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Abstract: Numerous benzothiazole derivatives are used in organic synthesis, in various industrial and
consumer products, and in drugs, with a wide spectrum of biological activity. As the properties of the
benzothiazole moiety are strongly affected by the nature and position of substitutions, in this review,
covering the literature from 2016, we focus on C-2-substituted benzothiazoles, including the methods
of their synthesis, structural modification, reaction mechanisms, and possible pharmacological
activity. The synthetic approaches to these heterocycles include both traditional multistep reactions
and one-pot atom economy processes using green chemistry principles and easily available reagents.
Special attention is paid to the methods of the thiazole ring closure and chemical modification by the
introduction of pharmacophore groups.
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1. Introduction

Benzothiazole and its numerous derivatives of electron-rich aromatic heterocycles
with endocyclic sulfur and nitrogen atoms have attracted the ongoing interest of synthetic
chemists due to their unique properties [1–7]. Recently, we have reviewed modern trends
in the synthesis of biologically active and industrially important derivatives of 2-mercapto-
and 2-aminobenzothiazoles [8,9]. The benzothiazole ring is the key motif of a wide range
of biologically active compounds, including antitumor [7,10–27], antimicrobial [28–36],
antiviral [37,38], antibacterial [16,24,34,37,39,40], antifungal [13,16,28,34,35,40–42], antipar-
asitic [32,43,44], antioxidant [19,45], antidiabetic [46], immunomodulating [47], and anti-
inflammatory agents [48–50]. Some pharmacologically important C-2-substituted benzoth-
iazole derivatives, such as antidiabetic Fortress, antitumor drugs Zopolrestat and GW
608-lys 38, and antiseptic Haletazol, have found application as commercially available
drugs [3,51–53]. C-2-substituted benzothiazoles are also potential sensibilizers [54–57]
and optically active materials [58–74]. With this in mind, the present review is devoted
to the synthesis and practical application of various 2-substituted benzothiazoles, mainly
covering the last five years. Nowadays, much attention is paid to minimizing the for-
mation of toxic organic compounds by applying the methods of green chemistry. The
effectiveness of different reactions can be increased by the use of nanocatalysts [75–83],
silica- and nanosilica-based catalysts or oxidants [50,84–88], photocatalysts [89–91], solvent-
free reactions [50,67,92–97], and the use of ionic liquids or ecologically friendly solvents,
such as water or ethanol [98–101]. The effectiveness of reactions can be also increased by
microwave [24,39,50,102] or visible light assistance [17,18,41,91,103,104]. However, along
with one-pot atom economy reactions, multistep processes are still widely used for the
synthesis of C-2-substituted benzothiazoles. Nowadays, in the design of new drugs, the
concept of molecular hybridization is actively used. This concept means combining two
or more moieties of different biologically active compounds, each of which is known to
possess pharmacological activity, in new hybrid molecules, resulting in the enhancement
of biological effects and overcoming drug resistance [10–12,17–19,22,23,32–34,46,105,106].
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Below, the syntheses of the C-2-substituted benzothiazoles are classified according to the
methods of their formation and functionalization.

2. Intramolecular Formation of the C-2-Substituted Benzothiazole Ring

Benzothiazoles 1a–y with alkyl, aryl and hetaryl substituents in position 2 of the ring
were prepared in moderate to good yields by a metal-free atom-economic procedure [107].
The cascade process and the R3 group transfer were initiated by di(t-butyl)peroxide (DTBP)
in fluorobenzene. The reaction started with the homolytic fission of DTBP upon heating
to give t-butoxy radical, which suffered β-scission to give methyl radical. The proposed
mechanism is presented in Scheme 1.
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Scheme 1. DTBP-promoted formation of benzothiazoles 1a–y from ortho-isocyanoaryl thioethers.

The copper NHC complex-catalyzed intramolecular S-arylation of various
2-halogenothioanilides was investigated as a route to 2-arylbenzothiazoles 2a–f [108]
(Scheme 2). Good yields were obtained both for electron donor and electron acceptor sub-
stituents in the aryl rings. The mechanism, including two-electron Cu(I)/Cu(III) catalytic
cycles with the intramolecular cyclization of 2-halogenothioanilides to 2-arylbenzothiazoles,
was proposed.
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3. Intermolecular Formation of the C-2-Substituted Benzothiazole Ring

There are many protocols for the design of a benzothiazole ring based on the transition
metal catalysis or metal-free syntheses using one-pot processes carried out in the absence of
a solvent or in “green” solvents. Thus, the cascade radical cyclization of ortho-isocyanoaryl
thioethers with organoboric acids promoted by Mn(acac)3, FeCl2, CuCl2 or benzoic per-
oxyanhydride (BPO) led to various C-2-substituted benzothiazoles 3a–r in 47–89% yield
(Scheme 3); the reaction successfully occurred in toluene, fluorobenzene, or ether [109]. The
stepwise radical mechanism is similar to that in Scheme 1.
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Scheme 3. Metal salt-catalyzed synthesis of benzothiazoles 3a–r from ortho-isocyanoaryl thioethers
and organoboric acids.

