [16,19].

Although not often incorporated into polyimides, 1,3,5-triziane can also lead to high-
performance materials with special properties; 1,3,5-triazine, as part of nitrogen-containing
heterocycles, is used for the synthesis of bioactive compounds, and has been successfully
employed as cross-linking agents for bioconjugation, dehydrating agents, building blocks
for star-shaped structures/hyperbranched polymers, as well as starting materials for
various s-triazine derivatives [20]. In addition, it has been involved in the development
of herbicidal, fungicidal, and insecticidal products and possesses antitumor activities.
Due to its nitrogen-rich structure, 1,3,5-triazine has gained the interest of researchers
for obtaining energetic materials and explosives, or efficient growth of nitrogen-doped
graphene on a large scale [21]. As a consequence of their good electron-acceptor ability,
triazine derivatives have been widely used as electron transport layers in organic light
emitting diodes, thermally activated delayed fluorescence emitters, and donors in bulk
heterojunction solar cells [22–25]. When triazine derivatives have been incorporated into
polyimide structures, new interesting materials have been obtained for use as sodium-
ion battery anodes [26], highly efficient removal of Ni(II) from aqueous solution [27],
mixed-matrix membranes for CO2/CH4 separation [28], covalent organic frameworks for
high-performance Li storage [29], or as cathodes for sodium storage [30].

One approach to supply industrial needs for high-temperature and flame-retardant
materials consists of the development of phosphorus-based polyimides. It has been proven
that the incorporation of phosphorus into polymer chains (such as phosphine oxide or phos-
phonate) led to improved solubility in organic solvents, flame retardancy, atomic oxygen
resistance, and adhesion to metals, while maintaining their desirable characteristics. The
thermal stability endowed by the incorporation of phosphinate linkage [–O–(O=)P–O–C]
into a cyclic form is higher than that of a phosphonate type [–O–(O=)P–O–] based poly-
mer [31]. Thus, recently, several phosphorus-containing polyimides have been reported
with improved physico-chemical properties through monomer functionalization with flex-
ible units [16,32–34] or by using copolymerization techniques [35,36]. Particular interest
has been devoted to the development of phosphorus-based polyimides for use as proton
exchange membranes [37,38], or polyimide composites with pristine or functionalized
polyhedral oligomeric silsesquioxane for atomic oxygen resistance applications [39–41].

Polymers containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO)
have attracted interest due to the DOPO bulky structure which enables free conformational
stress and prevents polymer chains packing [42,43]. When inserted into polyimide chains,
DOPO moiety can improve polymer solubility, thermal stability, and flame retardancy [44].
From our knowledge, the number of studies in the literature reporting on DOPO-containing
polyimides is relatively low [31,45], and they rely mainly on describing the influence of
DOPO derivatives on solubility, crystallinity, thermal, and flame retardant properties.
Lately, the studies on DOPO-containing pristine polyimides have focused on analyzing the
gas-transport properties, optical or flame-retardant properties [43,46].

Despite the numerous articles based on the synthesis of polyimides published so far,
none of them have focused on the incorporation of triazine and DOPO heterocyclic units in
the same macromolecular chain. Therefore, this study attempts to highlight the synergistic
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effect of DOPO and triazine on the physico-chemical properties of a series of polyimides
which also incorporate several flexible linkages. To this aim, a diamine monomer containing
DOPO-substituted triazine was used in polycondensation reaction with several dianhy-
drides which incorporate bridges of variable flexibility. We explored, in detail, the influence
of this bulky unit on the overall polyimide properties, including thin films morphology,
photo-optical characteristics, thermal stability, and electrochemical features.

2. Results and Discussions

With the aim to develop polymers with useful characteristics for nowadays technolo-
gies, the classical polyimide structure was modified by anchoring DOPO on the 1,3,5-
triazine unit of the main polymer chains. To enhance the solubility and polymer pro-
cessability by wet methods, additional moieties with various degrees of flexibility were
incorporated into the polymer structure, taking care to maintain the high thermal stability
and other inherent properties of classical polyimides. To this aim, the diamine TE-DOPO
containing DOPO-substituted triazine was used in the polycondensation reaction with
three commercial aromatic dianhydrides to synthesize the desired polyimides, PI1–PI3,
according to Scheme 1. Due to the diamine insolubility in NMP at room temperature, the
polycondensation reaction was conducted in a single step, without the isolation of the
intermediate polyamidic acid.
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Scheme 1. Synthesis of DOPO-substituted triazine-containing polyimides PI1–PI3 (the inset shows
the images of the obtained polyimide powders).

