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Abstract: Nanomedicine is an emerging field with continuous growth and differentiation. Liposomal
formulations are a major platform in nanomedicine, with more than fifteen FDA-approved liposomal
products in the market. However, as is the case for other types of nanoparticle-based delivery
systems, liposomal formulations and manufacturing is intrinsically complex and associated with a
set of dependent and independent variables, rendering experiential optimization a tedious process
in general. Quality by design (QbD) is a powerful approach that can be applied in such complex
systems to facilitate product development and ensure reproducible manufacturing processes, which
are an essential pre-requisite for efficient and safe therapeutics. Input variables (related to materials,
processes and experiment design) and the quality attributes for the final liposomal product should
follow a systematic and planned experimental design to identify critical variables and optimal
formulations/processes, where these elements are subjected to risk assessment. This review discusses
the current practices that employ QbD in developing liposomal-based nano-pharmaceuticals.

Keywords: drug delivery; nanomedicine; liposomes; quality by Design (QbD); nano-pharmaceuticals;
pharmaceutical industry

1. Introduction

Nanomedicine and nanoparticle-based therapeutics are gaining increasing interest
in both academia and industry. Currently, there are many FDA-approved nanomedicine
products with proven clinical outcomes [1]. Liposomes are spherical vesicles of a continu-
ous three-dimensional phospholipids bilayer wrapping an aqueous core [2]. Liposomes
have been used to deliver a wide range of therapeutics [3]. For example, liposomes have
been successfully loaded with the anticancer agent, doxorubicin, and showed enhanced
therapeutic efficacy and decreased unwanted side effects [4]. Moreover, they have been
widely investigated as carriers of nucleic acid-based therapies, such as siRNA [5] and
DNA, enabling enhanced penetration in targeted cells and protecting drugs from degra-
dation [5]. Liposomes were one of the first nanotechnology-platforms that entered the
market early in 1995 and is still one of the major nano-platforms [1]. It is worth men-
tioning that the first FDA-approved mRNA vaccine for COVID-19 was approved in 2020
utilizes lipidic/liposomal nanocarriers as a delivery system [6]. Despite the outstanding
properties of liposomes, the complexity in their formulations, product development and
manufacturing are clearly challenging. The explanation of increased complexity in the
case of nano-formulations/nanomanufacturing is associated with the unique physics and
chemistry at the nanoscale and thus a higher number of variables needed to be understood
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and optimized [7]. Lack of this understanding and optimization is the reason behind the
common sensitivity and poor reproducibility in nano-preparations and manufacturing.
For these systems, an experimental approach that facilitates the identification of critical
parameters and help in understanding their contributions to the characteristics/quality
of the final product is certainly beneficial. For this purpose, the quality by design (QbD)
has been proposed and recommended by various industries and regulatory agencies [8,9].
QbD starts by identifying the quality target product profile (QTPP), which is a summary
of the quality attributes (QA) of the final product to ensure its efficacy and safety. QA
is dependent on critical attributes related to the material attributes (CMA) and process
parameters (CPP). QbD follows by identifying and optimizing CMA and CPP and setting
their target specifications to ensure the QA and ultimately QTPP for the final product [9–11].
Proper experimental design is used to link CMA and CPP to QA [8,12], which then facilitate
the establishment of targeted specifications for materials, processes and the final product.
Moreover, QbD enables the evaluation of the effect of more than one factor at a time on
the QTPP. Additionally, risk assessments are used to prioritize QA [13]. Considering the
potent liposomal-based drug products in clinical use and the diverse clinical and pre-
clinical applications, there is an unmet need for strategic and systematic development of
liposomes as potent drug delivery systems that enable better therapeutic efficacy of the
loaded therapies. Although applying QbD liposomal drug delivery systems development
have been described in several research, there is more and more need to understand and
describe current advances in using QbD in liposomal formulation developments to guaran-
tee liposomal-based drug delivery systems with higher therapeutic outcomes and possible
industrial development. Therefore, this review highlights the main strategic points of
developing liposomes according to the QbD to reduce the obstacles of using such vehicles
in clinical applications in the future.