The alternative visible light-induced, metal-free and oxidant-free cyclization of ortho-
isocyanoaryl thioethers with ethers provides an efficient route to benzothiazoles functional-
ized with ether groups 4a–w (Scheme 4). As a photocatalyst, 1,2,3,5-tetrakis-(carbazol-9-yl)-
4,6-dicyanobenzene (4CzIPN) was used [41]. A similar stepwise radical mechanism was
triggered by the excitation of the photocatalyst to 4CzIPN and the single-electron transfer
from the ether on 4CzIPN to give α-oxy radical, which reacts with isocyanaryl to form the
imidoyl radical. Finally, the intermolecular cyclization of the latter resulted in the formation
of the target product and the elimination of the methyl radical (Scheme 4).
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The synthesis of 2-substituted benzothiazoles 5a–z from o-iodoarylisothiocyanates and
a series of methylene active compounds mostly in quantitative yield has been reported [110].
The reaction is transition metal-free and proceeds at room temperature in the presence of
sodium hydride by the formation of an intramolecular C–S bond. The authors proposed
the SRN1 mechanism with the formation of radical intermediates (Scheme 5). Sodium
hydride reacts with the active methylene compound to give carbanion, which adds to the
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isothiocyanate group to form the thioamide intermediate (A). Under alkaline conditions,
the latter is transformed to the conjugate base (B), in which a single electron is transferred to
the aryl group with the formation of the radical-anion intermediate (C). The latter expels the
iodide ion, resulting in biradical intermediates (D) which, in turn, undergo intramolecular
recombination to the target products (Scheme 5).
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Scheme 5. NaH-promoted cyclization of o-iodoarylisothiocyanates with methylene active compounds
to C-2-substituted benzothiazoles 5a–z.

Condensation of substituted anilines with benzoyl chlorides with subsequent thionyla-
tion with the Lawesson reagent (2,4-bis(4-anisyl)-1,3,2,4-dithiaphosphetane-2,4-disulfide) and
Yacobsen cyclization of thioanilides under the action of alkaline solution of K3Fe(CN)6 affords
4-nitrophenyl benzothiazoles 6a–f. The latter were reduced with SnCl2 to the corresponding
4-aminophenyl benzothiazoles 7a–f in 75–80% yield (Scheme 6) [12]. The condensation of
compounds 7a–f with aromatic ethynyl ketones in ethanol affords arylaminobenzothiazole-
arylpropenones hybrids 8a–r in high yield. The authors demonstrated cytotoxic activity of
the obtained products.

Fluorinated or perfluoroalkylated 2-methylbenzothiazoles 9a–h and 10a–h were syn-
thesized from fluoro- or perfluoroalkylanilines in three steps: acylation of the amino group,
transformation of the carbonyl group to thiocarbonyl, and catalyzed cyclization (Yacob-
sen reaction). The obtained 2-methylbenzothiazoles 9a–h gave benzothiazolium tosylates
10a–h by heating with methyl tosylate (Scheme 7) [43].
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Tosylate salts 10a–h have been used as building blocks for the design of fluorinated
rhodacyanines 11a–q, which demonstrated high antileishmanial activity (Scheme 8) [43].
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The reaction of anilines with sulfinylbis[(2,4-dihydroxyphenyl)methanethione] gives
benzothiazoles 12a–c a 2,4-dihydroxyphenyl substituent in position 2 of the benzothiazole
ring (Scheme 9). The reaction starts with electrophilic substitution and the HF or HCl
elimination from the formed thioamide. The perfluorinated product has shown notable
activity against human cancer cells [13].
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Scheme 9. Benzothiazoles 12a–c from aniline and sulfinylbis(2,4-dihydroxyphenyl) methanethione.

A series of new “head-to-head” aniline-based derivatives of bis-benzothiazole were
obtained and their antiproliferative activity was assessed [14]. In the presence of Br2,
benzidine reacts with potassium thiocyanate via cyclization to bis(benzothiazole)diamine.
Its hydrolysis with KOH leads to the key intermediate, 3,3’-bis(mercapto)benzidine. The
latter reacts with p-substituted benzaldehydes to give bis-substituted benzothiazoles 13a–j
(Scheme 10). The products with electron-donor substituents in the benzene ring are less
toxic and more effective.
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Scheme 10. Synthesis of symmetrical bis-benzothiazoles 13a–j from benzidine.

DMSO acts both as the solvent and the oxidant in the metal-free ecologically safe
synthesis of C-2-substituted benzothiazoles 14a–g and naphtho [2,1-d]thiazoles 15a–z from
N-substituted arylamines and elemental sulfur (Scheme 11) [111]. The advantages of
the method are the use of easily accessible anilines, a variety of 1 and 2-naphthylamines
and 2-anthranylamine, and tolerance to a wide range of functional groups. 1,3 and 1,4-
bisnaphtho [2,1-d]thiazoles linked by the benzene bridge have also been synthesized.
The electron-donating groups in the aniline fragment notably increase the yield of the
target products. The proposed mechanism is shown in Scheme 11, using the example of
naphthylamine. First, amine is oxidized by DMSO to imine (A). The electrophilic attack of
elemental sulfur Sn to the ortho-position of imine (A) gives intermediate (B). The elimination
of sulfur Sn-1 and the proton results in the imine thiolate (C), which undergoes nucleophilic
intramolecular cyclization to thiazoline (D). Finally, oxidative aromatization of the latter
gives rise to the target annelated products 15.
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Scheme 11. Metal-free synthesis of benzothiazoles 14a–g and 15a–z from N-substituted arylamines
and elemental sulfur.

