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Abstract: The interaction of DNA with different block copolymers, namely poly (trimethylammonium
chloride methacryloyoxy)ethyl)-block-poly(acrylamide), i.e., (PTEA)-b-(PAm), and poly (trimethy-
lammonium chloride methacryloyoxy)ethyl)-block-poly(ethylene oxide), i.e., (PTEA)-b-(PEO), was
studied. The nature of the cationic block was maintained fixed (PTEA), whereas the neutral blocks
contained varying amounts of acrylamide or (ethylene oxide) units. According to results from isother-
mal titration microcalorimetry measurements, the copolymers interaction with DNA is endothermic
with an enthalpy around 4.0 kJ mol−1 of charges for (PTEA)-b-(PAm) and 5.5 kJ mol−1 of charges for
(PTEA)-b-(PEO). The hydrodynamic diameters of (PTEA)-b-(PEO)/DNA and (PTEA)-b-(PAm)/DNA
polyplexes prepared by titration were around 200 nm at charge ratio (Z+/−) < 1. At Z+/− close and
above 1, the (PTEA)50-b-(PAm)50/DNA and (PTEA)50-b-(PAm)200/DNA polyplexes precipitated.
Interestingly, (PTEA)50-b-(PAm)1000/DNA polyplexes remained with a size of around 300 nm even
after charge neutralization, probably due to the size of the neutral block. Conversely, for (PTEA)96-b-
(PEO)100/DNA polyplexes, the size distribution was broad, indicating a more heterogeneous system.
Polyplexes were also prepared by direct mixture at Z+/− of 2.0, and they displayed diameters around
120–150 nm, remaining stable for more than 10 days. Direct and reverse titration experiments showed
that the order of addition affects both the size and charge of the resulting polyplexes.

Keywords: polyplex; coacervation; DNA; block copolymers; ITC; polyelectrolytes

1. Introduction

Polyelectrolyte self-assemblies are present in many biological systems, and it is in-
teresting to develop artificial self-assemblies that mimic naturally occurring assembly
structures [1,2]. For instance, DNA is a highly negatively charged polyelectrolyte and there-
fore adopts an extended coil conformation in dilute solutions [3,4]. Considering that several
diseases can be treated using gene therapy, numerous efforts have been applied to develop
efficient DNA delivery vectors. Viruses can transport genetic material into the nucleus
once they go through endocytosis to the cell. However, although cationic non-viral vectors
are in general more cytotoxic and less efficient, due to safety reasons, there is an increased
interest in the development of nonviral vectors using cationic agents [5], for instance,
the surfactants CTAB [6], DODAB and DODAC [7], ester-based cationic gemini surfac-
tants [8], and synthetic polymers such as poly(ethyleneimine) [9–11], polylysine [12,13],
poly(glycoamidoamine) [14], poly(amide triazole) [15] and poly(amido amine) dendrimer,
PAMAM [16–18]. Furthermore, there are current human clinical trials using DNA-based
vaccines that target various types of diseases such as autoimmune infectious and against
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coronavirus, for example [19]. Therefore, it is of great interest to develop carrier materials
to improve the systemic release of DNA in the body [19].

Cationic molecules bind to the negatively charged DNA backbone, forming a com-
plex in which the DNA backbone is compacted [20–22]. Several functional groups are
interesting to investigate regarding their attachment to macromolecules, such as trimethy-
lammonium [4] and guanidinium [23], among others. In fact, ammonium groups play an
important role in the efficiency of genetic material transport with cationic polymers because
they form condensed particles with DNA, sometimes referred to as polyplexes [24].

Many studies seek to design and select appropriate DNA carriers and aim at elucidat-
ing the features that govern the interaction between the DNA and the cationic agent and
how the biological activity of these polyplexes is preserved. Chen and co-workers synthe-
sized a triblock copolymer of polylysine-b-polyleucine-b-polylysine with different block
lengths as free cationic chains and used natural protamine to condense DNA, with results
showing that these triblock copolypeptides are able to increase the gene transfection effi-
ciency by a factor of approximately 104 times compared with the use of the polyplexes with-
out the free cationic chains [22]. Jung and co-workers prepared several block copolymers
in which the cationic block was fixed as poly(N-(2-aminoethyl) methacrylamide) (PAEMA)
with varying hydrophilic blocks including poly(ethylene glycol), poly(oligo(ethylene glycol)
methyl ether methacrylate), and poly(2-deoxy-2-methacrylamido glucopyranose). Accord-
ing to their results, the nature of the hydrophilic block plays an important role in determin-
ing the structures of pDNA−diblock complexes [25]. However, despite the large number
of studies involving the interaction of DNA with cationic polyelectrolytes [3,12,21–34], the
thermodynamics of the polyplexes formation is not completely understood yet, especially
concerning contributions from interaction forces other than electrostatic ones.