2.1. Structural Characterization

The structural identification of the obtained polyimide powders was accomplished
by FTIR and NMR spectroscopies. The FTIR spectra revealed the existence of the char-
acteristic absorption bands of the newly formed imide cycle at: 1777–1764 cm−1 (C=O
asymmetric stretching vibration), 1704–1700 cm−1 (C=O symmetric stretching vibration),
1378–1377 cm−1 (C–N stretching vibration), and 754–717 cm−1 (imide ring deformation).
The absorption bands identified at about 1542–1540 cm−1 were attributed to the hetero-
cyclic triazine unit. Evidence supporting the maintenance of the cyclic DOPO groups in
the polyimides was provided through the appearance of some characteristic absorption
bands, as follows: P–Ar at about 1475–1472 cm−1, P–CH2 at 1436–1434 cm−1, P=O at
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1146–1140 cm−1, and P–O–Ph at 920–916 cm−1. The absorption bands due to C–H aliphatic
bonds from the ethylidene bridge which connects the two heterocycles were found in
the ranges of 2965–2951 cm−1 and 2894–2898 cm−1, providing further evidence for the
existence of the unaltered bulky DOPO-substituted triazine unit in the macromolecular
chains of the polyimides. Aromatic C–H and C–C linkages of the aromatic rings were
identified at approximatively 3080–3060 cm−1 and 1608–1606 cm−1, respectively. The spe-
cific flexible group from the diimide segment of each polymer was identified at 1227 cm−1

due to the absorption of aromatic ether units in PI1, 1209 cm−1 due to the absorption of
CF3 moieties in PI2, and 2965 cm−1 and 2898 cm−1 due to the absorption of aliphatic C-H
linkage belonging to the C(CH3)2 group of PI3 (Figure 1).
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Figure 1. Stacked FTIR spectra of triazine− and DOPO−containing polyimides PI1−PI3. 
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Figure 1. Stacked FTIR spectra of triazine– and DOPO–containing polyimides PI1–PI3.

An important aspect provided by the FTIR spectra relates to the absorption bands
which appeared in the ranges of 3409–3401 cm−1 and 1637–1623 cm−1 which can be
attributed to carboxylic and amide groups absorptions, respectively. These suggest the oc-
currence of an incomplete imidization of the intermediary polyamidic acids. We presumed
that when polyamidic acids were formed, certain intermolecular interactions occurred
between the carboxylic acid units from the main chains and DOPO pendant unit (through
–OH and P=O), which impeded the formation of a fully-cyclized polyimide, despite the
long reaction times and catalyst used in the polycondensation reactions. The incomplete
cyclization of the intermediary polyamidic acids to the corresponding fully cyclized poly-
imide forms is a known phenomenon encountered for polyimides bearing bulky pendant
groups where a 100% degree of imidization is rarely found [47,48].

The NMR spectra provided additional support for the FTIR data discussed above. In
the case of the polyimides PI1 and PI2, which display a more rigid structure of the diimide
segment, the aromatic protons coming from the diamine and diimide segments appear as
broad overlapped signals, in the ranges of 7.31–8.16 ppm (PI1) and 7.25–8.16 ppm (PI2).
Polyimide PI3, which contains a longer flexible unit, exhibits a slightly clearer spectrum
with peaks separated in two regions: 8.3–7.18 ppm and 7.36–7.12 ppm (Figure 2a). The
different pattern of the 1H-NMR spectrum of this polymer may be associated with the
higher flexibility induced by the presence of 6H and ether units, which reduce the chain
packing to a lower degree compared to PI1 and PI2, where intermolecular interactions are
predominant. The 1H-NMR spectra of the polyimides were compared to that of the starting
diamine monomer and the results indicated its full incorporation into the corresponding
polymers due to the disappearance of characteristic amine protons from 6.55 ppm. Still, in
line with FTIR findings, 1H-NMR spectra also revealed the existence of residual polyamidic
acid groups in all polymers due to the broad peak found at about 13.15–12.10 ppm and
the sharp peak centered at 11.64–11.31 ppm, which were attributed to the carboxylic and
amide protons, respectively.
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polyimides PI1–PI3.

The 31P-NMR spectra also confirmed the correct structure of the synthesized poly-
imides through the presence of a main sharp peak at about 36.98–37.04 ppm associated with
the phosphorus of the polyimide chains, and a broad, weak shoulder-like peak in the range
of 32–33.08 ppm, which was tentatively attributed to the non-cyclized polyamidic acid
segments (Figure 2b). The broadness of the latter provides evidence for the involvement of
the P=O unit in intermolecular interactions.

Due to the incorporation of the bulky pendant DOPO segment in the side chains and
of flexible ether, hexafluoroisopropylidene, or isopropylidene units in the main chains,
improved organo-solubility and processability of the synthesized polyimides is expected.
To verify this, solubility tests were performed using 5 mg of polyimides in 1 mL solvent. The
results evidenced a very good polymer solubility in polar organic solvents (NMP, DMAc,
DMF, and DMSO). In the case of less polar solvents, such as THF, chloroform, acetone, or
dichloromethane, PI1–PI3 were insoluble even on heating (Table 1). The good solubility
at room temperature in organic polar solvents is attributed, on one hand, to the polymers
non-coplanar structure induced by the presence of the voluminous DOPO-substituted
ethylidene unit from the side chain and, on the other hand, to the flexible groups from the
diimide segment. The synergetic effect of these structural modifications led to polymer
conformations which enabled the penetration of small solvent molecules through the chains
and polymer solubilization.
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Table 1. Solubility of polyimides PI1–PI3.

