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Abstract: Chiral 2-substituted chromanes are important substructures in organic synthesis and appear
in numerous natural products. Herein, the correlation between specific optical rotations (SORs) and
the stereochemistry at C2 of chiral 2-substituted chromanes was investigated through data mining,
quantum-chemical calculations using density functional theory (DFT), and mechanistic analyses.
For 2-aliphatic (including acyloxy and alkenyl) chromanes, the P-helicity of the dihydropyran ring
usually corresponds to a positive SOR; however, 2-aryl chromanes with P-helicity tend to exhibit
negative SORs. 2-Carboxyl (including alkoxycarbonyl and carbonyl) chromanes often display small
experimental SORs, and theoretical calculations for them are prone to error because of the fluctuat-
ing conformational distribution with computational parameters. Several typical compounds were
discussed, including detailed descriptions of the asymmetric synthesis, absolute configuration (AC)
assignment methods, and systematic conformational analysis. We hope this work will enrich the
knowledge of the stereochemistry of chiral 2-substituted chromanes.

Keywords: 2-substituted chromanes; stereochemistry; specific optical rotation; density functional
theory; helicity

1. Introduction

Chiral 2-substituted chromanes (dihydrobenzopyrans) are biologically active compounds
that are ubiquitous in a variety of natural products [1,2]. They display a broad spectrum of
biological activities, such as the fat-soluble vitamin α-tocopherol (1, Figure 1) [3], the potent
5-HT1A receptor agonists repinotan (2, Figure 1) [4] and sarizotan (3, Figure 1) [5], the
antidiabetic agent englitazone (4, Figure 1) [6], and the β1-selective adrenergic receptor
blocker nebivolol (5, Figure 1), which is used as an antihypertensive drug [7]. Although
nebivolol is used clinically as a racemic mixture, the dextro-isomer exhibits β-adrenoceptor
blocking activity over a thousand times greater than that of the levo-isomer [8].

The development of facile and efficient asymmetric synthetic approaches for chiral
chromanes has been extensively investigated, and various strategies are currently available
(Scheme 1). Asymmetric hydrogenation of chromones has been established to afford
chiral 2-substituted chromane moieties with low economic costs and high efficiency [9].
Phenol substrates bearing (E)-α,β-unsaturated ketone moieties were shown to produce the
chromane skeleton via intramolecular oxy-Michael addition [10]. Dinda and coworkers
established a facile enantioselective synthetic route to afford chiral chromane derivatives in
excellent yields and with suitable enantioselectivity by employing phenolate ion-mediated
intramolecular epoxide ring-opening reactions [11]. The C2 stereocenter is also accessible
via a Mitsunobu inversion reaction with 2-bromophenol and an appropriately substituted
chiral halopropanol, followed by cyclization to form the dihydrobenzopyran ring [12].
In addition, the kinetic resolution of racemic chromanes is another common method of
obtaining the desired optical isomers [13].
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Although considerable effort has been expended to develop versatile strategies for the
asymmetric synthesis of chiral 2-substituted chromanes, much less effort has been devoted
to studying the stereochemistry of the prepared compounds. Their absolute configurations
(ACs) were either assigned by performing an X-ray analysis of derivatives [14] or by
comparing the specific optical rotation (SOR) with that of known compounds [15] or were
only tentatively assigned [16,17].

Recently, chiroptical spectroscopic methods, including electronic circular dichroism
(ECD) [18–20], vibrational circular dichroism (VCD) [21,22], and SOR [23–25], have been
widely applied to determine the ACs of chiral drugs or natural products. For chiral chro-
manes, a helicity rule for the interpretation of ECD spectra was proposed by Snatzke et al.,
and the scope of its application was discussed in depth [26–28]. Nevertheless, since SOR
at 589.3 nm ([α]D) is indispensable for the characterization of chiral molecules, the collec-
tion of available SOR data for chiral 2-substituted chromanes exceeds that of ECD data.
Moreover, some conflicting SOR data were reported for a compound with a definite con-
figuration [9,12,29]. This fact inspired us to investigate the correlation between the SOR
and AC of chiral 2-substituted chromanes. Furthermore, chiral centers other than the C2
atom might exert significant effects on the SORs, and our study was mainly focused on
compounds with only C2 chiral center.
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2. Results
2.1. Data Mining and Analysis