2. Quality by Design (QbD)
2.1. QbD in Pharmaceutical Products

The production of quality pharmaceutical products is the major goal of pharmaceutical
industry [14]. The quality of the pharmaceutical products covers all aspects that may have
an impact on the prescribed products which will consequently affect the health of the
patients. Previously, the quality by testing method (QbT) was the common method to
ensure quality of the manufactured products. QbT is based on an in-process testing of input
materials, intermediates and the final product [15]. However, the pharmaceutical quality
sectors call for an alternative practice that can ensure the quality before manufacturing
in addition to maintaining the required quality control testing suggested by QbT. To this
end, the current pharmaceutical industry and regulation firms switch toward what is now
known as the QbD, which ensures that pharmaceutical products will be developed and
manufactured as per pre-defined quality attributes, thus QbD is expected to minimize
intensive testing during or after manufacturing as well as improve reproducibility, manufac-
turability, efficacy and safety [16]. Therefore, QbD can be defined as a prospective approach
to improve product quality [17]. ICH, US FDA and EMA have specified thoroughly the
outlines of the QbD key elements to ensure the consistency of high-quality pharmaceutical
products (Figure 1), reflecting a continuous interest in QbD implementation by various
international regulatory bodies [16,18].

2.2. Tools and Key Elements of QbD

Generally, there are four key elements of the QbD: (i) the quality target product
profile (QTPP), (ii) the critical quality attributes (CQAs), (iii) the critical material attributes
(CMAs) and (iv) the critical process parameters (CPPs) [12,19,20]. All of these elements are
collaborating in a step-by-step approach to draw the framework of the QbD strategy. The
recruitment of these key elements in the QbD method needs well-defined experimental
design combined to proper statistical analysis (Figure 2) [16,21].
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ICH guidelines define QTPP as “a prospective summary of the quality characteristics
of a drug product that ideally will be achieved to ensure the desired quality, taking into
account safety and efficiency of the drug product” [16,18]. To identify QTPPs and define the
desired performance of the product, the manufacturer should consider complex variables,
such as drug pharmacokinetic parameters, product stability, sterility and drug release [22].
The critical quality attributes (CQAs) were defined by ICH Q8 guideline as “physical,
chemical, biological, or microbiological property or characteristic that should be within an
appropriate limit, range, or distribution to ensure the desired product quality.” In light of
this definition, the CQAs are derived from the QTPP, regulatory requirements, or available
literature knowledge. Thus, the critical Quality attribute (CQA) of the drug product and its
QTPP is the basis of its dosage form, excipient and manufacturing process selection [23].
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The critical process parameters (CPPs) are the process-related parameters that sig-
nificantly affect the QTPP [16]. The identification of CPPs, an in-depth understanding of
the developed standards/specifications, and linking CMAs and CPPs to CQAs are crucial
to ensure quality products [24]. Furthermore, both critical material attributes (CMAs)
and critical process parameters (CPPs) are generally defined as “A material or process
whose variability has an impact on a critical quality attribute and should be monitored
or controlled to ensure the desired drug product quality” [23]. It is worth mentioning
that CMAs are for the input materials including drug substances, excipients, in-process
materials, while CQAs are for output materials, i.e., the product.

Implementing a risk assessment is vital to identify formulations, ingredients, or process
parameters that can impact CQAs after the risk analysis appraises the impact of these
parameters on the CQAs. Additionally, a qualitative or quantitative scale is used to rate the
risk of each identified factor for the desired CQAs. For this reason, a risk assessment scale
has to be established based on the severity and dubiety of the impact on efficacy and safety.
Effect analysis and the Failer mode can be used to identify CQAs. After the risk evaluation
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process a few of these parameters become potentially critical for the CMAs, which must
have certain properties and must be selected within a reasonable range to guarantee the
CQAs of the final product [25,26].
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3. Development of Liposomes Using QbD
3.1. QbD in Liposomal Formulation

The quality of liposomal pharmaceutical products is affected by their contents, prepa-
ration, properties and manufacturing key variables [12]. Therefore, QbD involves designing
the final liposomal products by optimizing input material and manufacturing processes to
acquire a pharmaceutical product with superior quality [27]. Moreover, QbD classifies and
translates the critical parameters and key variables to produce a high-quality drug product
with the most desired characteristics [28]. Indeed, several liposomal products have been
developed using QbD approach, as summarized in Table 1.
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Table 1. Examples of pharmaceutical liposomes developed by QbD.

Drug QTTPs CMAs/CPPs/CQAs Refs

Erlotinib

Dry powder, pulmonary route of
administration, particle size, PDI,
entrapment efficiency, content
uniformity and assays

CQAs: particle size, PDI, entrapment efficiency.
CMA: drug to lipid ratio
CPPs: hydration time sonication time

[29]

Cefoperazone
Dry powder, pulmonary route of
administration, particle size, PDI,
entrapment efficiency.