Polyimide
Solvent

NMP DMAc DMSO DMF EtOH CHCl3 DCM Acetone

PI1 ++ ++ ++ ++ − − − −
PI2 ++ ++ ++ ++ − − − −
PI3 ++ ++ ++ ++ − − − −

++, soluble at room temperature; −, insoluble even on heating.

Owing to the good solubility in polar organic solvents, evaluation of the average
molecular weights of polyimides was possible by using GPC measurements. The data
revealed relative high values for the investigated parameters: Mn had values between
151,700 and 301,700 g/mol, Mw was in the range of 354,500–693,900 g/mol, while the
polydispersity index was between 2.19 and 2.34 (Table 2).

Table 2. Molecular weight values and thermal stability parameters for PI1, PI2, and PI3.

Polyimide Mn
(g/mol)

Mw
(g/mol) Mw/Mn T5 (◦C) Tmax

(◦C) W800 (%)

PI1 151,700 354,500 2.34 336 490 46.44

PI2 301,700 693,900 2.30 352 516/691 27.18

PI3 274,200 599,000 2.19 339 499 53.05
Mn, number average molecular weight; Mw, weight average molecular weight; T5, temperature of 5% weight loss;
Tmax, maximum decomposition temperature; W800, char residue at 800 ◦C.

Apart from this, GPC diagrams evidenced signals for the residual polyamidic acid seg-
ments with low Mn values, in the range of 6500–7700 g/mol (Mw of about 7100–8200 g/mol
and polydispersity index between 1.07 and 1.1). Thus, contents of about 12, 10, and 8 repeat-
ing units of polyamidic acid segments relative to approx. 565, 912, and 716 imide segments
were found, which means a conversion of 97.9%, 98.9%. and 98.9% of the polyamidic acid
to the imide structure for PI1, PI2. and PI3, respectively.

2.2. XRD and SEM Studies

Due to the black appearance of the polyimide powders (as can be seen in Scheme 1),
XRD measurements were registered to analyze the possible crystalline nature of the poly-
mers. The broad X-ray diffractogram of the polyimides (Figure 3) in the range of 15–25◦

indicate their amorphous nature. The two overlapped halos identified in this region may be
associated with the mixture of the two polymer structures, i.e., polyimide and polyamidic
acids. The peak found at smaller diffraction angles in all polyimides (approx. 7◦) is tenta-
tively attributed to the changes in local order (regular repeating distances), i.e., short-range
regular packing of polymer chains with no crystalline features [49]. The amorphous nature
of these polyimides is due to the presence of the bulky unsymmetrical DOPO-substituted
triazine moiety in the diamine segment and of flexible units (ether, hexafluoroisopropy-
lidene, or isopropylidene) in the diimide segment. All of these structural units disturb
the overall regularity and hinder the arrangement in crystalline domains of polyimide
chains [50].
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Figure 3. WAXD patterns of the polyimides PI1–PI3.

Starting from the XRD results, it was anticipated that some solid-state organization
may occur in thin films obtained from these polymers. Thus, coatings of PI1–PI3 were
obtained on glass plates from polymer solutions in NMP by using the drop-casting tech-
nique, after gradual annealing until 250 ◦C. To further evaluate the films’ morphology,
optical microscopy (OM) visualizations were first involved. The photographs taken at a
magnification of 20× evidenced the formation of continuous and homogeneous films, with
similar morphologies for all polymers (Figure 4, top). Although the polyimides’ structures
contain different diimide segments, no obvious influence of this structural parameter on
the morphological features of the films was noticed.
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The capability of the polymer chains to arrange into more defined assemblies was
observed by performing scanning electron microscopy (SEM) investigations. Thus, when
the surfaces of thin films were analyzed, similar morphological features were found for all
polymers, as in the case of OM. The rigid rods of the polymer macromolecules generated
by the imide-triazine framework mostly experienced π–π stacking interactions during
film preparation under heating, leading to a grain-like morphology (Figure 4, bottom).
However, from a certain level, the primary morphological entities arranged in bigger
assemblies, as well-observed in the case of PI2. Most likely, surface tension constraints
occurred that forced the grains to organize into clusters having a sheet-like shape and
variable dimensions. It should be noted that this type of solid-state organization has not
been previously reported for DOPO-containing polyimides, which prompted us to consider
that a strong contribution to it originates from triazine that through the synergetic effect
with imide and DOPO induced a close macromolecular packing.