Interactions between macromolecules have been extensively characterized by isother-
mal titration calorimetry (ITC), a technique that enables the direct measurement of the heat
exchange involved when one species is titrated into another, providing information on the
extent of interaction as well as on enthalpy changes associated with the binding process.
Therefore, ITC is an outstanding tool not only to monitor binding processes but also to
produce a complete thermodynamic profile of the system [35–37].

In this paper, we report the preparation of three different block copolymers containing
the same cationic and neutral portions but with different neutral block lengths, namely
(trimethylammonium chloride methacryloy-oxyethyl)-block-poly(acrylamide), (PTEA)50-b-
(PAm)50, and (PTEA)50-b-(PAm)200 and (PTEA)50-b-(PAm)1000. Another copolymer contain-
ing poly(ethylene oxide) as the neutral block, (PTEA)96-b-(PEO)100, was also used, as shown
in Scheme 1. In this approach, the block copolymers used contained the same cationic block,
allowing the assessment of the influence of the type and size of their neutral blocks on the
formation of DNA polyplexes. These polyplexes were characterized by isothermal titration
microcalorimetry (ITC), zeta potential and dynamic light-scattering measurements, and via
circular dichroism spectroscopy.
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Scheme 1. Chemical structures of block copolymers used in this study: (PTEA)50-b-(PAm)50,
(PTEA)50-b-(PAm)200, (PTEA)50-b-(PAm)1000, and (PTEA)96-b-(PEO)100.

2. Results and Discussion

Three block copolymers were synthesized with varying sizes of their polyacrylamide
blocks and with the same cationic block. The intent was to verify the influence of their
neutral acrylamide blocks on the stabilization of the complex formed through the interaction
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between the cationic portion of the copolymer and the negatively charged DNA. In addition,
another block copolymer was modified to contain the same cationic block and with a
PEO neutral block instead of PAm, namely (PTEA)96-b-(PEO)100. Table 1 summarizes the
copolymers prepared as well as the expected size of each block considering the quantity of
reactants used in the synthesis of (PTEA)-b-(PAm). Their dispersity values (Mw/Mn) were
calculated using GPC experimental data. The copolymer (PDMAEMA)96-b-(PEO)100 was
modified in order to obtain the block copolymer (PTEA)96-b-(PEO)100, and its composition
was provided by the supplier.

Table 1. Composition of the copolymers studied.

Number of
Monomers of

Cationic Block

Mw, Cationic
Block (g mol−1)

Number of
Monomers of
Neutral block

Mw, Neutral
Block (g mol−1) Dispersity (Mw/Mn)

(PTEA)50-b-(PAm)50 50 10,581 50 3550 1.5 *
(PTEA)50-b-(PAm)200 50 10,203 200 14,200 1.9 *
(PTEA)50-b-(PAm)1000 50 10,526 1000 71,000 2.3 *

(PDMAEMA)96-b-(PEO)100 96 15,000 113 5000 1.3 **
(PTEA)96-b-(PEO)100 96 28,695 113 5000 1.3 **

* Experimental values obtained as described in the supplementary material. ** According to the copolymer provider.

The interaction of copolymers with DNA was investigated using ITC, DLS, zeta
potential, and circular dichroism measurements, varying the charge ratio between polymer
and DNA (Z+/− ratio), that is, the ratio between number of positive charge equivalents of
the polymer and the negative charge equivalents of the nucleic acid. We decided to work
in low-ionic-strength media because the presence of electrolytes might increase the size of
polyplexes due to charge screening effects [38].