Most reactions of intermolecular formation of the C-2-substituted benzothiazole ring
are based on the use of readily accessible 2-aminothiophenols and green chemistry prin-
ciples. An example is the reaction of direct oxidative condensation of aminothiophe-
nols and aliphatic, heterocyclic or aromatic alcohols to benzothiazoles 16a–m with dif-
ferent substituents upon irradiation with visible light in the presence of a photocatalyst
(Scheme 12) [91]. The process is scalable and economic; the yield of the products depends on
the electronic and steric effects of the alcohol molecule. The reaction mechanism includes the
oxidation of alcohols to aldehydes, the condensation of the latter with ortho-aminophenols
to imine/benzothiazolines, and their oxidation to 2-substituted benzothiazoles.
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Another example is the green synthesis of benzothiazoles 17a–t by the condensa-
tion of 2-aminothiophenol with various aldehydes in the presence of heterogeneous cat-
alysts. As such, SnP2O7 prepared from monoammonium phosphate and SnCl2 solution,
or Sm(NO3)3·6H2O applied on nanosized silica gel, were used. As solvents, ethanol or
methanol were employed [85] (Scheme 13, upper reaction). The catalysts can be recycled
five times without notable loss of the catalytic activity. Benzaldehydes with electron ac-
ceptor or electron donor groups, as well as heterocyclic aldehydes, readily entered the
reaction with 2-aminothiophenol (yields: 85–96%); lower yields (68–73%) were obtained
for aliphatic aldehydes. However, with microwave assistance, the yield of the reaction
of 2-aminothiophenol with aliphatic aldehydes may reach 98%. The reaction was carried
out without solvent in the presence of charcoal and silica gel (Scheme 13, bottom reac-
tion) [50]. Microwave assistance in the presence of catalytic amounts of Amberlite IR-120
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resin also allowed the authors to obtain a large series of aryl- and hetarylbenzothiazoles
18a–g containing different functional groups from aldehydes and 2-aminothiophenol [24].
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Scheme 13. Synthesis of benzothiazoles 17a–t and 18a–g from 2-aminothiophenol and aldehydes by
the use of heterogeneous catalysts or with microwave assistance.

In other ecologically friendly syntheses of C-2-substituted benzothiazoles from aminoth-
iophenols, cheap water-soluble urea nitrate [35], ionic liquid with the sulfonate anion group
playing the role of the heterogeneous catalyst and the solvent (BAIL GEL) [100], or a bio-
catalyst in the form of a natural carrier of calcined limpet shells coated with ZnCl2 were
used [112].

A simple and efficient synthesis of 2-alkylbenzothiazoles 19a–g was performed by a
two-step reaction including the condensation of 2-aminothiophenol with aliphatic alde-
hydes in the presence of molecular sieves 4Å followed by the oxidation of the formed
2-alkyl-2,3-dihydrobenzo[d]thiazoles with pyridinium chlorochromate (PCC) on silica gel
(Scheme 14) [84].
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Scheme 14. Synthesis of benzothiazoles 19a–g from 2-aminothiophenol and aliphatic aldehydes in
the presence of molecular sieves.

Distinct from aldehydes, ketones react with 2-aminothiophenol via their active methy-
lene group, as proven by the carbonyl group remaining intact in the products. Thus, a
series of aromatic 2-acylbenzothiazoles 20a–k was obtained from 2-aminothiophenol, in
addition to aromatic or heteroaromatic ketones by reflux in ethanol with CuBr2 as the oxi-
dant (Scheme 15) [101]. Apparently, the reaction proceeds with N-nucleophilic substitution
in α-bromoketone generated from the ketone and CuBr2. The formed α-aminoketone is
further brominated by CuBr2 and cyclized by the nucleophilic attack of the thiol group on
the α-carbon atom with the elimination of HBr and the closing of the ring, as shown in
Scheme 15. In the final step, dehydrogenation with a reduction of CuBr2 to CuBr gives the
target 2-acylbenzothiazoles 20a–k.
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Scheme 15. The synthesis and possible mechanism of formation of 2-acylbenzothiazoles 20a–k from
2-aminothiophenol and ketones in ethanol.

For the synthesis of new benzothiazole-based hemicyanine sensitizers for solar cells,
the ring closure was performed by the reaction of 2-aminothiophenol with isopropyl
methyl ketone in the presence of acetic anhydride. Then, 2-methylbenzothiazole formed
in a practically quantitative yield reacted with 1,2-oxathiane 2,2-dioxide to give the
corresponding sulfonates and, finally, by the reaction with dimethylaminobenzalde-
hyde or 3,4-dihydroxycyclobut-3-ene-1,2-dione, new sensitizers 21 and 22 were formed
(Scheme 16) [56,57].
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Scheme 16. Synthesis of benzothiazole-based hemicyanine sensitizers 21 and 22.