2.3. Thermal Properties

Differential scanning calorimetry and thermogravimetric investigations were used to
analyze the thermal stability of the polymers, and the obtained data are shown in Table 2
and Figure 5. The glass transition temperature for all polymer powders could not be
detected in the temperature limit of the experimental setup, so that no Tg was registered
until 300 ◦C for any of the polyimides. Most likely, this phenomenon is present at a higher
temperature due to the high degree of aromaticity of the main polymer chains and the
presence of intermolecular interactions between macromolecules in solid state.
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The initial decomposition temperature of polyimides, taken as 5% weight loss (T5) reg-
istered values in the range of 336–352 ◦C, in close correlation with the nature of the flexible
unit from the dianhydride fragment. The highest value of T5 was obtained for PI2 which
incorporates 6F units, while the lowest one was registered for PI1 containing ether bridges
in the main chain. However, the latter displayed an initial decomposition temperature
close to that found for PI3 with isopropylidene moieties in the diiimide segment (339 ◦C).
These values are comparable to those obtained for related DOPO-containing polyimides
with the same flexible linkages [43], and are slightly lower than those reported for fully
aromatic conjugated triazine-based polyimides [30]. The degradation mechanism followed
the same trend for polyimides PI1 and PI3, employing one major decomposition step, while



Molecules 2023, 28, 4072 9 of 18

PI2, incorporating hexafluoroisopropylidene units in the polymer structure, exhibited an
additional decomposition step, which, in this case, was attributed to the scission of the fluo-
rinated moieties. A shoulder-like peak can be observed in the DTG curves at about 369, 338,
and 376 ◦C for PI1, PI2, and PI3, respectively, which can be assigned to the decomposition
of the voluminous triazine-ethylidene-DOPO fragment [42]. The main step of decompo-
sition in all polymers was found in the range of 490–516 ◦C, and was correlated with the
degradation of the main macromolecular chains. The char residue values at 800 ◦C were
higher in the case of PI1 and PI3 (W800 = 46.44% and 53.05%, respectively), and they were
comparable to the values recorded for related DOPO-containing polyimides [43,45]. As
expected, the introduction of DOPO-substituted triazine unit along with flexible linkages
in these polyimides preserved an increased thermal stability, and therefore, the present
polymers are suitable for applications that require resistance to high temperatures.

2.4. Photo-Optical Characteristics

Spectral characterization by UV-Vis absorption and fluorescence was carried out with
the aim to evaluate the electronic transitions induced by the triazine and imide heterocycles
in polymers PI1–PI3, and also the presence of molecular interactions. Figure 6 illustrates
the electronic absorption spectra of these polyimides recorded in DMSO solution and in
solid state.
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According to Figure 6, the absorption bands of the studied polyimides are weak, in
the form of shoulders, and difficult to localize, with maxima at wavelengths of about
270, 290, and 300 nm. These overlapped high-energy absorptions can be attributed to
the π–π* and n–π* transitions in the imide, triazine, DOPO, and benzene rings, according
to previous reports [51,52]. Although the structural variation in the diimide segment
tailored the macromolecular conformation and planarity of PI1–PI3, this had little effect
on the electronic transitions in these polymers since no obvious shifts in the absorption
maxima were observed. It should be emphasized that all polyimides showed in their
UV-Vis absorption spectra a tail-like band spanning the overall visible domain, which may
suggest the existence of the charge transfer complex (CTC) in these polymers.

As thin films, the present polyimides showed different photo responses compared
to the isolated molecules in liquid phase, with broader absorption bands spanning the
overall visible absorption range, which apparently displayed maxima shifted to higher
wavelengths (Figure 6b). Thus, the absorption maximum was noticed at 352, 347, and
329 nm for PI1, PI2, and PI3, respectively. These data indicate that the optical changes
in solid state are considerably affected by the chemical structure of the diimide segment.
Accordingly, PI1 displays the highest co-planar conformation and packed polymer chains
due to the more rigid shape of the ODPA-derived segment, followed by PI2 with its bulky
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hexafluoroisopropylidene unit that reduced these features to some extent. Conversely, PI3
is characterized by the most non-planar arrangement and the lowest solid-state packing
in the series, clearly reflected in the most hypsochromic shifted UV-Vis absorption band
registered for this polymer.

Another important aspect to be mentioned here is related to the obvious intensifica-
tion of the CTC band for these polymers, mostly induced by the better planarity of the
macromolecules in solid state, which definitely favors the CTC transitions. Usually, the
colors of polyimide films are much deeper when CTC formation is stronger. As mentioned
earlier, our polymer films are brown-black in appearance and this correlates well with our
assumption on CTC strength. Such a characteristic of “black polyimides” was previously
observed for other polyimides derived from nitrogen-containing diamines [53]. According
to the transmittance spectra shown in Figure 7, these PI films, especially PI1 and PI3,
experience a significant decrease in the optical transmittance on overall UV-Vis spectral
range. For instance, the thin film of PI1 is almost opaque at the wavelength of 500 nm,
showing 18% transmittance at 500 nm and 31% at 600 nm. The highest transmittance of PI2
can be explained by the presence of low polarizability trifluoromethyl groups that reduces
the CTC formation through steric hindrance and inductive effect leading to weakening
chain-to-chain cohesive forces.
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Figure 7. Transmittance spectra of PI1–PI3 films. 