First, chiral 2-substituted chromanes with definite, absolute configurations and their
[α]D values were collected from the literature, which are listed in Tables S1–S3. Most of
the experimental data were measured in chloroform or methanol. Before analysis, it is
necessary to assess the reliability of these raw data. According to the documented [α]D
and concentration, the α value was calculated, assuming a path length of 1 dm. Data
with absolute α values less than 0.005 were abandoned, considering that the accuracy of
optical rotation measurement ranged from ±0.001 to ±0.01. In total, 241 optically active
2-substituted chromanes, corresponding to 269 optical isomers with definite configurations
and 316 SOR data points, were collected (Tables S1–S3). It is interesting to find that most
2-aryl or 2-carboxylic chromanes are levorotatory (Figure 2). The absolute configurations of
these compounds were assigned explicitly in the original reports.
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Figure 2. Histograms of the SORs of various chiral 2-substituted chromanes: (a) 2-aliphatic chromanes,
(b) 2-aryl chromanes, and (c) 2-carboxyl chromanes; red: [α]D of chromanes in M-helicity, blue: [α]D of
chromanes with P-helicity. (d) Graphical representation of the correlation between the P-/M-helicity
of the dihydropyran ring and the torsion angle D(C8a-O1-C2-C3).

All these compounds were classified by the type of substituents at the C2 atom into
the aliphatic group (including acyloxy and alkenyl, type I), the aryl group (type II), and
the carboxyl group (including alkoxycarbonyl and carbonyl, type III). The C2 substituents
were hypothesized to adopt an equatorial position of the half-chair conformation, and the
twist of the dihydropyran ring corresponded exclusively to the C2 stereochemistry on this
premise. Thus, the chromane helicity was characterized by the torsion angle D(C8a-O1-C2-
C3), with positive values indicating P-helicity and negative values indicating M-helicity.
As for typical helical molecules [30], a clear correlation between the sign of the SORs and
chromane helicity was observed except for a few outliers, which are discussed below.
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For 2-aliphatic (type I) or 2-carboxyl (type III) chromanes, the P-helicity of the dihy-
dropyran ring generally corresponds to a positive SOR. The SOR values of chromanes in
type I mainly ranged from 50 to 150, with several points located in the range of 200–300. The
2-carboxyl chromanes exhibited smaller SOR values, and the available data were relatively
small compared with the other two groups. The number of SOR values for the 2-aryl chro-
manes was the largest, and most absolute values were less than 100. In contrast to type I
and III compounds, 2-aryl chromanes with P-helicity generally tend to have negative SORs,
as determined from the analysis of 139 molecules corresponding to 163 SOR data points.

Regarding the sign inversion of SORs observed for 2-aryl chromanes, the exact under-
lying mechanism is not clear, and the possible causes might be the high polarizability [31,32]
and chromophore property of the aryl group, which might lead to electronic transition
coupling with the chromane core. In addition, the nature and position of substituents on
the phenyl ring were also influential in some cases.

The premise of this correlation is that the C2 substituent is located along the equatorial
bond of the half-chair conformation, as shown by the coupling constants between H2 and
two H3 atoms in the 1H-NMR spectra (Table S3). For those 2,2-disubstituted chromanes,
the smaller methyl group is often located in the equatorial position [28], resulting in an
inverse relationship between SOR and C2 stereochemistry.

Some 2-substituted chromanes showed minor SOR values due to both structural
factors and nonstructural factors. The structural factors of the molecules led to the existence
of conformations of opposite optical rotation signs, resulting in a small inherent SOR.
Regarding nonstructural factors, the possible reasons might be the low enantiomeric excess
(ee) of the tested samples, measurement error, simple trivial error, or incorrect previous
AC assignments.