Calorimetric titrations of DNA solutions with (PTEA)-b-(PAm) were performed to
investigate the energetics of binding. Figure 1a–c show the integrated heats of reaction
plotted against Z+/−. For the addition of (PTEA)-b-(PAm) to DNA, in the presence of NaCl
5.0 mM, the enthalpy of interaction (∆H) is around 4.0 kJ mol−1 expressed per mole of
added copolymer in each injection and is constant and endothermic up to Z+/− value
around 0.85. This means that this complex formation is entropically driven, probably due
to the release of water molecules and counterions that occurs when the opposite charged
chains bind. The order of magnitude of these enthalpy changes agrees with previous
determination for the interaction of other oppositely charged polymers, suggesting a
general behavior [7,38]. Similarly, for (PTEA)96-b-(PEO)100, ITC experiments showed that
the interaction is also endothermic with larger values of enthalpy of binding (∆H) around
5.5 kJ mol−1 expressed per mole of added copolymer in each injection when compared to
the (PTEA)-b-(PAm) copolymers and that it remains constant up to Z+/− of 0.83 (Figure 1d).

In mixtures with Z+/− below 1.0, DNA in excess interacts with the complexes to
produce negatively charged and kinetically stable aggregates. Subsequently to the abrupt
decrease in ∆H, after charge neutralization, as Z+/− increases, the observation of ∆H val-
ues close to zero indicates that the added polycation does not interact with the structures
formed [38]. As soon as a charge ratio of around 1.0 is reached, and before ∆H is close to zero
and constant, an endothermic peak occurs. Previous results reported that as the charge ratio
approaches stoichiometry, the repulsion decreases, and the complexes gradually transform
into a larger complex coacervate by stepwise aggregation until nanophase separation [39].
These findings corroborate with the previously proposed two-step process, in which the
first process is related to the formation of complexes of highly charged polyelectrolyte of
size around 100 nm, and the second process is the transition of a coacervate phase [38,40].
On the other hand, the complexation between quaternized poly(2-(dimethylamino)ethyl
methacrylate-b-laurylmethacrylate-b-(oligo ethylene glycol) methacrylate) amphiphilic
triblock terpolymer micelles follows a two-step interaction process only for the terpoly-
mer/short DNA micellar polyplexes (113 bp), and a only a single process is observed when
complexation occurs with the 2000 bp DNA [41].
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These curves (Figure 1) display features already reported for other electrostatic binding
processes involving surfactants and polymers, such as the positive values for enthalpy of
binding and the appearance of a bump in the ITC curves close to charge neutrality [38,40].
The latter feature has been ascribed to a two-stage association process in which ion pairs
are formed initially, and closer to charge neutrality, the whole system rearranges to form a
coacervate that eventually phase separates. In order to better understand the association
thermodynamics in the two processes, A and C, observed (with A standing for aggregation
and C coacervation), fitting of the calorimetry data was performed using the modified
version of the Multiple Non-Interacting Sites (MNIS) model as previously proposed [38].
The interaction between both macromolecules is associated with a binding enthalpy (∆Hb),
a binding constant Kb, and a reaction stoichiometry n, which is the number of binding
sites assuming that they do not interact one with another [38]. As one macromolecule is
titrated into the other, the heat exchange is quantified by the derivative of the heat related
to the incremental addition of a small amount of macromolecule (ligand). Thus, using the



Molecules 2023, 28, 398 5 of 16

charge ratio Z+/− to associate the concentration of both macromolecules, the enthalpy can
be defined by Equation (1):

∆H(Z, n, r) =
1
2

∆Hb

1 +
n− Z− r√

(n + Z + r)2 − 4Zn

 (1)

where r = 1/Kb[M], and [M] is the molar concentration of the macromolecule in the cell.
To account for the two-step titration, one assumes that the heat exchange is the sum of the
two contributions, ∆HA(Z, nA, rA) for the polyplexes binding and ∆HC(Z, nC, rC) for the
coacervation, where A stands for aggregates and C for coacervates formation. Thus, the
total enthalpy change for the titration is the sum of the binding enthalpies for each process,
∆HA

b and ∆HC
b , namely aggregation and coacervation, respectively, expressed as:

∆H(Z) = ∆HA(Z, nA, rA) + α(Z)∆HC(Z, nC, rC), (2)

where the function α(Z) is the fraction of the coacervate phase formed at a specific charge
ratio Z+/− and defined as follows:

α(Z) =
(

1 + exp
(
− (Z− Z0)

σ

))−1
, (3)

From the binging enthalpy (∆Hb), the stoichiometry (n), and the binding constant (Kb),
the changes in free energy (∆G) and in entropy (∆S) of the interaction can be calculated
as follows:

∆G = −RTlnKb, (4)

∆S =
(∆Hb − ∆G)

T
, (5)

These parameters were obtained considering the molar composition in terms of charge
equivalents (for this system, one charge equals one mer). Table 2 presents the thermo-
dynamic parameters obtained by the fitting of the ITC curves for processes A and C, as
described above.