These appealing optical properties endow the present polyimides with a large ap-
plicative prospect in fields where high heat resistance, chemical inertness, aesthetics, and 
opaqueness are all together required, for example, to cover flexible printing circuit boards 
in order to protect the inner circuits from UV light deterioration. Although the present 
polymers cannot be processed in free-standing films, further modification via blending 
technique can be promising to suppress this drawback and benefit of their valuable prop-
erties. The information on this subject will be reported in future work. 

Since 1,3,5-triazines as electron acceptor units form the most attractive building 
blocks in the development of thermally activated delayed fluorescence (TADF) materials 
with high efficiencies and long operating lifetimes in OLEDs [54], it is of particular interest 
to explore the fluorescence properties of PI1–PI3 having this heterocycle as a constitutive 
structural element. To the best of our knowledge, the synergistic effect of 1,3,5-triazine 
and DOPO units on the fluorescence properties of polyimides is still unknown. Thus, the 
fluorescence behavior of the present polymers in DMSO solutions and condensed state 
(thin films) were investigated. A well resolved fluorescence band was recorded in the spec-
tral pattern of all polyimides, in the range of 528–539 nm, which indicated their ability to 

Figure 7. Transmittance spectra of PI1–PI3 films.

These appealing optical properties endow the present polyimides with a large ap-
plicative prospect in fields where high heat resistance, chemical inertness, aesthetics, and
opaqueness are all together required, for example, to cover flexible printing circuit boards
in order to protect the inner circuits from UV light deterioration. Although the present
polymers cannot be processed in free-standing films, further modification via blending tech-
nique can be promising to suppress this drawback and benefit of their valuable properties.
The information on this subject will be reported in future work.

Since 1,3,5-triazines as electron acceptor units form the most attractive building blocks
in the development of thermally activated delayed fluorescence (TADF) materials with high
efficiencies and long operating lifetimes in OLEDs [54], it is of particular interest to explore
the fluorescence properties of PI1–PI3 having this heterocycle as a constitutive structural
element. To the best of our knowledge, the synergistic effect of 1,3,5-triazine and DOPO
units on the fluorescence properties of polyimides is still unknown. Thus, the fluorescence
behavior of the present polymers in DMSO solutions and condensed state (thin films) were
investigated. A well resolved fluorescence band was recorded in the spectral pattern of
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all polyimides, in the range of 528–539 nm, which indicated their ability to release green
light (Figure 8a). This emission was associated with 1,3,5-triazine since this heterocycle is a
well-known electron-deficient moiety used in green and blue TADF emitters [54]. Previous
studies on related polyimides containing DOPO units have highlighted that their emission
in polar solvents occurs in the UV-blue spectral range [46], which definitely provides
support for our statement. Additional evidence for the origin of the fluorescence (FL)
bands of our polymers associated with triazine emission comes from the position of their
maxima. Changes in the structural assembly of diimide segment of PI1–PI3 affected the
FL spectra in terms of emission wavelength (small shifts) and emission intensity. Since the
main polyimide chains incorporating triazine heterocycle adopt different conformations, it
was expected to obtain some differences in the FL maxima. In this context, it was found that
PI3 with the most flexible main chains emitted more intense light at a lower wavelength
(528 nm) compared to the more rigid polymers, PI1 and PI2, that released light of lower
intensity at 534 and 539 nm, respectively.
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In a condensed form, the fluorescence of PI1–PI3 was almost quenched (Figure 8b),
mostly due to the molecular aggregation that led to non-radiative decay by intermolecular
energy transfer. This behavior is opposite to that found for related DOPO-containing
polyimides [46] which displayed a strong fluorescence emission in film state, with maxi-
mum emission wavelength at about 510 nm. Thus, it can be assumed that 1,3,5-triazine
brought the most significant contribution to florescence suppression of present polyimides
in solid state.

2.5. Cyclic Voltammetry (CV) Measurements

The investigated polymers contain strong electron-withdrawing imide, DOPO, and
1,3,5-triazine heterocycles capable of experiencing electrochemical reduction processes,
hence, their electroactivity was investigated by cyclic voltammetry (CV). All CV measure-
ments were performed on polymer-modified ITO-coated glass as the working electrode in
an electrochemical cell equipped with Ag/AgCl as the reference electrode, and Pt wire as
the counter electrode, in 0.1 M tetrabuthylammonium (TBAP)/acetonitrile (ACN) as the
electrolyte system. The CV curves of the investigated DOPO- and triazine-containing poly-
imides as electrode materials at a scan rate of 50 mV/s are displayed in Figures 9 and 10.
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Figure 10. CV curves of PI1–PI3-modified ITO electrodes (a) and repeated CV scans of PI1-modified
ITO electrode (b) in the cathodic region.