Several groups have developed the synthesis of C-2-substituted benzothiazoles 23a–c
from 2-aminothiophenols and β-diketones by the use of effective, recycled, cheap and
ecologically safe catalysts, such as the montmorillonite clay KSF [113], long-chain ionic
liquids [114], sodium dichloroiodate [115], or the Zr-based organometallic catalyst MOF-
808 [116]. The mechanism given in Scheme 17 is an example of condensation with the
participation of montmorillonite clay [113]. The reaction includes keto-enol tautomerization,
the formation of enaminoketone, its cyclization, and the elimination of the enolate. The
catalyst is easily separated by simple filtration.
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The reaction of the acylation of 2-aminothiophenol with acetic acid by the action of
direct concentrated solar radiation on heating in the presence of choline chloride has been
studied. The yield of product 24a was 60% (Scheme 18, upper route) [117]. The authors
note the chemoselectivity of the process of intramolecular acylation. Choline chloride forms
hydrogen bonds with the carbonyl oxygen, thus activating the reagent; moreover, it acts as
a phase-transfer catalyst and activates the aniline moiety, facilitating the nucleophilic attack
and the formation of the intermediate N-acylated product. The method is a good example
of green synthesis, as it is metal-free, oxidant-free, and uses choline chloride, which is an
inexpensive, biodegradable and recycled catalyst which can be used in water medium.

Molecules 2022, 27, x FOR PEER REVIEW 10 of 40 
 

 

tautomerization, the formation of enaminoketone, its cyclization, and the elimination of 
the enolate. The catalyst is easily separated by simple filtration.  

 
Scheme 17. Formation of benzothiazoles 23a–c from 2-aminothiophenols and β-diketones. 

The reaction of the acylation of 2-aminothiophenol with acetic acid by the action of 
direct concentrated solar radiation on heating in the presence of choline chloride has been 
studied. The yield of product 24a was 60% (Scheme 18, upper route) [117]. The authors 
note the chemoselectivity of the process of intramolecular acylation. Choline chloride 
forms hydrogen bonds with the carbonyl oxygen, thus activating the reagent; moreover, 
it acts as a phase-transfer catalyst and activates the aniline moiety, facilitating the nucleo-
philic attack and the formation of the intermediate N-acylated product. The method is a 
good example of green synthesis, as it is metal-free, oxidant-free, and uses choline chlo-
ride, which is an inexpensive, biodegradable and recycled catalyst which can be used in 
water medium. 

A similar approach to 2-methylbenzothiazole 24a from aminothiophenol and malo-
nic acid was described [118]. The method is simple, scalable, and gives only small amounts 
of by-products (Scheme 18, bottom route). 

 
Scheme 18. Synthesis of 2-methylbenzothiazole from 2-aminothiophenol and acetic or malonic acid. 

The yields of compound 24a up to 95% were obtained when using such catalysts as 
nanoporous TiO2 modified with bis-3-(trimethoxysilylpropyl)ammonium hydrosulfate 
(TiO2-[bip]-NH2HSO4) [95], a polymer-based solid acidic catalyst [PVP-SO3H]HSO4 [96], 
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A similar approach to 2-methylbenzothiazole 24a from aminothiophenol and malonic
acid was described [118]. The method is simple, scalable, and gives only small amounts of
by-products (Scheme 18, bottom route).

The yields of compound 24a up to 95% were obtained when using such catalysts
as nanoporous TiO2 modified with bis-3-(trimethoxysilylpropyl)ammonium hydrosulfate
(TiO2-[bip]-NH2HSO4) [95], a polymer-based solid acidic catalyst [PVP-SO3H]HSO4 [96], or
a nanocatalyst on mesoporous silica containing bridge groups of N-sulfonic acid (SA-PMO) [97].
All reactions were carried out under mild conditions and without solvent.

A simple one-pot synthesis of 2-substituted benzothiazoles 25a–k by the reaction of
acid chlorides or anhydrides with 2-aminothiophenol in the presence of a basic hetero-
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geneous catalyst KF·Al2O3 was proposed (Scheme 19). The reaction proceeded under
mild conditions in high yields, and the catalyst did not lose its activity after 10 times of
recycling. No by-products were detected, and the target products were isolated by simple
filtration [119].
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A convenient route to 2-organyl benzothiazoles 26a–k from 2-aminothiophenols and
the derivatives of dimethylformamide in moderate to high yields without the use of toxic
solvents has been reported [92]. The reaction performed in the presence of imidazolium
chloride was shown to be sensitive to temperature: lowering the temperature by 20 ◦C
decreased the yield by six times. The authors assume that the reaction was initiated by
the activation of DMF derivatives with imidazolium chloride leading to the intermediate
tetrahedral compound (A). Its decomposition resulted in the formation of the intermediate
protonated N-acylimidazole (B), which launched a series of transformations of the substrate
resulting in cyclization (Scheme 20).
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Scheme 20. Benzothiazoles 26a–k from aminothiophenols and dimethylformamide derivatives.