CQAs: particle size, PDI, entrapment efficiency.
CPPs: hydration time, sonication time [30]

Lamotrigine

Nasal route, liquid formulation, one
dose volume, dissolution
profile/absorption time, vesicle
size, pH

CQAs: vesicle/particle size (and size
distribution), vesicle size: no aggregation,
constant vesicle size.

[31]

Simvastatin
CQAs: size, liposomal SIM concentration,
encapsulated solute retention, Tm change,
water content.

[32]

Prednisolone

The vesicle size for tumor
accumulation; PEGylation of the
liposomes; an optimal cholesterol
concentration for stability; a high
concentration of incorporated drug

CPPs: rotation speed at the hydration of the lipid
film and the extrusion temperature.
CQAs: drug concentration, encapsulation
efficiency and liposomal size.

[33]

Pravastatin
Systemic administration,
accumulation at tumor site, improved
stability, process efficiency.

CQAs: average particle size, encapsulated solute
retention, zeta potential, residual moisture
content, glass transition temperature, primary
drying time, cake appearance.

[34]

Azacitidine Particle size and %
entrapment efficiency.

CPPs: lipid weight concentration (mg),
cholesterol weight concentration (mg) and
sonication time (min).

[35]

Salbutamol
Cholesterol concentration,
phospholipid concentration,
hydration time.

CPPs: drug to lipid ratio, drug entrapment
efficiency, sonication time and hydration time.
CQAs: vesicle size, zeta potential and drug
encapsulation efficiency.

[36]

Doxorubicin-
Curcumin

Decreasing doxorubicin (DOX)
toxicity, enhancing curcumin (CUR)
solubility, stability improvement.

CQAs: the size, surface charge, drug loading, EE
and zeta potential.
CPPs: buffer pH and temperature, phospholipid
concentration, the phospholipids to cholesterol
ratio and the extrusion temperature.

[37]

To certify the desired quality of the final pharmaceutical product, a quality target
product profile (QTPP) should be established [27]. QTPP is usually performed based on
the available scientific data and proper in vivo significance [25]. To identify the QTPP and
the process key parameters that can influence the liposomal product’s quality attributes
(CQAs), the following principal CQAs generally should be recognized/optimized: average
particle size, particle size distribution, zeta potential, drug content, in vivo stability and
drug release [25,38].

Although there are many benefits of applying QbD to liposomal-based products,
there are many challenges that limit the application of QbD liposomal-based product
development. Benefits and challenges are summarized in Table 2.
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Table 2. Benefit and challenges of applying QbD in of liposomal-based products.

Benefits

• Providing a better overall model for liposomal products with fewer problems in formulation
and manufacturing

• Providing better understanding of the compatibility of ingredients in liposomes that affect
the manufacturing process

• Enabling continuous improvements in liposomal formulation and manufacturing processes
• Avoiding regulatory problems and difficulties
• Understanding the associated risks to ensure consistent liposomal formulations
• Ensuring decisions that are based on optimized design rather than on empirical information
• Connecting liposomal formulations and manufacturing with clinical testing during design
• Accelerated FDA approval with less post approval modifications
• Minimizing post market changes and the total cost of liposomal formulation

Challenges

• Increased research and development cost and time
• High initial cost of liposomal preparation, characterization and formulation
• Challenges in dosage form variability
• Regulatory and technical issues
• Increase in experimental runs due to increases in characterization variables of liposomes
• Difficulty in resolving the effect of confounders

3.2. QbD Process Key Parameters for Liposomal Products
3.2.1. Lipid Type and Content

The integrity and stability of liposomes mainly rely on the lipid type. Lipids with
unsaturated fatty acids are susceptible to degradation by hydrolysis or oxidation, while
saturated fatty acids are more stable and have higher transition temperature (Tm) [39].
Moreover, liposomes fluidity, permeability and surface charge also count on the lipid type
and the liposomal lipidic composition [40]. For example, cholesterol typically increases
liposome stability but should be optimized and not exceed 50% [41]. Generally, the carbon
chain length of the formulated lipids may affect the drug encapsulation efficiency of both
hydrophilic and hydrophobic drugs [40]. For example, a large aqueous core can be obtained
using short fatty acid lipids that can enable a high internal volume for hydrophilic drugs. In
contrast, long carbon chain lipids are more suitable to encapsulate the hydrophobic drugs
within the hydrophobic lipid bilayer [42,43]. Furthermore, the loaded material has a great
influence on the morphological features of the particles. The concentration of nucleic acids
impacts the change from a multilamellar to an electron-dense morphology in lipidic-based
particles [44].