Table 2. Thermodynamic parameters obtained by fitting of the ITC curves for processes A and C.

Process A ∆HA
b (kJ mol−1) Kb nA ∆G(kJ mol−1) ∆S (J mol−1 K−1)

PTEA50-b-PAm50 in DNA 4.2 3.1 × 106 0.96 −37.0 138
PTEA50-b-PAm200 in DNA 4.1 2.5 × 107 0.85 −42.2 155
PTEA50-b-PAm1000 in DNA 4.4 6.3 × 106 0.83 −38.8 145
PTEA96-b-PEO100 in DNA 5.5 5.0 × 106 0.83 −38.2 147

Process C ∆HC
b (kJ mol−1) Kb nC ∆G(kJ mol−1) ∆S (J mol−1 K−1)

PTEA50-b-PAm50 in DNA −1.4 6.6 × 105 1.04 −33.2 107
PTEA50-b-PAm200 in DNA −1.1 3.1 × 106 0.96 −37.1 121
PTEA50-b-PAm1000 in DNA −2.0 1.4 × 106 0.92 −35.1 111
PTEA96-b-PEO100 in DNA −4.3 1.4 × 106 0.89 −35.0 103

* The parameters were obtained considering the molar composition in terms of charge equivalents (for this system,
one charge equals one mer).

Further analysis of the thermodynamics of process C shows that the coacervation/
precipitation is exothermic for the addition of all the block copolymers in DNA. The
enthalpy values were similar for all the polyplexes, with exception of PTEA96-b-PEO100
with DNA, whose binding is found to be more energetic.

Moreover, the entropy changes are positive and in the range of 103–155 J mol−1 K−1,
confirming an entropically driven process because enthalpy values are positive, which is in
accordance with previous studies [38,42]. The entropy values of process A are greater than
those of process C, as is for Gibbs free energy. In addition, the enthalpy values that were
positive in process A became negative in process C although both processes are controlled
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by entropy. Process A occurs in a stoichiometry below that of process B, with the first
continuing up to Z = 0.83–0.96, while the second occurs at Z = 0.89–1.04, suggesting that
coacervation only takes place when most of the charges are neutralized. With respect to
K, the values obtained in the present study are larger than values reported in previous
studies [43].

In order to shed light on the structural changes upon the different complexation
processes, a DLS investigation was performed and compared with the calorimetry data as
in Figure 2a–d, where I displays the calorimetric data presented above, II is the scattering
intensity data, III the hydrodynamic diameters with polydispersity index values, and IV
shows the zeta potential data.
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Figure 2. Comparison of ITC data with DLS results: intensity of scattering; hydrodynamic diameter
(Zaverage) with PDI values indicated as red bars; and zeta potential values for titration of DNA with
(PTEA)50-b-(PAm)50 (a), (PTEA)50-b-(PAm)200 (b), (PTEA)50-b-(PAm)1000 (c), and (PTEA)96-b-(PEO)100 (d).

The scattering intensity data show that there is an increase in scattering intensity with
an increase in the charge ratio up to the value of Z+/− around 0.8. Then, there is a slight
decrease in scattering intensity for polymers with PAm50 and PAm200 blocks for higher
charge ratios. This behavior is different for the system composed by PAm1000, where these
values remain somewhat constant for intermediate Z+/− values with a slight increase trend.
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Studies show that this variation in intensity is a typical feature associated with the formation
of coacervates or precipitates during these titrations; when the intensity decreases after
coacervation or precipitation, this indicates that larger aggregates are formed that phase
separate from the solution and stop scattering light [38].