2.2. Verification of the Correlation
2.2.1. Correlation between SOR and C2 Stereochemistry

Both quantum-chemical calculations using density functional theory (DFT) and mech-
anistic analyses were conducted to verify the association between the helicity of the dihy-
dropyran ring and the sign of the SORs of chiral 2-substituted chromanes. Since different
computational approaches might yield misleading results [33], several combinations of
computational parameters, B3LYP [34]/Aug-cc-pVDZ [34]//B3LYP/6-311G(d,p) (the BL
approach) and M06-2X [35]/Aug-cc-pVDZ//M06-2X/TZVP (the M6 approach), together
with the polarized continuum model (PCM) [36] or solvation model based on density
(SMD) [37] were tested to compare their uniformity.

Much to our delight, the calculated SORs using all the tested approaches possessed
the same sign as that predicted from the correlation, albeit the values varied with the
computational parameters (Figure 3).

Next, several chiral 2-substituted chromanes with or without substituents on the
phenyl group were taken as typical examples to investigate the correlation and discuss the
possible influencing factors.

2.2.2. 2-Methylchromane

2-Methylchromane (21, ent-21) is one of the simplest 2-substituted chromanes, and it
is obtained through various approaches (Scheme 2).

In 2005, Hodgetts synthesized compound 21 using an intermolecular Mitsunobu
reaction of homochiral halopropanol and 2-bromophenol followed by cyclization [12].
Five years later, compound 21 was prepared with an inversion of the configuration through
a substitution reaction of an amine group by Kato and coworkers [29]. Both groups reported
[α]D values with the same positive sign and similar magnitude, namely, [α]22

D (+89.0, c 1.0,
CHCl3) and [α]25

D (+84.1, c 0.98, CHCl3), respectively. Nevertheless, ent-21 was recently
reported to also display a positive [α]20

D (+84.2, c 0.47, CHCl3) value [9].
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The BL- and M6-calculated [α]D values for compound 21 were +135.8 and +124.3,
respectively. As expected, conformers with 2-methyl groups adopting equatorial positions
prevailed overwhelmingly (>85%) in the conformational equilibrium mixture, regardless
of the computational parameters. The [α]D values of substrate 22 were also predicted
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theoretically, reproducing the experimental data very well. For compound 22, the 4-
hydroxy group did not change the correlation between the stereochemistry at C2 and the
sign of SOR but increased the magnitude of the SOR value. Interestingly, (R)-4-hydroxyl
chromane (23) displayed positive experimental and calculated SORs with values of +56.52
and +62.4 (M6) in CHCl3, respectively. Thus, the negative SOR of compound 22 was due to
the existence of a 2S-methyl group, which determined the helicity of the chromane ring.

As shown in Figure 3, a correlation between the helicity of the dihydropyran ring and
the sign of the SORs was observed for 2-cyclohexyl (6), 2-hydroxymethyl (7), 2-azidomethyl
(8), 2-halomethyl (9 and 10), 2-phenylethyl (11), 2-isobutyryloxy (12), 2-carboxymethyl
(14), and 2-benzyl (20) chromanes, indicating that these substituents do not influence the
chromane helicity.

2.2.3. 2-Vinylchromane

2-Vinylchromane (24) was obtained through asymmetric cyclization of allyl carbonate
substrate 25 via asymmetric allylic alkylation (AAA) reactions (Scheme 3) by Labrosse and
colleagues in 1999 [51].
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Scheme 3. AAA reaction in the presence of different chiral ligands [49,51–54].

Compound 24 displayed a negative [α]D value (−10.3) in dichloromethane and was
assigned the R configuration by conversion into putative (R)-2-hydroxymethyl chromane (7,
Figure 3) [51]. The [α]D value of the latter in methanol was reported to be−113.4, consistent
with the correlation between SOR and C2 stereochemistry, and was further verified by
DFT calculations in this work. In 2003, compound 24 with 84% ee was synthesized via a
Pd-catalyzed AAA reaction in the presence of the (R,R)-Trost ligand, resulting in a [α]D
value of −80.3 in dichloromethane [52]. One year later, a chiral monophosphine ligand
(NMDPP) was applied in the asymmetric synthesis of compound 24 via the AAA reaction,
producing positive [α]D data [49].