Since 1978, liposomes have been used for the selective insertion of exogenous RNA
into cells [45]. Many liposomes have been optimized and fabricated to encapsulate nucleic
acids with low toxicity and high efficiency [46]. However, ionized lipids, especially cationic
lipids, are still the most used for this purpose [47,48]. Unfortunately, cationic lipids produce
many changes in the cell and proteins, such as cell shrinking, reduction in mitoses and
changes in protein kinase C and cytoplasm vacuoles [49,50]. On the other hand, compared
with viral vectors for gene delivery into cells, cationic lipids are easy to fabricate, simple
and possess lower immunogenicity [51]

Both hydrophobic and hydrophilic parts of the cationic lipids have a toxic effect,
especially if they contain a quaternary amine that acts as a protein kinase C inhibitor [52].
A new approach to decrease the effect of the positive charge was proposed to spread the
charge by delocalizing it into a heterocyclic ring imidazolium [53] and a pyridinium [54].
Chang et. al., developed cationic lipids with a cyclen headgroup and revealed that this
novel lipid is safer and possesses lower cytotoxicity than the commonly used lipid to
deliver gene therapy [55].
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3.2.2. Manufacturing Process

The most commonly used manufacturing process for liposome preparation is the
thin-film hydration method (Figure 3) [56,57]. Other approaches such as reverse-phase
evaporation, ethanol injection and emulsification have also been applied [58]. The thin-film
hydration method produces multilamellar structure liposomes with an average diameter
in micrometers [42]. Thus, resizing liposomes to less than 200 nm is required to improve
the surface area to volume ratio for superior encapsulation and drug loading efficiency.
Improving the size distribution of the prepared liposomes, extrusion, sonication (probe or
bath) and freeze–thaw cycling have been used for liposomes size reduction [59].
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Various parameters can be optimized to achieve a uniform multilamellar thin film
followed by proper size reduction [43]. Rota-evaporator temperature, rotation speed and
gradual pressure reduction, in addition to membrane pore size, can result in unilamellar,
monodispersed liposomes with high encapsulation efficiency [33,60].

3.2.3. Average Particle Size and Nanoparticles Distribution

Average particle size and nanoparticle distribution are considered the main CQAs
for all nano-formulations [61]. These parameters play major roles in determining the
nanoparticle in vivo distribution, drug loading ability, drug release and targeting capac-
ity [62]. For better biodistribution, the ideal nanocarrier particle size should be in the
range of 10 to 100 nm to avoid kidney elimination, escape the reticuloendothelial system
(RES) and provide an effective enhanced permeability and retention (EPR) effect [63,64].
A small particle size means a high surface area to volume ratio. This leads to fast drug
release due to more drugs close to the surface of the nanoparticles compared to larger
ones [65]. However, it is important to keep in mind that for inhaled drug particles to
be therapeutically useful, they should be smaller than 2 µm, which is most suitable for
deposition in the alveolar [66]. Moreover, liposome delivery through the skin is dependent
on size. Liposomes up to 600 nm penetrate through the skin easily, whereas liposomes
larger than 1000 nm remain interiorized in the stratum corneum [67]. The polydispersity
index (PDI) reflects the homogeneity and size distribution of the nano-dispersions. PDI
values of less than 0.3 indicate homogeneous, stable and well-dispersed liposomes [68].
Generally, increasing lipids concentrations can lead to increased liposomal size and PDI
values simultaneously [69].

3.2.4. Zeta Potential (ZP)

ZP evaluates the nano-dispersion stability. Neutral nanoparticles have decreased
stability and tend to aggregate [70]. A charge greater than +30 or less than −30 mV
indicates good stability due to the high electrostatic repulsions [71]. The ZP of the nano-
system affects their systemic circulation, interactions with body tissues and cell recognition.
For example, the cellular uptake of cationic liposomes is higher compared than anionic
liposomes due to the negatively charged cell membrane [72]. Moreover, charged liposomes
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can exhibit a high encapsulation efficiency for drugs with opposite charges [73]. In order to
control the ZP values to achieve maximum stability, fatty acids and hydrophilic polymers
of varying change can be incorporated into the liposome formulations [40].