The DLS data show that the size of the aggregates is around 200 nm and that af-
ter charge neutralization, precipitation occurs for the polymers containing the shorter
blocks, PAm50 and PAm200. Interestingly, the same was not observed for the copolymers
(PTEA)50-b-(PAm)1000 and (PTEA)96-b-(PEO)100/DNA. In fact, as illustrated in Figure 3e,
the diameter of (PTEA)96-b-(PEO)100/DNA and (PTEA)50-b-(PAm)1000/DNA polyplexes is
around 200 nm at Z+/− = 0.6, and even at Z+/− = 2.0, after charge neutralization, (PTEA)50-
b-(PAm)1000/DNA polyplexes remained with finite size, only slightly larger, possibly due
to the larger size of their neutral blocks that prevented their growth and precipitation. Sim-
ilarly, for (PTEA)96-b-(PEO)100/DNA, the complexes also presented finite sizes although
their size distribution was broader, indicating that possibly some polyplexes coacervated;
but still, the aggregates remained with size in the order of 102 nm, shedding light on the
effect of a larger neutral block on the aggregate’s size. For (PTEA)50-b-(PAm)50/DNA
and (PTEA)50-b-(PAm)200/DNA polyplexes, at Z+/− = 0.6, their diameter was also around
200 nm, but at Z+/− = 2.0, precipitation was observed. These results show that the size of
the neutral block plays an essential role in determining the size of the polyplexes and the
extent of coacervation/precipitation, as, for instance, the longer polyacrylamide block of
(PTEA)50-b-(PAm)1000 was able to prevent its polyplex from precipitating. Figure 3 schemat-
ically illustrates the mechanism envisaged for the formation of polyplexes depending on
the size and nature of their neutral blocks: the short polyacrylamide blocks eventually
precipitate, whereas increasing the polyacrylamide block, the coacervates maintain almost
the same size even after charge neutralization. When PEO is the neutral block, even with
only 100 PEO units, finite sized coacervates are observed as remaining after charge neu-
tralization, showing that this neutral block is more efficient in preventing the formation
of precipitate.

Zeta potential data (Figure 2-IV) for titration of copolymers in DNA show the forma-
tion of negatively charged aggregates with zeta potential values around –45 mV for charge
ratios up to Z+/− ~ 0.8 for systems containing PAm50 (Figure 2a) and PAm200 (Figure 2b).
Above that, charge inversion occurs in the range of Z+/− 0.9 and 1, respectively. Differently,
for the polymer PAm1000 (Figure 2c), these aggregates remain with small negative zeta po-
tentials at low Z values, and at intermediate values of Z+/−, the aggregates reach neutrality
that remains throughout the titration. This difference may be ascribed to the different PAm
block sizes. For (PTEA)96-b-(PEO)100, the behavior is similar to the copolymers with smaller
PAm blocks, where a more drastic charge inversion is observed.

Previous studies evaluated the effect of the blocks with respect to copolymers binding
to DNA, focusing on keeping the neutral block length almost constant and varying the
length of the cationic block. For example, the copolymer PMAG52-b-PAEMA63, where
PAEMA is the cationic block, binds more strongly with DNA than PMAG56-b-PAEMA30,
which was associated with a stronger interaction due to longer cationic block [25]. Those
authors also suggest that even longer neutral blocks can limit the binding with DNA,
impeding the interaction of the cationic moiety with the secondary structure of DNA
assuming that hydrogen bonding does not effectively participate on the formation of the
complexes [25]. In the present study, where the focus is on changing the neutral block
length, clearly, this was not observed, and the initial aggregate size and the energetics of
binding of different (PTEA)-b-(PAm) with DNA are similar. Changing the neutral block to
PEO leads to a small increase in the binding affinity, as revealed by the thermodynamic
functions reported in Table 2.
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To evaluate the kinetic stability of the complexes, their sizes were monitored as
function of time when formed upon direct mixture of the copolymers with DNA at
Z+/− = 2.0. As shown in Figure 4, the complex formed between (PTEA)96-b-(PEO)100
and DNA displays an initial size around 117 nm, and after 2 h, it slightly decreases to
112 nm, remaining constant up to 12 days. The size for the (PTEA)50-b-(PAm)50 and DNA
complexes was initially of 130 nm and also presented a slight decrease to 120 nm and in-
creased slightly to 155 nm after 12 days. Both complexes of DNA and (PTEA)50-b-(PAm)200
or (PTEA)50-b-(PAm)1000 initially presented similar sizes, 141 and 146 nm, respectively.
After 2 h, the (PTEA)50-b-(PAm)200 complex display a decrease on its size (121 nm), while
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(PTEA)50-b-(PAm)1000 and DNA complexes had a minor increase (152 nm). Interestingly,
after 12 days, (PTEA)50-b-(PAm)1000/DNA polyplexes decrease to 136 nm, almost the same
size as (PTEA)50-b-(PAm)200/DNA polyplexes (140 nm). Overall, the size of aggregates at
Z+/− = 2.0 does not vary significantly within the investigation period.
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However, when we assess the effect of their preparation protocol, either by contin-
uous titration or via direct mixing, the difference in the polyplexes size is illustrated in
Figure 4b. Using the direct mixture results in polyplexes significantly smaller compared to
the titration protocol. Indeed, a previous study showed the direct mixture of DTAB with
diblock copolymers (PAA)5000, g mol