A vinyl group is larger than a hydrogen atom; thus, the M-helicity of chromane and a
negative SOR were anticipated for compound 24. Theoretical calculations yielded negative
[α]D values in dichloromethane of −101.0 and −71.8 using the BL and M6 approaches,
respectively. The chloroform solution of compound 24 was recently reported to also exhibit
negative [α]D values (−73.8, c 1.0; −76.5, c 0.27) [53,54], indicating that the helicity of the
dihydropyran ring was maintained in different solvents of similar structural types.

The addition of substituents at the C6 position on the phenyl ring (18, 19, Figure 3,
and 26, 27, Figure 4) or extending the vinyl group (15, Figure 3) exerted little effect on the
correlation between the sign of SOR and the C2 stereochemistry of 2-substituted chromanes.
Specifically, the presence of an 8-methyl or 8-chloro group might lead to uncertainty in the
sign of SOR (Table S1, Entries 41 and 42).
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Figure 4. Experimental and predicted SOR values for compounds 26–31. Experimental SOR data
were collected from references [54–56].

When an additional methyl group was present on the C2 atom (28), this methyl group
inverted the sign of SOR (Figure 4) [55], which was potentially ascribed to the tremendous
difference in the Boltzmann distributions of compounds 24 and 28. In the conformational
search, six stable conformers were identified for both compounds 24 and 28. However, the
Boltzmann distribution of the vinyl groups adopting equatorial and axial positions differed
substantially (Table 1).

Table 1. Conformational analysis of compounds 24 and 28 using two approaches.

Comp. Conf. Vinyl Arrangement [a] Helicity B3LYP/6-311G(d,p) M06-2X/TZVP
P (%) P (%)

24 C1 e M- 48.23 24.42
C2 e M- 34.15 32.16
C3 a P- 6.41 30.05
C4 e M- 5.68 5.85
C5 a P- 4.52 5.30
C6 a P- 1.02 2.22

28 C1 a P- 60.06 73.10
C2 e M- 19.07 10.24
C3 a P- 7.66 6.88
C4 a P- 5.28 3.80
C5 e M- 4.77 3.56
C6 e M- 3.16 2.41

[a] The vinyl arrangement indicates that vinyl groups occupy the axial or equatorial bond in the correspond-
ing conformers.

As shown in Table 1, the vinyl group of 24 was located mainly in the equatorial position,
but conformers with the vinyl group located in the axial position were predominant in
the conformational mixture of 28, consistent with the conformational distribution of other
2,2-disubstituted chromanes [28]. Similar to that in compound 28, the 2-methyl group in
compounds 29–31 also led to the SOR sign contrary to the correlation prediction.

2.2.4. (S)-6-Fluorochromane-2-carboxylic Acid

Chiral chromanes with 2-carboxyl groups, including carboxylic acids and esters,
shared the same correlation between SOR and C2 stereochemistry, where isomers with
P-helicity had positive SORs. Regarding 2-carbonyl chromanes, only two SORs for a pair of
enantiomers were retrieved from the literature, which followed this correlation.

For 2-carboxyl chromanes (32–52, Figure 5), most of their experimental SORs ranged
from−20 to +20, which might be considered unreliable. However, their optical rotation data
deduced according to the concentration are high enough to avoid instrument measurement
error, so they are included in this study.
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Figure 5. Experimental and predicted [α]D values for compounds 32–52. BL-H: SMD/B3LYP/Aug-
cc-pVDZ//B3LYP/6-311+G(d,p), BH: SMD/M06-2X/Aug-cc-pVDZ//BH&HLYP/6-311+G(d,p),
M6: SMD/M06-2X/Aug-cc-pVDZ//M06-2X/TZVP. Experimental SOR data were collected from
references [48,52,57–66].

Theoretical prediction for compounds with low SORs is often regarded as liable to
provide ambiguous results, considering the calculation error of conformational distribu-
tion and optical rotation. Nevertheless, since their absolute configurations were firmly
established in the original reports, we made an attempt to evaluate the reliability of the
calculation. It is particularly important that a reasonable conformational analysis is per-
formed since different conformers might exhibit completely opposite optical rotations.
Thus, various computational parameters using different hybrid functionals, basis sets, and
solvation models were tested to simulate the actual situation in the conformational mixture.