Non-catalyzed cyclocondensation of 2-aminothiophenol with 4-methylbenzaldehyde in
DMSO at 190 ◦C affords 2-(4-tolyl)benzothiazole. The latter undergoes a sequence of trans-
formations leading to dendrimers with terminal benzothiazole groups 27a–c (Scheme 21).
Similar reactions were performed with 4-methylcinnamic acid. Photophysical investigation
of the obtained dendrimers showed a possibility of their use as additives to sensitized dyes
in solar cells [54].
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Scheme 21. Synthesis of dendrimers with terminal benzothiazole groups 27a–c.

Now, let us turn to the light-induced syntheses of C-2-substituted benzothiazoles. The
method of the synthesis of 2-organylbenzothiazoles 28a–s was developed based on the
photooxidative cross-coupling of 2-aminothiophenols with α-oxocarboxylic acids under
the action of blue UV irradiation in the presence of H2O2 (Scheme 22). The key step of
the radical mechanism of the reaction is the formation of the donor acceptor complex
between the reagents. Subsequent decarboxylation and intramolecular cyclization of the
intermediate adducts afford the target products. α-Ketoacids and 2-aminothiophenols with
various functional groups react readily at room temperature in moderate to good yields
without the use of photooxidative or metal-based catalysts [103].
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Visible light-induced cascade radical cyclization was performed for the synthesis of
benzothiazoles possessing CF2/CF3 substituents in the 2-position, 29a–k and 30a–k, in good
yield (Scheme 23). The use of Na2CO3 as a reducing agent facilitated mild fluoroalkylation [90].
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The visible light-induced reaction of 2-aminothiophenols with aldehydes was pro-
posed as an economic and safe route to a wide series of benzothiazoles, 31, affording
the target products in good yields in the absence of transition metal catalysts or other
additives (Scheme 24) [104]. The authors proposed a radical mechanism via diaryldisulfide
intermediates.
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Scheme 24. Synthesis of benzothiazoles 31 via irradiation of 2-aminothiophenols with aldehydes.

A series of benzothiazolamides, 32a–l, possessing antimicrobial and antifungal ac-
tivity was prepared in high yields via the cyclocondensation of 2-aminothiophenol with
diethyl oxalate, the hydrolysis of the formed ethyl benzothiazole-2-carboxylate, and amida-
tion with the amides of 4-nitrophenylalanine in the presence of HATU (hexafluorophos-
phate azabenzotriazole tetramethyl uronium) and DIPEA (diisopropylethylamine) in DMF
(Scheme 25) [28].
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Scheme 25. Synthesis of benzothiazolamides 32a–l possessing antimicrobial and antifungal activity.