−1-b-(PAm)30,000, g mol
−1 generated aggregates smaller

than those produced by the complex salt procedure [44].
Polyplexes were also prepared by titrating DNA into the copolymer solution in a

reverse direction as previously used, and their sizes were compared to those prepared
by titrating copolymer to DNA in Figure 5. As discussed before, the direct titration, that
is, the addition of copolymers (PTEA)50-b-(PAm)50 and (PTEA)50-b-(PAm)200 into DNA
(curves in black), led to precipitation at Z+/− approximately ≥ 1.0, while (PTEA)50-b-
(PAm)1000 and (PTEA)96-b-(PEO)100 generated finite-sized structures. For the addition of
DNA in the copolymers (red curves, reverse direction), at Z+/− ≤ 1.0 (excess of DNA),
precipitation was observed except for (PTEA)50-b-(PAm)1000. The delivery efficiency of a
polyplex is improved whenever it possesses positive charge because it can interact with
negatively charged cell membranes, and they are internalized to the cell via endocytosis [45].
After that, DNA must dissociate from the complexes to be released into the cytoplasm
and conducted into the nucleus [45]. Polyplexes with approximately 200 nm displaying
positive surface potential were obtained by adding DNA to all cationic copolymers. Upon
the addition of (PTEA)50-b-(PAm)1000 to DNA, it was possible to obtain polyplexes with
positive surface potential; however, the size of the formed polyplexes was in the order of
400 nm, whereas polyplexes of around 200 nm were obtained when DNA was added to
(PTEA)50-b-(PAm)1000. This observation stresses the importance of selecting the preparation
protocol for producing DNA polyplexes.
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(a), (PTEA)50-b-(PAm)200 (b), (PTEA)50-b-(PAm)1000 (c), and (PTEA)96-b-(PEO)100 (d) into DNA by
direct addition (black) and addition of DNA into cationic block copolymer by reverse addition (red).

Circular dichroism (CD) was used to evaluate whether there were changes of DNA
conformation induced by the addition of the cationic copolymers. The CD spectrum of DNA
solution shows a positive band near 275 nm and a negative band close to 245 nm related to
the stacking of DNA bases and to the helical structure of DNA, respectively (Figure 6). Upon
addition of (PTEA)-b-(PAm), at Z+/− = 0.3, the DNA secondary structure is not significantly
affected independently of the copolymer although a red shift of the peak position is
observed at Z+/− = 0.7 and 1.5, which is similar to that observed in previous studies [25,46].
At Z+/− = 2.3, there is no observable change on the DNA structure, which may indicate
that the interaction is mainly electrostatic considering that hydrogen-boding interaction
is expected to modify the CD profile [20]. On the other hand, (PTEA)-b-(PEO)100 induces
changes in the DNA secondary structure in accordance with its strongest interactions with
DNA, corroborating the previously discussed ITC results.

The CD results indicate that (PTEA)96-b-(PEO)100 displays the strongest binding to
DNA, which can be ascribed to its longer cationic block. Other than that, the neutral
block seems not to be interacting with DNA through hydrogen bonding between the
acrylamide groups in the PAm block and the bases in the DNA. Indeed, Prevette and co-
workers studied the condensation of DNA using a series of poly(glycoamidoamine)s and
concluded that the binding mechanism is not only electrostatic but also through hydrogen
bonding between the groups in the carbohydrate co-monomer and the DNA base pair [14].
Nevertheless, it has been suggested that this type of interaction occurs when the DNA chain
is close to the groups that are capable of interacting through hydrogen bonding. When the
blocks are separated, as in diblock copolymers, and the neutral block is not close to the
cationic–anionic interaction sites [25], this type of interaction might not be so effective, as
in the present study.
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3. Materials and Methods
3.1. Materials