3.2.5. Drug Content

Liposomal drug content can be expressed in three ways: weight per volume (w/v);
percentage encapsulation efficiency (EE%, weight of drug entrapped into the liposomes
compared to the initial amount of drug used %); and drug loading (DL%, the amount of
drug entrapped into the liposomes relative to the initial mass of the lipid used; drug-to-lipid
ratio) [62,74]. Improved EE% preserves high concentrations of the precious pharmaceutical
agent in liposomes and may reduce the manufacturing cost, thus resulting in enhanced
pharmacokinetics and improved patient compliance [75].

Several parameters may influence the drug EE, such as the lipid-to-drug ratio, nature
of phospholipids, cholesterol molar ratio and the manufacturing process parameters [76,77].
Increasing the lipid-to-drug ratio leads to an increase in the number of nano-vesicles that
are able to entrap more hydrophilic drugs in their aqueous cores [78]. Cholesterol and
unsaturated lipids create more pockets within the lipid bilayer, thereby entrapping more
hydrophobic drugs [79,80]. Freeze–thaw resizing cycles have also been proven to enhance
the EE [81]. Moreover, remote loading approaches into preformed liposomes have been
able to raise the EE of ionizable drugs compared to conventional passive loading [82,83].

3.2.6. In Vivo Stability

The hydrophobic/hydrophilic characteristics of the liposomes surface affect liposome
interaction with blood components [84]. These interactions are responsible for the in vivo
stability of liposomes. Liposomal in vivo stability causes prolonged drug release and
enhanced drug localization in the targeted tissue [42]. For example, hydrophobic nanopar-
ticles are easily cleared from blood circulation due to their high ability to bind blood
proteins [38]. Moreover, stealth liposomes, usually coated with hydrophilic polymers, show
higher in vivo stability with prolonged circulation time that leads to improved therapeutic
potential of the encapsulated drug [70].

3.2.7. Drug Release Kinetics

The kinetics of releasing drugs from liposomes is a critical parameter for liposome
formulation design and considered a key factor to accomplish optimal efficacy and to
minimize drug toxicity [85]. The optimal therapeutic activity of the drug can be achieved
when the whole drug delivery system enters the target cells via endocytosis or the drug
is released at the proper rate at the site of action for enough time [86]. Furthermore, the
liposomes surface can be functionalized with targeting ligands for active drug targeting [87].
These targeting ligands can selectively bind to certain receptors or biomarkers that are over-
expressed on cancerous or diseased tissues. These ligands could be antibodies, peptides,
oligonucleotides, small carbohydrates, or small organic molecules [88].

Triggered drug release from liposomes could be achieved by incorporating sensitive
excipients within liposome structures [89]. These excipients produce a liposomal desta-
bilizing effect upon exposure to specific stimuli, such as light, temperature, radiation or
different pH [90,91].

3.3. Product and Process Design Space

For the effective implementation of QbD in liposomal formulation, QTPP should
be first defined, then the formulae and manufacturing processes can be selected and
designed to ensure achievement of the pre-defined QTPP. Identification of CQAs and CPPs
is achieved by an experimental design that is capable of assessing their contribution to the
CQAs [62].

DS is performed to assure a high-quality product through demonstrating a range of
process and/or formulation parameters [62,75]. DS involves the product and process DS.
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The product DS is established with the products CQAs as scopes, while the process DS is
presented as CQAs related to CPPs [92].

The DS for liposome preparation is established by understanding and controlling
the formulations, materials and manufacturing variables. Alina et al. established a DS
for lyophilized liposomes with the drug simvastatin [32]. Their DS approach was based
on both formulation factors and CPPs. Their results showed that cholesterol molar ratio,
the PEG proportion, the cryoprotectant to phospholipids amounts and the number of
extrusion cycles were designated as the most significant factors for lyophilized liposome
CQAs [32]. These parameters were proven to directly affect the QTPP, including proper
particle size, high drug entrapment, proper lyophilization process and minimum changes
in phospholipid transition temperature. This DS approach was validated and considered a
valuable approach for designing stable high-quality lyophilized liposomes [32].

This DS methodology was also applied to the prednisolone-loaded long-circulating
liposomes using the thin-film hydration-extrusion method. The selected formulation pa-
rameters were drug concentration and PEG ratio in the bilayer membrane, and the process
parameters were the number of extrusion cycles, temperature and rotation speed [33].
The same DS strategy was used to encapsulate tenofovir into liposomes with high EE [62].
Pandey et al. established a DS for chitosan-coated nanoliposomes using the ethanol injection
method as a function of drug and chitosan concentration, and the organic phase-to-aqueous
phase ratio to achieve the best design, in terms of average particle size, EE and coating
efficiency [60].