(S)-6-Fluorochromane-2-carboxylic acid (35) is commercially available and is the raw
material for nebivolol [59]. Generally, optical rotatory dispersion (ORD) is considered more
reliable for assigning AC than SOR. Therefore, the experimental ORD of compound 35
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was measured in N,N-dimethylformamide (DMF), methanol, acetonitrile, and 1,4-dioxane.
Specifically, its [α]27

D value (+15.2, c 1.0, DMF) was consistent with the reported data (+14.4,
c 1.0, DMF) for the S isomer [59], indicating that the tested sample had an S configuration.

Solvents might exert a slight effect on the conformational distribution of 35, as the
ORD in the tested solvents showed the same tendency with distinct data (Figure 6a), which
were repeated by the calculated data (Figure 6b). The solvation effect was also observed
in the ECD spectra of 35 in different solvents (Figure S1). However, the ECD spectrum of
compound 35 is not as sensitive as that of ORD to solvents. An intense positive Cotton
effect (CE) was observed at approximately 230 nm in all the solvents, together with a weak
CE at 280 nm, the sign of which varied with the solvent. Thus, for compounds with low
SORs, ECD is strongly recommended to study their stereochemistry.
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Figure 6. Experimental and theoretical ORD in various solvents and 1H-NMR spectra of 35 in
CD3OD. (a) Experimental ORD measured in various solvents. (b) Theoretical ORD obtained using
the SMD/M06-2X/Aug-cc-pVDZ//BH&HLYP/6-311+G(d,p) approach, Black: in DMF, red: in
methanol, green: in acetonitrile, blue: in 1,4-dioxane. (c) The coupling constants of H2 and two H3
atoms. (d) The helicity in the conformers with the carboxyl group in the equatorial and axial positions.

Various computational parameters using different hybrid functionals, basis sets, and
solvation models were tested to simulate the actual situation in the conformational mixture
of compound 35 (Table S4). Conformers with carboxylic groups in equatorial positions
were predominant in the equilibrium mixture, except for in the geometric optimization
at the M06-2X/TZVP level. The distribution was consistent with the 1H-NMR spectral
data of 35, in which the coupling constant between H2 and two hydrogen atoms at C3
was 7.6 Hz and 3.6 Hz (Figure 6c). Fluctuation of the equatorial/axial position (e/a) ratio
resulted in contradictory overall SOR values, and the BH&HLYP (BH) approach yielded
SOR data most similar to the experimental [α]D values in DMF. Additionally, the inclusion
of a solvent model is indispensable for the SOR calculation for compound 35. Completely
opposite results are obtained when the effect of solvent is neglected and the employment
of PCM or SMD provided the correct sign.

As shown for compounds 33–47 (Figure 5), esterification or amidation of 2-carboxylic
acid (37–42), halogen (33, 35, 36, 38–40, 47), methoxy (34, 41) and amine (45) groups at C6
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exerted little effect on the correlation (Figure 5). Nevertheless, 2-hydroxamic acid (43) or
the 8-amine group (46) would invert the correlation. As in the cases of compounds 28–31,
methyl or ethyl groups at the C2 position (48–52) would invert the sign of SOR.

For these compounds, the conformational distribution varied tremendously with the
computational parameters, resulting in ambiguous calculated SOR results. This situation
was particularly evident in chromane-2-carboxylic acids. Among the tested approaches, the
BL-H and BH approaches generally tended to provide fair matches with the experimental
data with respect to both chroman-2-carboxylic acids and chroman-2-carboxylic esters.

2.2.5. (S)-2-Phenylchromane

Chiral 2-aryl chromanes were obtained using various approaches (Scheme 4), such
as a Mitsunobu inversion reaction with subsequent cyclization [11] and iridium-catalyzed
asymmetric hydrogenation of chromene [38,67]. Similar to 2-carboxyl (type III) chromanes,
many 2-aryl (type II) chromanes display low SORs.
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As predicted, compounds 16 and 53 exhibited negative SORs, according to the cor-
relation between the SOR and C2 stereochemistry of 2-substituted chromanes, and this
result was further verified by theoretical calculations using the BL- and M6- approaches.
An analysis of the conformational distribution of compound 16 showed that the conformer
with a 2-phenyl group adopting the equatorial bond accounted for more than 95% of
the conformational equilibrium mixture, regardless of the conditions used for geometric
optimization. This theoretical result was confirmed by the experimental J-couplings of H2
and two H3 atoms (J = 10.0, 2.6 Hz) [67].