Salmon sperm DNA (2000 bp) was obtained from Sigma-Aldrich and used as re-
ceived. Potassium ethyl xantogenate (purity 96%), methyl 2-bromopropionate (purity
98%), [2-(methacryloyoxy)ethyl] trimethyl ammonium chloride (TEA 80%), and 4,4′-Azobis
(4-cyanovaleric acid) from Sigma-Aldrich were used without prior purification. Organic
solvents methanol, hexane, ethyl acetate, isopropyl alcohol, acetone, ethyl ether, and
1,4-dioxane were purchased from Synth. Acrylamide (Am, Fluka, purity≥ 98%) was recrys-
tallized from methanol. The block copolymer (PTEA)-b-(PEO) was prepared as described
below from poly(ethylene oxide)-b-poly(n,n-dimethylaminoethyl methacrylate), namely
PEO-b-PDMAEMA, which was obtained from Polymer Source Inc., Dorval, QC, Canada,
with Mn of 5000 g mol−1-b-15000 g mol−1. All other reagents were of the highest purity
available and were used as received. Deionized water (Milli-Q, Millipore-18.2 MΩ cm) was
used for all experiments.

3.2. Block Copolymer Synthesis
3.2.1. Preparation of RAFT Agent (CTA)

The copolymers were prepared under argon atmosphere in a sealed flask by adding
the RAFT agent (CTA), TEA, and initiator. The synthesis of S-(2-methylpropionate) O-ethyl
xanthate (RAFT agent) was performed according to the methodology described in the litera-
ture [47], only using methanol as solvent instead of ethanol. The product was characterized
by H1 Nuclear Magnetic Resonance (1H-NMR (250 MHz, CDCL3): d[ppm] = 4.63, 2H,
q (C(S)OCH2), 4.38, 1H, q (CH), 3.76, 3H, s (OCH3), 1.58, 3H, d (CH3) and 1.42, 3H, t (CH3)).
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3.2.2. Preparation of Homopolymer Poly(trimethyl-ammonium Chloride Metacriloiloxietil)
and Block Copolymers PTEA-b-PAm

The block copolymers, poly(trimethyl-ammonium chloride metacriloiloxietil)-b-poly
(acrylamide) and (PTEA)m-b-(PAm)n (where m and n represent the degrees of polymeriza-
tion of TEA and Am, respectively), were synthesized by Reversible Addition-Fragmentation
chain Transfer (RAFT) using a xanthate as RAFT agent, following a methodology described
in the literature [44,48] with some adaptations. The reactions were performed under argon
atmosphere in a sealed flask by adding the transfer agent O-ethyl xanthate (CTA) and
[2-(Methacryloyoxy)ethyl] trimethyl ammonium chloride (TEA) in a mixture of deionized
water and isopropyl alcohol (4:1 v/v). Then, the initiator (4,4′-Azobis(4-cyanovaleric acid))
were added slowly dropwise, and the system reacted for 24 h at 70 ◦C (Scheme 2) [48].
For block copolymerization, acrylamide and initiator were added to the reaction and the
solution left to react at 70 ◦C for 24 h. The copolymer was isolated from the solution by
precipitation with an excess of 1,4-dioxane. Then, the copolymers were filtered and washed
with 1,4-dioxane and dried at the room temperature using a vacuum [48]. The expected
size of each block was defined in terms of the quantity of reactants used in the synthesis of
(PTEA)-b-(PAm) [49], according to Table S1 (Supplementary Material).
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Scheme 2. Schematic overview of the block copolymers preparation.

3.2.3. Modification of (PTEA)-b-(PEO)

To prepare (PTEA)-b-(PEO), the block copolymer (DMAEMA) was modified aiming
at the quarternization of the tertiary amine groups according to the method described by
Ranger and co-workers [50]. Briefly, the polymer (0.266 g) was added to a round-bottom
flask with 10 mL of acetone. Then, 250 µL of methyl iodide 99% was added. The solution
was stirred during 16 h at 25 ◦C (Scheme 3). The resulting product was dialyzed against
water and freeze-dried.
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3.3. Polyplexes Preparation

Polyplexes were prepared by titrating the 4.0 mM block copolymer solution into a
0.4 mM DNA solution until the desired mole ratio (Z+/−) was reached. Both solutions
were prepared with 5.0 mM of NaCl. The pH of the solutions was not corrected since the
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charges of the polyelectrolytes are expected to be independent of the pH medium. The
polyplexes were also prepared by titrating a 4.0 mM DNA solution into a 0.4 mM block
copolymer solution. Further experiments were performed by adding block copolymer into
DNA solution in one step to achieve the charge ratio (Z+/−) of 2.0, and the complexes’ sizes
were monitored as a function of time. During this period of time, the complexes formed
were stored at 25 ◦C.