Several factors may affect CQAs in the DS strategy. For example, the co-encapsulation
of two drugs in the same liposome expands the studied attributes that are related to
both drugs which are usually independent of each other. These variations may not lead
to enhanced product quality [37]. Moreover, liposome drying process parameters are
considered major CQAs that should be involved in the DS process study to obtain long-
term stable liposomes [93]. Drying steps, such as pre-freezing, lyophilization and/or
spray drying or even the type and ratio of the used cryoprotectants should be managed to
reach a high drug content after lyophilization, maintaining the same particle size and ZP
with minimal moisture content [94]. For example, the DS for the freeze-drying process of
pravastatin-loaded long-circulating liposomes was developed as a function of the freezing
rate and the shelf temperature during the initial drying. The two processing factors were
found to have a great influence on the product’s CQAs [34].

3.4. The Control Strategy

Although liposomes have been shown to have many advantages as a stable and effec-
tive drug delivery system, they present many challenges in analytical and bioanalytical
characterization due to their distinctive preparation processes and complex physicochemi-
cal properties. According to the FDA guidelines, numerous critical quality attributes (CQAs)
have been reported that need full characterization for liposome drug products (Table 3).
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Table 3. Critical quality attributes (CQAs) needed for full liposome drug product characterization.

CQAs Measured Indicator(s) Ref.

Lipid content and composition - Total lipid assay
- Composition determination

[95–101]
[102,103]

Drug content - Assay
- Encapsulation efficiency

[99]
[104–106]
[107–109]
[110,111]

[112]

Liposome morphology, size and architecture

- Shape determination
- Lamellarity
- Average particle size and

polydispersity indices

[113–115]
[116,117]
[118,119]

Liposome surface charge - Zeta potential [120–126]

Stability

- Liposomal fusion
[127]

[122,128]
[129]

- Liposomes aggregation

- Lipid hydrolysis

Drug release - In vitro drug release [130–135]

3.4.1. Lipid Content Identification and Quantification

The quality of the ultimate product is affected by the source of lipids and also by
the nature of the lipids: synthetic, semi-synthetic or natural. Phospholipids are the major
lipid component of liposome formulations. These lipids can be identified by nuclear
magnetic resonance (NMR). 31P-NMR can differentiate phospholipid types according to
their unique 31P shifts [95]. 1H- and 13C-NMR can also be used to clarify the molecular
chemical structures of alkyl chains and lipid polar head groups. NMR analysis usually
requires expensive instruments [96]. Liquid chromatography (LC) coupled with mass
spectrometry (MS) is widely used for lipid identification and profiling [136]. MS is a
powerful tool to determine the molecular mass of lipids especially when soft ionization
approaches such as electrospray ionization (ESI) MS are used [137]. Raman spectroscopy
can be used to characterize the vibrational modes of the lipid carbon skeleton. They
are characterized by the C-C backbone vibrations (1000−1150 cm−1) and C-H stretching
(2800−2900 cm−1) [138].

Liquid chromatography techniques have been widely applied in quantitative lipid
analysis [139]. First, liposomes should be disrupted using organic solvents followed
by chromatographic separation; then, lipids can be sensed and quantified by different
detectors, including diode array ultraviolet (UV), refractive index (RI) [97], evaporative
light scattering detector (ELSD) [98] and charged aerosol detector (CAD) [99]. Singh et al.
quantified the phospholipids and cholesterol from six different liposomal preparations
using isocratic, reversed-phase liquid chromatography (RP-HPLC) with UV and ELSD
detectors [100].

Gas chromatography (GC) has also been applied for lipid analysis [102]. Lipid fatty
acids should be first converted into volatile methyl esters prior to GC analysis [140]. Recently,
supercritical fluid chromatography (SFC) has also been used for lipid analysis [103,141].

Many colorimetric assays have been stated to evaluate phospholipids. A blue-color
is produced when reacting phosphorus with molybdate. Diphenylhexatriene (DPH) is
usually used to identify bilayer membranes. Moreover, DPH fluorescence-based detection
has improved the phospholipid concentration detection limits [101]. Additionally, several



Molecules 2023, 28, 10 11 of 19

commercial kits have been designed to quantify unsaturated phospholipids based on the
sulfo-phospho-vanillin reaction [142] or based on enzymatic assay [143,144].