As exemplified by compounds 54–56 (Figure 7), the substituents at either position on
the chromane phenyl rings seemed to exert no obvious effect on the SOR sign. Nevertheless,
considering the outliers in Figure 1b (Table S2, Entries 5, 11, and 19 with CHO, COOH, and
Br at the C6 position), the sum of the electron-donating conjugation effect and electron-
absorbing induction effect of groups at the C6 position might play a vital influence on the
sign of SOR.
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Figure 7. Experimental and predicted [α]D values for chiral 2-aryl chromanes 54–65. Experimental
SOR data were collected from references [12,38,67–71].

With regard to the 2-phenyl ring, mono- (17, 57, 59, 61) or poly- (60, 62–64) substitu-
tion had little effect on the correlation, even when the substituents were asymmetrically
distributed on the phenyl ring. The halogen atom on the C6 or C8 position seemed to
increase the absolute value (63 and 64 vs. 62).

For 2-aromatic heterocyclic chromanes (65), the sign of SOR still complied with the
correlation. Nevertheless, more compounds are needed to determine the exact effect of
substituents on the aromatic rings.

2.2.6. 1-(6-Fluorochroman-2-yl)ethane-1,2-diol

Two chiral centers exist in this compound and its analogs (Figure 8), and the effect of C2
stereochemistry on SORs deserves further investigation. Within the collected compounds of
such kind, C2 chirality seems to be the determining factor for their SORs, and the correlation
between SORs and C2 stereochemistry for 2-aliphatic chromanes still works.

The dihydroxy (66–68, 70, 71), carboxylate (72–74), azide (75), and ethylene epoxide (69)
groups in the C2 substituent and the 6-fluoro (66, 67, 69, and 74) or 6-methoxy (70, 75) groups
appear to exert minor effects on the SORs of these compounds. The theoretical SORs for
compounds 66 and 67 calculated using the BL approach in methanol were +128.1 and−129.8,
respectively, concordant with the SOR sign predicted based on the correlation. The AC of
compound 67 was further inspected by Snatzke’s method and ECD calculations [71–81].
The positive CE sign at approximately 310 nm verified its (R,R)-configuration.

2.3. Application of the Correlation

In this work, a structure-SOR correlation for chiral 2-substituted chromanes was
disclosed, with 2-aliphatic and 2-carboxyl chromanes with P-helicity displaying positive
SORs, while 2-aryl chromanes with P-helicity exhibited negative SORs. Then, some chiral
2-substituted chromanes (76–82, Figure 9) with unknown configurations were studied.
Their ACs were tentatively assigned according to the correlations and further confirmed by
DFT calculations and mechanistic analyses.
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Figure 8. Some reported intermediates of nebivolol analogs 66–75. BL: PCM/B3LYP/Aug-cc-
pVDZ//B3LYP/6-311G(d,p), M6: PCM/M06-2X/Aug-cc-pVDZ//M06-2X/TZVP. Experimental
SOR data were collected from references [11,48,72–78].
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Figure 9. Some chiral 2-substituted chromanes with unidentified configurations.
BL: PCM/B3LYP/Aug-cc-pVDZ//B3LYP/6-311G(d,p), M6: PCM/M06-2X/Aug-cc-pVDZ//M06-
2X/TZVP, BH: SMD/M06-2X/Aug-cc-pVDZ//BH&HLYP/6-311+G(d,p). Experimental SOR data
were collected from references [16,17,68,82–85].
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Compound 76 was prepared by catalytic asymmetric cyclization with a chiral ligand,
and its AC was not assigned in a previous report [16]. According to the proposed correlation,
compound (S)-76 was expected to display a positive SOR, which agreed with the sign of
the experimental [α]D value (+36.3, c 1.02, CHCl3). This hypothesis was confirmed by
the observation that this compound had the same configuration as its analogs that were
synthesized via the same route; all were determined to have the S configuration by either
an X-ray diffraction analysis or a comparison of the retention time obtained from HPLC
with that of an authentic sample.