Cyclization of 2-aminothiophenol with acetyl chloride affords 2-methylaminobenzothiazole,
which, when treated with bromoacetic acid, gives 3-carboxymethyl-2-methylbenzothiazolium
bromide. The latter enters condensation with aldehydes in acetonitrile in the presence of
piperidine as a base to give new chromophores 33a–e containing the benzothiazole moiety
and alkyl groups of different chain lengths (Scheme 26). The investigation of photoelectric
properties showed that the efficiency of the power transformation for all sensitizers 33a–e
increased with the length of the carbon chain [55].
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2-Alkyl- and arylsubstituted benzothiazoles 34a–o were synthesized by the solvent-
free and metal-catalyst-free reaction of 2-aminothiophenols and N-organylthioamides in
the presence of CBr4 (Scheme 27). The reaction includes the activation of thioamide by
the formation of the intermediate with the S–Br bond between the thioamide sulfur atom
and CBr4. The activated thioamide molecule attacks aminothiophenol, and the reaction
is completed by intramolecular cyclization and the formation of the target products and
N-methylaniline, and the regeneration of the catalyst from H2S Br–CBr3. The yields for the
aliphatic derivatives were 68–93%; for aromatic, 62–81% [93].
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Disulfides can also be used as starting materials for the synthesis of C-2-substituted
benzothiazoles. Thus, 2-alkyl and 2-aryl(hetaryl)benzothiazoles 35a–k have been prepared
by the oxidative coupling of (2-aminoaryl)disulfides and primary alcohols in the presence of
initiator DTBP (Scheme 28) [120]. The yields decreased with the steric volume of substituent
R2 in the molecule of the alcohol. The highest yields were obtained for ethanol and benzyl
alcohol. No reaction occurred with methanol or isopropanol. The process was initiated
by the decomposition of DTBP on heating to t-BuO radicals, which oxidized the alcohol
molecule. The stability of the formed radical plays a decisive role in, e.g., methanol forming
an unstable primary radical. On the other hand, only primary alcohols can be used because
two hydrogens in the α-position are necessary for radical oxidation.
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Ecologically friendly, NaSH-promoted condensation of bis(2-aminophenyl)disulfides
and aryl- and hetaryl aldehydes in polyethylene glycol with low-energy microwave assis-
tance allowed to obtain 2-substituted benzothiazoles 36a–q in good yield (Scheme 29) [39].
The method is applicable to benzaldehydes with both electron donor and electron acceptor
groups. The presence of NaSH facilitates the fast reduction of disulfides to aminothio-
phenols. The latter react with benzaldehydes affording the corresponding Schiff bases.
Intramolecular oxidative cyclization accomplishes this process.
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α-Ketoacids react with 2,2’-disulfanediyldianilines in the presence of Na2S2O5 via
condensation with the amino groups and subsequent cyclization by the nucleophilic addi-
tion of sulfur to the C=N bond (Scheme 30) [121]. The intermediate disulfides (A) suffer
the S–S bond splitting and decarboxylation finally affords C-2-substituted benzothiazoles
37a–p in moderate to excellent yields. The highest yields in the experiment were obtained
for electron-withdrawing substituents in the aromatic ring of α-ketoacid. The reaction
is metal-free and proceeds with the evolution of ecologically safe CO2. The presence of
Na2S2O5 is required for complete conversion and for obtaining maximal yields of the
target products.
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Very recently, the reaction of ortho-haloanilides with alkali metal sulfides was re-
ported [122]. The reaction proceeds upon heating in DMF in the presence of heterogeneous
catalyst MCM-41-NHC-CuI via the CuI-catalyzed substitution of halogen by sulfur, and
cyclization with dehydration and regeneration of the catalyst (Scheme 31). A series of
C-2-substituted benzothiazoles 38 were obtained in good yields.
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C-2-substituted benzothiazoles can also be prepared by different one-pot multicompo-
nent reactions. Thus, the effective three-component reaction of redox cyclization allowed
the authors to obtain a series of 2-arylbenzothiazoles 39 [123,124]. The reaction was easy
to handle, catalyzed by cheap copper acetate, tolerated a wide range of functional groups,
was scalable, and used readily available reagents: haloanilines, stable non-toxic arylacetic
acids or benzyl chlorides, and elemental sulfur (Scheme 32). The yields varied from good to
excellent. The key step both in the reaction with arylacetic acids and with benzyl chlorides
is the copper-catalyzed formation of diarylsulfides.
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An effective and ecologically friendly methodology has been described for the syn-
thesis of C-2-substituted benzothiazoles 40a–l and 41a–c (Scheme 33) [87]. The one-pot
three-component reaction of 2-iodoaniline, aryl- or hetaryl aldehydes and thiourea was
catalyzed by ferromagnetic catalyst Cu(0)–Fe3O4@SiO2/NH2cel and was carried out with
water as the solvent. The catalyst was easily retrieved with a magnet. A large number of
products were obtained in good yields, and the electronic effects in the substituents did not
affect the course of the reaction.

The alternative metal-free reaction of anilines, elemental sulfur and ethers in the
presence of TBHP and KI gives rise to 2-organylbenzothiazoles 42a–r (Scheme 34) [125].
The nature and position of the substituents in the aniline moiety have no substantial effect
on the yield of the target products. The reaction with cyclic ethers proceeds with ring
opening leading to heterocyclic alcohols 43a–c in good yields.
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The cyclization of anilines is assumed to be initiated by the selective splitting of the
C(sp3)–H bond in ethers in the presence of TBHP and KI. As a rule, the first step of reactions
of this type is the formation of a radical, (here, t-BuO·). The latter is formed by the reaction
of TBHP with KI.

Similar one-pot reactions leading to 2-hetarylbenzothiazoles from anilines, elemental
sulfur and 2-methylquinolines or benzaldehydes have been described [126,127].

A three-component reaction of 2-aminothiophenols, oxalyl chloride and thiols in the
presence of n-tetrabutylammonium iodide (TBAI) allowed the authors to obtain a wide
series of S-alkyl- and arylbenzothiazol-2-carbothioates 44 (Scheme 35) [30]. It was assumed
that TBAI reacted with thiol to give thiolate ion, which attacked oxalyl chloride with
the formation of the thioether intermediate entering TBAI-assisted condensation with
2-aminothiophenol to give the target products in 56–80% yields. The investigation of
biological activity showed antimicrobial activity and low toxicity of the products.
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The metal-free assembly of C-2-substituted benzothiazoles 45a–g, 46a–f or 47a–l
based on the reaction of arylamines, elemental sulfur and styrenes or arylacetylenes in
N-methylpyrrolidin-2-one (NMP) has been reported (Scheme 36) [128]. The C–S bond
was formed by direct thiylation of the C–H bond in aromatic amine with elemental sulfur,
acting both as the source of sulfur and the oxidant. The addition of NH4I increased the
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yield, which was also affected by the nature and position of substituents in the phenyl ring.
A possible mechanism for the formation of the C-2-substituted benzothiazoles is given in
Scheme 36, using the example of aniline with sulfur and styrene. Aniline reacts with sulfur
to give adduct (A), which further reacts with styrene to give polysulfide (B). The latter
adds another aniline molecule leading to thioamide (C). The S–S bond in the latter is split
to form thioamide (D) which, after oxidative cyclization, affords the final product.
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Later, the strategy of a highly atom economical Cu(II)-catalyzed assembly of benzoth-
iazoles from 2-iodoanilines, alkenes and elemental sulfur—avoiding the use of ecologically
undesirable thiophenols—was developed by another group [129].