3.4.2. Quantification of Drug Encapsulation

Liposomes provide lipid bilayers and an aqueous core to entrap hydrophobic and/or
hydrophilic drugs, respectively. To evaluate the drug encapsulation, the unloaded drug is
first removed from the nanocarriers through ultrafiltration, ultracentrifugation, dialysis or
solid-phase extraction. The loaded or unloaded drug amount can then be quantified with
respect to the total drug amount, yielding the percent drug encapsulation [99].

RP-HPLC has shown high efficiency for both the separation and quantification of
free drugs and drug-loaded liposomes [104]. RP-HPLC connected to a UV-detector has
been used for fast quantification of doxorubicin-loaded into Doxil® with a linear correla-
tion [105,106]. Capillary electrophoresis (CE) has also been used to separate loaded drugs
into liposomes of different change [107]. Oxaliplatin-loaded, anionic PEGylated liposomes
have been purified from unloaded oxaliplatin and calculated for EE using a CE-UV de-
tector [108]. Moreover, cisplatin has also been analyzed from loaded liposomes using CE
connected to inductively coupled plasma mass spectrometry (ICP-MS) [109]. Flow-based
field-flow fractionation (FFF) has been developed to overcome the restrictions of traditional
chromatography [110,111]. Size exclusion chromatography (SEC) has also been used to
separate unloaded drugs from drug-loaded liposomes based on their size differences [112].

3.4.3. Liposomes Size and Morphology Characterization

Direct particle size and morphology can be evaluated by electron microscopy, such as
scanning or transition electron microscopy (SEM and TEM, respectively) [113]. Cryogenic
TEM (Cryo-TEM) does not require a drying process because it solidifies the aqueous
sample by rapid freezing and thus drying-related artifacts are minimal. Cryo-TEM has
been developed to provide high-resolution morphology and comprehensive structural
information about the lipid layers and encapsulation mechanisms (Figure 4) [114,145]. SEM
can penetrate the particle surfaces and is not commonly used for liposomal imaging due to
the destructive manner of sample preparation. In addition, atomic fluoresce microscopy
(AFM) has also been used to explore the three-dimensional structure of liposomes [115].
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Liposome lamellarity can be evaluated by 31P-NMR [116]. Phospholipids in unil-
amellar liposomes can be characterized by a narrow-line spectrum, whereas multilamellar
liposomes displayed wider peaks due to the restricted anisotropic molecular motions
within multiple lipid layers [117].

Dynamic light scattering (DLS) has been applied to characterize nanoparticle size
distribution. DLS has become the conventional strategy for the simple quantitative analysis
of nanoparticle size distributions [118]. DLS measures time-dependent fluctuations in the
scattered light from particles in Brownian motions. Variable sample parameters for DLS
measurements include temperature, solvent viscosity and solvent refractive index, should
all be pre-determined to precisely estimate the hydrodynamic particle size [119].



Molecules 2023, 28, 10 12 of 19

3.4.4. Nanoparticle Surface Charge (Zeta Potential, ZP)

Liposomal surface charges are usually reflected by the polar head groups of the phos-
pholipids, tertiary amines or negatively charged carboxylate functional groups. This factor
is most often expressed by the ZP [120,121]. It is an important physicochemical property
that is responsible for the strength of liposome interactions, adsorption and therefore
nanoparticle stability. ZP can be determined from the electrophoretic mobility of particles
measured by the phase analysis light scattering (PALS) or electrophoretic light scattering
(ELS) technique [122]. Significant medium properties including the phase nature, refractive
index, and viscosity, as well as temperature, all have to be pre-determined to obtain exact
measurements. ZP values outside ±30 mV maintain sufficient stable nanosuspensions [123].
The surface potential of liposomes can also be determined by several techniques including
fluorescent labeling [124], electron paramagnetic resonance [125] and the second harmonic
generation from optical analyses [126].

3.4.5. Physical and Chemical Stability

The physical and chemical stability of liposome formulations should be examined
to meet the criteria for high product quality [147]. Spectroscopic methods and DLS mea-
surements provide simple tests to measure liposome fusion and aggregation, respectively,
while liposome disruption can be determined by chromatographic methods equipped with
suitable detectors [42]. Liposomal fusion has been examined mainly using differential
scanning calorimetry (DSC) and fluorescence-based lipid mixing assays [127]. Liposome
aggregation can be envisaged by microscopic techniques and quantified by UV–Vis spec-
troscopy or DLS [128]. Lipid degradation rates can be affected by lipid composition, storage
temperature, buffers and pH. The precursor lipid classes and their hydrolyzed derivatives
can be separated and measured by several chromatographic approaches [129].