Similar to the structure of compound 12 (Figure 3), an acetoxy group was substituted
at the C2 position of compound 77 [82], the R isomer of which was predicted to have a
positive SOR. The SORs of compound 77 calculated using the BL and M6 approaches were
also positive, validating the hypothesis.

Compound 78 was expected to have the R configuration based on its [α]D value (−40.7,
c 1.0, CHCl3) [17]. This hypothesis was confirmed by comparison with the [α]D value of
compound 32 (R configuration, [α]D −6.3) because of the minor effect of the 6-methyl
group. Since the BH approach was shown to be favorable for 2-carboxylic acid chromanes
(32–36), the SOR value of compound 78 calculated using this approach was regarded as
more reliable and had the same sign as the predicted SOR value, according to the correlation.
The assignment according to the correlation is very convenient and could be performed
in minutes by a nonexpert. Nevertheless, the effects of substituents and solvents must be
considered in some cases, and further confirmation using alternative, independent methods
is necessary whenever crucial.

In the chemical structures of compounds 79 and 80, substituents are present on the
2-phenyl and chromane benzene rings [68,83]. As above-mentioned, the substituent effect
might be neglected, and thus, the ACs of 79 and 80 were directly established as R and S,
respectively, according to the correlation between SOR and C2 stereochemistry.

Despite the presence of the tetrahydroisoquinoline ring in the C2 substituent, com-
pound 81 was viewed as a type I chromane since this ring was connected to the C2 atom
through a methylene group [84]. As mentioned above, the effects of substituents on the
chromane phenyl ring were often ignored in this type of structure. The AC of compound
81 was thus deduced as S since the [α]D value was positive, which was further confirmed
by DFT calculations.

Two chiral centers exist in compound 82 [85], and only C2 chirality was the deter-
mining factor for the sign of SOR, similar to the results obtained for compounds 66–75.
The C2 stereocenter of compound 82 was assigned directly as S based on its positive [α]D
value according to the correlation. The relative configurations of C1 and C2 were not firmly
established, and two epimers were considered. As expected, the SOR calculations of the
(1S,2S) and (1R,2S) isomers using both the BL and M6 approaches yielded positive values,
regardless of the C1 chirality. Because of the flexibility of the two hydroxyethyl groups,
more than one hundred stable conformers of compound 82 were considered, and long
computation times were needed to obtain the final result.

3. Discussions

Although DFT and TDDFT calculations of chiroptical spectroscopy have been re-
garded as powerful tools for AC assignment of chiral molecules [18], ambiguous results
are often encountered. As shown in our previous work and other reports [33,86], the
uncertainty mainly arose from the conformational distribution, which might affect the
overall SOR values, as well as the ECD and VCD spectra. The correlation of SORs and C2
stereochemistry described in this study has the advantages of being much more facile, less
time-consuming, and less dependent on accurate conformational analysis.

Generally, a firm AC assignment of chiral molecules requires exact evidence to achieve
unambiguous results, such as chemical correlation, NMR, and various chiroptical methods,
including ORD, ECD, and VCD [87,88]. Regarding SOR for structure determination, some
problems limit its application, that is, single values, solvent effects, uncertainty of theo-
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retical calculation, etc. [86]. Chiral impurities might interfere with the measurement and
provide incorrect data, as shown by a recent example of (+)-frondosin B [89]. Furthermore,
the concentration or enantiomeric excess would also affect the test results by forming
intermolecular hydrogen bonds or the Horeau effect [90]. Thus, it is not recommended to
determine the AC solely relying on the SORs, and another independent method is needed
to verify the results.

There are many natural products or synthetic compounds with more chiral centers
containing 2-chromane rings. For these compounds, this correlation might not work well
because of the complicated influencing factors on the SORs. Similar to Snatzke’s ECD
helicity rule, the premise of the proposed correlation is that the larger substituents adopt the
equatorial orientation. If not, this correlation would definitely be reverted, as in compound
28 (Figure 4), in which the smaller methyl group was located in the equatorial position
instead of the axial position. This preferred conformation could invert the correlation as well
as the ECD helicity rule for chromanes, which was challenged in the case of peperobtusin
A [91,92].