Although PI1–PI3 do not contain electron donating units, their electroactivity was
screened in the anodic region to survey the existence of any possible oxidation processes.
According to Figure 9a, all polyimides displayed a broad CV band centered at 1.55, 1.48,
and 1.37 V vs. Ag/AgCl for PI1, PI2, and PI3, respectively, that can be associated with
electron release and formation of radical cations at the NH group of residual, uncyclized
amidic acid groups. Similar results were obtained on related polyimides containing triazine
heterocycle having hyperbranched structure [55], when clear oxidation peaks appeared
in CV curves at different potentials under positive sweeps. However, no comment was
provided with respect to the origin of these peaks. The radical cations of PI1–PI3 formed
during oxidation were unstable and deactivated in the next CV scans (Figure 9b), denoting
weak electroactivity of these polymers in the anodic region. This was expected since
the C=O unit of the amide group withdraws electrons, which are no longer available to
restore the neutral molecules, and thus, the oxidation processes of the studied polymers
are completely irreversible.

The expected n-doping-type character of these polymers is further demonstrated and
discussed on the basis of the electroactivity detected in the cathodic region. Hence, all
polyimides displayed electrochemical reduction processes that were observed at relatively
low potentials (Figure 10a), varying between −1.1 V and −1.48 V vs. Ag/AgCl (the first
reduction peak).
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Since the polymers contain three structural elements with electron accepting capa-
bility, namely phthalimide, 1,3,5-trizine, and DOPO, a strong competition between their
reduction takes place. This is clearly seen in the case of PI3 where three redox peaks are
registered. The first peak in the cathodic region is tentatively associated with phthalimide
reduction and generation of radical anions upon acceptance of electrons. The reason why
all electron-accepting units of PI2 are reduced in a single step can be found if the stability
of the formed radical anions upon reduction is considered. The electron-withdrawing CF3
groups mostly stabilized these electrochemical species, and therefore, further reduction
did not occur. The presence of more reduction peaks in the case of PI1 and PI3 provides an
obvious example for the instability of the formed radical anions induced by the electron
donor effect of ether and C(CH3)2 bridging groups from their diimide segments. These
experienced further reductions, most likely at the C=O group of DOPO and 1,3,5-triazine.
However, their reduction happened only in the first scan with no signature in the next
scans, when only a broad peak appeared (Figure 10b), which mostly could be due to the re-
duction in newly formed entities after radical anions coupling or involvement in secondary
reactions. Nevertheless, since the electrochemical activities of PI1–PI3 are dominated by the
electroactivity of phthalimide moiety as a function of the surrounding substituents (DOPO
and 1,3,5-triazine), these polymers can be considered valuable candidates for use as n-type
materials in optoelectronic devices.

3. Materials and Methods
3.1. Materials

9,10-Dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) and 2-vinyl-4,6-diamino-
1,3,5-triazine were purchased from TCI Europe. 1,8-Diazabicyclo [5.4.0]undec-7-ene (DBU),
4,4′-oxydiphthalic anhydride (97%, ODPA), 4,4′-(hexafluoroisopropylidene)-diphthalic
anhydride (99%, 6FDA), 4,4′-(4,4′-Isopropylidenediphenoxy)bis(phthalic anhydride) (97%,
6HDA), tetrabutylammonium perchlorate (≥99.0%, TBAP), and indium tin oxide coated
glass slide (ITO) with surface resistivity 15–25 Ω/sq were purchased from Sigma-Aldrich.
Prior polymer synthesis, ODPA, 6FDA, and 6HDA were purified by heating at 200 ◦C
for 6 h in a heating oven. N-methyl pyrrolidinone (NMP, anhydrous, 99.5%), N,N′-
dimethylformamide (DMF, HPLC grade), N,N′-dimethylacetamide (DMAc, HPLC grade),
dimethyl sulfoxide (DMSO anhydrous, ≥99.9%), acetonitrile (ACN, anhydrous, 99.8%),
toluene, and ethanol (analytical standard) were bought from different commercial sources
including Roth, Fluka, TCI Europe, Sigma-Aldrich, and used without purification.

3.2. Synthesis

The aromatic diamine 6-(2-(4,6-diamino-1,3,5-triazin-2-yl)ethyl)dibenzo[c,e][1,2]
oxaphosphinine 6-oxide (TE-DOPO) was obtained following the addition reaction of DOPO
to 2-vinyl-4,6-diamino-1,3,5-triazine in toluene, by using DBU as catalyst, as reported
earlier [42].