4. Synthesis of C-2-Substituted Benzothiazoles via the Introduction of Substituents at
the 2-Position

A particular class of reactions is the functionalization of the already existing benzoth-
iazole motif at the 2-position. This approach has already led to the synthesis of a large
number of compounds including those possessing different pharmacological activity. For
example, benzothiazoles are alkylated with acetonitrile at the 2-position in the presence
of lithium t-butoxide and dioxane as a cosolvent to give 2-methylbenzothiazoles 48a–e
(Scheme 37) [130].

A simple approach to 2-arylbenzothiazoles 49a–i based on the coupling reaction
between benzothiazole and arylsulfamates was proposed [131]. The reaction proceeds
in the presence of a catalyst and cocatalyst with nickel bromide and 1,10-phenanthroline
monohydrate (Scheme 38).
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Scheme 38. Synthesis of 2-arylbenzothiazoles 49a–i.

A sequence of reactions including the acylation of benzothiazole and the amidoalkylation
of indole at the 3-position with N-acylbenzothiazolium intermediate and oxidation of the
formed products 50a–e with o-chloroanil leading to benzocamalexin 51 (Scheme 39) [132,133].
The latter is the benzo-analogue of the natural plant-produced antimicrobial substance
phytoalexin inhibiting the growth of parasites. The method is advantageous over other
methods of heteroaromatic ring coupling, as it does not require expensive catalysts of air-
and moisture-sensitive organometallic reagents, results in high yields, and is scalable.
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Scheme 39. Consecutive synthesis of C-2-substituted benzothiazoles 50a–e and benzocamalexin 51.

The chemoselective alkylation/arylation of benzothiazoles with aldehydes and benzyl
alcohols in the presence of a heterogeneous nanocomposite catalyst and oxidant with
graphene oxide–Fe3O4 in polyethylene glycol (Scheme 40) affords 2-alkyl(aryl)-substituted
benzothiazole derivatives 52a–u and 53a–g in moderate to excellent yields [134]. The
advantages of the method are the absence of noble metals, toxic solvents, easy product
isolation, and the possibility of reusing the catalyst without the loss of catalytic activity.
The reaction proceeds with the thiazole ring opening and the condensation of the formed
aminothiophenol with aldehyde. Then, the formed imine (A) undergoes intramolecular
cyclization with the formation of 2-substituted thiazoline (B) and aromatization of the latter
by the action of oxidant DIAD (diisopropyl azodicarboxylate).

A practical green synthesis of 6-substituted 2-(2-hydroxy(methoxy)phenyl)benzothiazoles
54a–f, including mesylate salts 55a–f, was elaborated (Scheme 41) [15]. The reaction was
catalyst-free and used the ecologically safe and cheap solvents of glycerol and acetic acid.
The optimization of the reaction conditions, solvents, and the reagents allowed the authors
to carry out the reaction with compounds with hydrolytically unstable substituents. The
relationship between the structure and biological activity for new compounds was studied,
such as 2-hydroxyphenyl- and 2-methoxyphenylbenzothiazole with different substituents
in the C-6 position of the benzothiazole fragment. The presence of the nitro or cyano group
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in the C-6 position of the benzothiazole ring was found to increase the antiproliferative
activity. The replacement of the cationic amidine fragment in the C-6 position by the
ammonium group led to the increase in antitumor activity against other types of tumor cells.
The presence of a hydroxy group in the 2-aryl fragment of 2-arylbenzothiazole molecule
considerably improved the antitumor selectivity without affecting the surrounding tissues.
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A practical green synthesis of 6-substituted 2-(2-hydroxy(methoxy)phenyl)benzothi-
azoles 54a–f, including mesylate salts 55a–f, was elaborated (Scheme 41) [15]. The reaction 
was catalyst-free and used the ecologically safe and cheap solvents of glycerol and acetic 
acid. The optimization of the reaction conditions, solvents, and the reagents allowed the 
authors to carry out the reaction with compounds with hydrolytically unstable substitu-
ents. The relationship between the structure and biological activity for new compounds 
was studied, such as 2-hydroxyphenyl- and 2-methoxyphenylbenzothiazole with differ-
ent substituents in the C-6 position of the benzothiazole fragment. The presence of the 
nitro or cyano group in the C-6 position of the benzothiazole ring was found to increase 
the antiproliferative activity. The replacement of the cationic amidine fragment in the C-6 
position by the ammonium group led to the increase in antitumor activity against other 
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Scheme 41. Synthesis of 6-substituted 2-(2-hydroxy(methoxy)phenyl)benzothiazoles 54a–f and 55a–f.