3.4.6. In Vitro Drug Release

Several in vitro release testing methods to predict the in vivo behaviors of liposome
formulations have been developed [130]. These methods can be classified into sampling
and separate (SS), dialysis membrane (DM) and continuous flow (CF) [131,132]. The SS
method involves incubating the samples in the release media, sampling and separating
the released drug from integral liposomes, usually by stand-alone ultracentrifugation or
filtration, followed by drug quantification [42,133]. Low-efficiency ultracentrifugation or
filtration separation process for submicron nanoparticles has been observed upon using
this method. DM is more common for studying the in vitro drug release of most nano-
formulations. DM approaches mainly include dialysis sac (regular or tube dialysis) and
reverse dialysis [134]. The dialysis sac keeps nano-formulations inside, attaining simultane-
ous release and separation, and then quantifying the released drug. Key factors for this
approach include the type and cut-off of the dialysis membrane, volume ratios between the
sample and release solvent, and mixing procedures [135].

3.4.7. Liposomes Safety and Toxicity

The fact that liposomes are biocompatible, biodegradable and relatively easy to fabri-
cate have led to an exponential increase in their use [148]. However, liposomes as a vehicle
for drugs might be vulnerable to safety issues related to their lipid type, charge and concen-
trations. One of the most toxic effects of liposomes is the activation of the immune system
of the patient that leads to drug sequestering in the mononuclear phagocytic system which
might influence the function of the liver and spleen [149]. Therefore, strategies to improve
the safety should be developed in the early stages of product design. Many strategies to
improve drug safety and decrease the toxicity of the nanocarriers have been developed,
such as increasing the encapsulation efficiency of drug into liposomes to decrease the lipid
concentration needed to give the patient the recommended therapeutic dose [149]. The
liposomes particle size, morphology, lipid content, charge, polydispersity and cholesterol
content are key factors in toxicity. Consequently, precise design of all these factors will
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increase the loading capacity of liposomes and decrease the toxicity [150]. Recently ap-
proved were the PEGylated and surface-engineered liposomes having a lesser effect on
the immune system. The combination of lipids with polymers should be designed and
optimized. Therefore, the type of materials used for liposomal functionalization and their
concentration should be minimized [148,151].

Finally, as the risk assessment is the backbone of the QbD process connecting all the
key elements together, the liposomal biocompatibility and toxicity should be assessed
using in vitro cell lines, ex vivo and in animals [152]. Many in vitro approaches have been
used to test nanoparticle toxicity, including liposomes such as two-dimensional monolayer
cell culture [153] and three-dimensional cell culture [154]. Additionally, ex vivo models
are valuable tests systems in which slices of complete tissue can be used similar to organ
slice cultures [155]. Finally, the most relevant evaluation is in vivo [156]. In conclusion, to
minimize liposomal toxicity, it is important to start with the safety by design approach to
ensure a low toxicity and voluble drug delivery system.

4. Conclusions and Future Perspectives

The application of QbD in pharmaceutical manufacturing has become an essential ap-
proach for the pharmaceutical industry to ensure the efficacy and safety of pharmaceutical
products. The implementation of commercial nanomedicines as drug delivery systems to
the site of action with limited systemic toxicities is an emerging concept that unfortunately,
has not reached its full potential yet. Nano-pharmaceuticals are still in the initial stages
of their development. Therefore, the implementation of QbD could create great value
and benefits. Particularly, nano-pharmaceuticals is faced with many challenges related to
structural stability and the lack of in-depth understanding of the manufacturing processes.

Liposomes are biocompatible and biodegradable drug delivery systems that have
shown important successes in their clinical use. However, there are a lot of regulatory
and technical challenges connected with the production and quality control strategies of
liposomal products. There is a wide range of variability in liposomal preparations that
include their morphology, size, fabricating materials, spatial configuration and manufactur-
ing methods. Consequently, the application of a QbD approach in developing liposomes is
critical and challenging compared to traditional dosage forms. Therefore, for the successful
development of quality liposomal products, manufacturers need to consider employing
QbD to identify and classify product attributes as well as material/process parameters
with a deeper understanding of their complex interplay using proper experimental design
and statistical analysis. QbD implementation is vital to ensure the final product attributes
and the intended therapeutic and safety profiles.
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