FTIR (KBr, cm−1): 3297, 3103 (N–H), 3062 (Ar–H), 1647 (C=C), 1536 (triazine ring),
1438 (P–CH2), 1182 (P=O), 912 (P–O–Ph).

1H-NMR (DMSO-d6), δ (ppm): 6.55 (s, 4H, NH2), 7.21–7.30 (m, 2H, Ar–H), 7.40–7.44 (t,
1H, Ar–H), 7.54–7.59 (t, 1H, Ar–H), 7.55–7.76 (t, 1H, Ar–H), 7.86–7.91 (t, 1H, Ar–H),
8.12–8.19 (m, 2H, Ar–H).

31P NMR (DMSO-d6), δ (ppm): 37.65.
Three aromatic polyimides denoted as PI1, PI2, and PI3 were obtained by one-step

solution polycondensation reaction of diamine TE-DOPO with one of the three commercial
aromatic dianhydrides: ODPA, 6FDA, or 6HDA, as shown in Scheme 1.

The reactions were carried out in NMP as solvent, and in the presence of benzoic
acid as catalyst, at a concentration of 15%, according to the illustrative example further
provided for PI3. First, 2 g (0.00567 mol) of TE-DOPO and 13 mL of NMP were added
into a 100 mL round-bottom three-necked flask fitted with a nitrogen inlet and outlet.
After that, the reaction mixture was heated to 120 ◦C until the dissolution of the diamine
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occurred, followed by the addition of 2.949 g (0.00567 mol) of 6HDA, 0.0494 g benzoic
acid, and another 15 mL of NMP. The solution reaction was continuously stirred at the
reflux temperature of NMP under a strong stream of nitrogen for long time period. The
polyimide PI3 was obtained after precipitation in water of the resulting solution, filtration
and drying at 100 ◦C for 6 h in a vacuum oven. The purification of the dark brown solid
was performed by Soxhlet extraction with ethanol as solvent, for 48 h. Polyimides PI1 and
PI2 were obtained in a similar way by replacing 6HDA with ODPA or 6FDA, respectively,
in the form of dark brown powders, as shown in Scheme 1.

PI1:
FTIR (ATR, cm−1): 3064 (C–H aromatic), 2952, 2894 (C–H aliphatic), 1765 (C=O imide

asymmetric), 1704 (C=O imide symmetric), 1608 (C=C aromatic), 1540 (triazine ring),
1475 (P–Ar), 1436 (P–CH2), 1378 (C–N imide), 1227 (Ar–O–Ar), 1145 (P=O), 918 (P–O–Ph),
754 (C–N ring deformation).

31P-NMR (DMSO-d6, ppm): 37.04, 32 (broad)
GPC (DMF, polystyrene standard): Mn = 151,700 g/mol, Mw = 354,500 g/mol,

Mw/Mn =2.34.
PI2:
FTIR (ATR, cm−1): 3080 (C–H aromatic), 2951, 2897 (C–H aliphatic), 1777 (C=O

imide asymmetric), 1701 (C=O imide symmetric), 1606 (C=C aromatic), 1541 (triazine
ring), 1472 (P–Ar), 1434 (P–CH2), 1377 (C–N imide), 1209 (C–F), 1140 (P=O), 916 (P–O–Ph),
717 (C–N ring deformation).

31P-NMR (DMSO-d6, ppm): 36.98, 32.94 (broad)
GPC (DMF, polystyrene standard): Mn = 301,700 g/mol, Mw = 693,900 g/mol,

Mw/Mn =2.30.
PI3:
FTIR (ATR, cm−1): 3060 (C–H aromatic), 2965, 2898 (C–H aliphatic), 1764 (C=O imide

asymmetric), 1700 (C=O imide symmetric), 1607 (C=C aromatic), 1542 (triazine ring),
1472 (P–Ar), 1436 (P–CH2), 1377 (C–N imide), 1266 (Ar–O–Ar), 1146 (P=O), 920 (P–O–Ph),
748 (C–N ring deformation).

31P-NMR (DMSO-d6, ppm): 37.02, 33.08 (broad).
GPC (DMF, polystyrene standard): Mn = 274,200 g/mol, Mw = 599,000 g/mol,

Mw/Mn = 2.19.

3.3. Film Preparation

The thin films were obtained from 0.5 wt.% polyimide solutions in NMP which
were coated onto glass plates (for use in SEM analysis), quartz (for use in UV-Vis and
fluorescence measurements), and indium tin oxide-coated glass (for CV studies) by using
the drop-casting technique. The solvent removal was accomplished by subjecting the
as-prepared plates to a programmed thermal treatment: 50, 100, 150, 200, and 250 ◦C, at
each temperature for 1 h.

3.4. Measurements

The Fourier transform infrared spectroscopy (FTIR) measurements were performed
on a FT-IR Bruker Vertex 70 spectrophotometer (Bruker, Ettlingen, Germany) in the ATR
mode, by using powder samples.