Additionally, it needs to be noted that the sign of SOR is correlated with the P-
/M-helicity of the dihydropyran ring instead of the R/S configuration of the C2 atom.
The definite R or S configuration of the C2 atom should be assigned after the helicity is
confirmed according to the Cahn-Ingold-Prelog rules.

4. Materials and Methods

(S)-6-Fluorochromane-2-carboxylic acid (35, >97.0% purity) was purchased from Leyan
Reagent (Shanghai, China). The 1H-NMR spectra of compound 35 were recorded on a Joel
ECZ-400S NMR system using CD3OD as a deuterated solvent.

4.1. Optical Rotation Measurement

Optical rotation measurements were performed on a Rudolph Autopol V automatic
digital polarimeter (Rudolph, MA, USA) at 365, 405, 436, 546, 589, and 633 nm at room
temperature. A solution of compound 35 prepared at a concentration of 10 mg/mL in
methanol, DMF, acetonitrile, or 1,4-dioxane was tested.

4.2. ECD Measurement

ECD spectra of compound 35 in methanol, DMF, acetonitrile, or 1,4-dioxane were
recorded at room temperature with a path length of 0.1 cm using a Jasco J-815 CD spec-
trometer (Jasco Inc., Tokyo, Japan).

4.3. Computational Details

A conformational search was carried out in the MMFF94 molecular mechanics force
field using the MOE software package [93], and all the conformers within an energy
window of 10 kcal/mol were regarded as the initial conformations. Geometric optimization
and frequency calculations were performed with Gaussian16 RevB.01 [94] to verify the
stability and obtain the energies at 298.15 K and a 1 atm pressure. Various theoretical
levels were used, including the different combinations of hybrid functionals (B3LYP, M06-
2X, BH&HLYP, APFD, Cam-B3LYP, ωB97XD, and O3LYP) and basis sets (6-311G(d,p),
6-311+G(d,p), and TZVP). The dispersion effects and pseudopotential basis sets were
used when necessary. The Boltzmann distribution was calculated according to their Gibbs
free energies. The SOR calculation step was run in the static limit at the B3LYP/Aug-cc-
pVDZ or M06-2X/Aug-cc-pVDZ level. The PCM or SMD model was used to simulate the
measurement conditions. The Boltzmann-averaged SORs were obtained using SpecDis 1.71
software [95].

5. Conclusions

The three-dimensional structure of a chiral molecule determines its various chiral
spectroscopic properties. In this article, the underlying relationship between the C2 stereo-
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chemistry of 2-substituted chromanes and their SORs was disclosed through data mining,
synthesis mechanism analysis, and DFT calculations.

It was found that the sign of SOR for C2-chiral chromanes was fundamentally due
to the helicity of the dihydropyran ring. The 2-aliphatic or 2-carboxyl chromanes with
P-helicity tend to exhibit positive SORs. Meanwhile, the 2-aryl chromanes with M-helicity
often display positive SORs. The effects of various substitutions on the chromane core were
preliminarily discussed. The additional methyl group at the C2 position could generally
invert this correlation, leading to the opposite sign of SORs.

By adopting different combinations of computational parameters, the accuracy of the
popular DFT calculation was assessed for these 2-substituted chromanes. For 2-aliphatic
or 2-aryl chromanes, the theoretical calculation could produce SOR signs consistent with
the experimental results, although there is a certain deviation in the numerical value.
Nevertheless, the DFT prediction of SOR for 2-carboxyl chromanes is error-prone, mainly
because of the improper estimation of conformational distribution. Considering the cost
and reliability of computation, the proposed correlation of SORs and C2 stereochemistry is
easy to apply and does not require complex conformational analysis.

It is commonly recognized that versatile methods are needed to guarantee an unam-
biguous AC assignment of chiral molecules. Combined with other independent ways, we
hope the proposed correlation will be helpful for the AC assignment of chiral 2-substituted
chromanes, and its reliability will be tested through applications in the future.
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levels in DMF; Figure S1: Experimental ECD spectra of 35.
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