3.4. Isothermal Titration Calorimetry

Titrations of (PTEA)-b-(PEO) or (PTEA)-b-(PAm) with DNA solutions were performed
to investigate the energetics of binding. ITC experiments were performed in a VP-ITC
(MicroCal, Amherst, MA, USA) isothermal titration calorimeter with a sample cell of
1.43 mL. A more concentrated solution (4.0 mM) of polymer was consecutively injected
with a gastight syringe that also acted as a stirrer (at 329 rpm) into a solution at 0.4 mM of
DNA in the cell. This concentration was calculated considering the molar composition in
terms of charge equivalents (for this system, one charge equals one mer). Injection volumes
varied between 10 and 15 µL with an interval of 800 s between each injection. The volume
of the cell was kept constant during the experiments due to an overflow of solution, and
this was considered during calculations of the actual cell concentrations. Polymer and
DNA dilution heat effects were determined and found to be negligible.

3.5. Dynamic Light-Scattering and Zeta Potential Measurements

Dynamic light-scattering and zeta potential measurements were performed with a
Malvern Instruments Autosizer model 4700, UK. The hydrodynamic diameter (DH) of the
polyplexes was expressed by means of their Z-average. These polyplexes were obtained
by titrating copolymer into DNA solution or vice versa and by direct mixture at a specific
charge ratio. The electrophoretic mobility of the samples was determined from the average
of 15 cycles of an applied electric field. Their zeta potential was determined from their
electrophoretic mobility using the Smoluchowski approximation.

3.6. Circular Dichroism (CD)

CD spectra of the polyplexes were obtained using a Jasco 715, Japan, spectropolarime-
ter to monitor the conformation of DNA in the polyplexes. The spectral range varied from
220–320 nm with a scan rate of 20 nm·min−1, and the reported spectra are an average of
three accumulations. The samples were maintained at 25 ◦C in a 1 mm pathlength quartz
cuvette. To prepare the polyplexes, a DNA solution of 0.4 mM was used and titrated with a
4.0 mM polymer solution until the desired charge ratio.

4. Conclusions

Four different block copolymers were used with the same cationic block in order
to compare the influence of the nature and length of the neutral block on their interac-
tion with salmon sperm DNA. Calorimetric measurements showed that the interaction
is endothermic, around 4.0 kJ mol−1 of charges for the copolymers (PTEA)-b-(PAm) and
around 5.5 kJ mol−1 of charges for (PTEA)96-b-(PEO)100, indicating that the formation of
the complex is entropically driven, probably due to the release of counterions and water
molecules. For all copolymers, the enthalpy change is constant up to a critical charge ratio
(Z+/−) of about 0.8 for the addition of polymer to DNA. These calorimetric measurements
also confirm that the polyplex formation is a two-step process including an ion-pairing and
a coacervation stages.

The complexes hydrodynamic diameter was determined by DLS as around 200 nm
before Z+/− approximately 1.0. After charge neutrality, precipitation occurred for the
complexes of (PTEA)50-b-(PAm)50 and (PTEA)50-b-(PAm)200 and DNA, whereas the size of
polyplexes of DNA and (PTEA)50-b-(PAm)1000 remained almost constant even at high Z+/−.
The polyplexes of (PTEA)96-b-(PEO)100 and DNA display diameters around 200 nm at
Z+/− = 0.6, and after charge neutrality was reached, a broad size distribution was observed.
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Interestingly, for all the copolymers studied, the complexes prepared by direct mixture
at Z+/− = 2.0 were smaller than those prepared by titration, indicating that the protocol
of preparation affects the polyplexes formation. Varying the order of addition, that is,
performing the titration of copolymer into DNA or vice versa (direct or reverse titration,
respectively), was found to affect both the size and charge of the polyplexes, and this can
be used to modulate the characteristics of polyplexes for varied applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28010398/s1, Figure S1: Gel permeation chromatograms
obtained for the copolymers (PTEA)50-b-(PAm)50, (PTEA)50-b-(PAm)200, and (PTEA)50-b-(PAm)1000;
Table S1: Mass of reactants used in the synthesis of copolymers (PTEA)50-b-(PAm)50, (PTEA)50-b-(PAm)200,
and (PTEA)50-b-(PAm)1000 [49].
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