The NMR spectra were measured with a Bruker Avance III 400 spectrometer (Bruker,
Rheinstetten, Germany), operating at 400 MHz for 1H and 62 MHz for 31P. The chemical
shifts are expressed in δ units (ppm) with respect to the residual peak of the solvent 1H:
DMSO-d6 2.512 ppm.

Gel permeation chromatography (GPC) was used to obtain the average molecular
weights of the polymers by using a ParSEC Chromatography Ver. 5.67 Brookhaven Instru-
ments Corp. (Holtsville, NY, USA) apparatus equipped with refraction and UV detectors
and PL Mixed C Column. Measurements were performed with polymer solutions of 0.5%
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concentration in DMF as solvent. The calibration was accomplished with polystyrene
standards of known molecular weights.

The UV-Vis spectra of polyimides were performed on a Shimadzu UV-1280 spectropho-
tometer (Kyoto, Japan), by using NMP solutions of 1 × 10−6 M concentrations and thin
films coated onto quartz plates.

The fluorescence spectra of polyimides were recorded on a Shimadzu RF-6000 spec-
trofluorophotometer (Kyoto, Japan). The measurements were carried out with the same
polyimide solutions and thin films used for registration of the UV-Vis absorption spectra.

The wide X-ray powder diffraction (XRD) spectra were measured on a Bruker AD8
Avance diffractometer (Billerica, MA, USA), by using Ni-filtered Cu-Kα radiation
(λ = 0.1541 nm) at 36 kV and 30 mA. All diffractograms were registered at room tem-
perature, in the range of 2–40 (2θ degrees) on polyimide powder and are reported as
smoothed spectra.

The morphology of the thin polyimide films was evaluated by using a Verios G4 UC
Scanning Electron Microscope (SEM) from Thermo Fisher Scientific (Waltham, MA, USA).
The samples were sputtered with Pt in order to obtain a better image resolution of the
film surface.

The optical microscopy photographs were taken using an Olympus BH-2 polarized
light microscope (Shinjuku, Tokyo, Japan) at a magnification of 40×, at room temperature.

The differential scanning calorimetry (DSC) measurements were performed on poly-
imide samples in the form of powders using a Mettler Toledo DSC-type device (Mettler
Toledo, Greifensee, Switzerland), by heating 3–5 mg of each sample from 25 to 300 ◦C, with
a heating rate of 10 ◦C/min, under nitrogen atmosphere.

The thermogravimetric analysis (TGA) was also recorded on polyimide powders,
with a Mettler Toledo TGA-SDTA851e device (Mettler Toledo, Greifensee, Switzerland), in
nitrogen atmosphere. The mass of the tested samples was in the range of 2.1–3.3 mg, while
the heating was applied with a rate of 10 ◦C/min, between 25 and 800 ◦C.

The cyclic voltammetry (CV) experiments were performed on a Potentiostat-Galvanostat
(PG581, Uniscan Instruments, Buxton, United Kingdom) using 0.1 M TBAP/ACN as the
electrolyte system. The CV curves were obtained in a classical electrochemical cell equipped
with three electrodes: Pt wire, from Radiometer Analytical with ø = 1 mm and surface area
of 0.785 mm2 as the auxiliary electrode, ITO coated with polyimide as the working electrode,
and saturated Ag/AgCl as the reference electrode. All measurements were performed at a
scan rate of 50 mV/s in air, at room temperature, after purging the electrolyte solution with
N2 stream.

4. Conclusions

With the aim to develop new appealing materials with multifunctional properties, we
synthesized and investigated high-performance polyimides containing DOPO-substituted
1,3,5-triazine bulky moiety. This structural unit, along with some flexible groups were
introduced to tailor the flexibility of the polyimide chains. This molecular design led to
excellent organo-solubility in polar organic solvents, which allowed polymer processing
from solution into thin films with grain-like morphology. Moreover, due to the synergetic
effect of imide, DOPO, and 1,3,5-triazine, these polyimides were endowed with a black ap-
pearance, exhibiting a UV-Vis absorption spectrum extended on the overall UV-Vis domain.
Accordingly, the thin polymer films were almost opaque, enabling optical transmittance
greater than 18% at 500 nm. Because of the presence of versatile functional groups, the poly-
imides showed good thermal stability, with no glass transition temperature up to 300 ◦C, as
well as green fluorescence under excitation with UV light. The different linkages from the
diimide segment had a significant role in the modulation of the electrochemical behavior of
the polyimides, mainly due to the electronic effects promoted by these units. The cyclic
voltammetry evidenced complex reduction behavior, affected by the stability of the formed
radical anions. Nevertheless, these polymers can be considered to be among the potential
candidates for use as n-type materials. With the attractive properties reported here, these
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polymers may find applications as advanced materials in electronics and (opto)electronics,
as well as high-temperature materials in engineering fields.
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