Various acyl groups were introduced in benzothiazoles in the presence of a Fe(II)
triflate catalyst by the reaction of benzothiazole and its derivatives with cyclobutanone
oximes (Scheme 42) [135]. A wide spectrum of alkylbenzothiazoloarylketones 56a–k was
synthesized with a good selectivity and tolerance to the functional groups. The proposed
method was an alternative to the conventional Friedel–Crafts acylation, allowing the au-
thors to prepare new compounds inaccessible by other methods. The mechanism included
several steps: Fe(II)→Fe(III)-induced SET-reduction of cyclobutanone oximes leading to
iminyl radical (A) и Fe(III); ring opening in (A) to form the highly reactive cyanoalkyl
radical (B); the capture of CO to give radical (C); and the addition to benzothiazole resulting
in the radical (D). The oxidation of the latter by Fe(III) with subsequent deprotonation with
a base gives alkylhetarylketones 56a–k.
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5. Modification of Substituents in the C-2 Position of Benzothiazoles

The modification of substituents in the C-2 position is a widely used reaction; some
examples are considered below. The condensation of N-benzyl-2-methylbenzothiazolium
bromide prepared by the alkylation of 2-methylbenzothiazole with benzyl bromide and
N-ethylcarbazole dialdehyde gives rise to the formation of the carbazole–benzothiazole
hybrid fluorescent probe 57 (Scheme 43) [106]. This fluorophore showed a quick response,
in addition to high selectivity and sensitivity in the detection of SO2. Moreover, good
biocompatibility and a precise localization in the mitochondria were found.
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A large series of potentially biologically active drugs, in particular, antitumor agents,
based on benzothiazol-2-ylacetonitrile (BTA) has been described [10,11,16]. Below, some
examples of the use of this synthon and the products thereof are given. In the synthesized
hybrids, the benzothiazole fragment has different substituted heterocyclic rings in the C-2
position, such as thiazole, thiazinane, thiophene, pyrrole, thienopyrimidine, indole, furan,
pyridine, chromene, quinoline, triazoloquinoline, triazepinoquinoline, etc. The pyridine or
furan hybrids 58 or 59 are formed by the reaction of benzothiazol-2-ylacetonitrile containing
an active methylene group with 2-(2,4-dimethoxybenzylidene)malononitrile or ethyl-2-
chloro-3-oxobutanoate (Scheme 44) [10].

The reaction of BTA with carbon disulfide gives ketene acetal, which reacts with
α-chloroethyl acetate resulting in thiophenebenzothiazole 60. Hydrazinolysis of the latter
and condensation of the hydrazide with phthalic or acetic anhydride in the presence of
acetic acid results in the corresponding amides 61 and 62 in good yields. The reaction of
BTA with phenylisothiocyanate and phenacyl bromide affords the corresponding thiophene
derivative 63 (Scheme 45) [10]. Compounds 61 and 62 have shown high antitumor activity
to different cell lines.
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A similar two-step approach led to the thiazole-pyrazole 64 or -thiophene 65 hybrids
(Scheme 46) [10].
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Compound 65 was further functionalized by the reaction of cyclocondensation with
formic acid, chloroacetyl chloride, ethyl cyanoacetate, or ethylenediamine to give benzoth-
iazole thienopyrimidine 66a–c or the imidazoline derivative 67 (Scheme 47) [11]. The latter
compound, similar to compounds 61 and 62 above, has shown high antitumor activity to
different cell lines.
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The cyclization of compound 65 with Meldrum acid resulted in the formation of the
tricyclic system 68 (Scheme 48) [11].
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Scheme 48. Synthesis of hybrid molecule 68.

The polyheterocyclic compound 69 containing a tetrazole ring was obtained by the
treatment of product 60 (Scheme 45) with triethyl formate and heating in acetic acid in the
presence of sodium azide (Scheme 49) [11].

Molecules 2022, 27, x FOR PEER REVIEW 23 of 40 
 

 

 
Scheme 47. Synthesis of benzothiazole-thienopyrimidine 66a–c or thiophenoimidazoline 67 hybrids. 

The cyclization of compound 65 with Meldrum acid resulted in the formation of the 
tricyclic system 68 (Scheme 48) [11]. 

 
Scheme 48. Synthesis of hybrid molecule 68. 

The polyheterocyclic compound 69 containing a tetrazole ring was obtained by the 
treatment of product 60 (Scheme 45) with triethyl formate and heating in acetic acid in the 
presence of sodium azide (Scheme 49) [11].  

 
Scheme 49. Synthesis of polycyclic hybrid molecule 69. 

The nucleophilic addition of the amino group of compound 60 to the cyano group of 
2-(4-(4-chlorophenyl)thiazol-2-yl)acetonitrile with subsequent intramolecular cyclization 
and the elimination of ethanol leads to the formation of compound 70 with the thienopy-
rimidinone ring (Scheme 50) [11].  

 
Scheme 50. Cyclization with the pyrimidinone ring formation in 70. 

Scheme 49. Synthesis of polycyclic hybrid molecule 69.

The nucleophilic addition of the amino group of compound 60 to the cyano group of
2-(4-(4-chlorophenyl)thiazol-2-yl)acetonitrile with subsequent intramolecular cyclization
and the elimination of ethanol leads to the formation of compound 70 with the thienopy-
rimidinone ring (Scheme 50) [11].
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The iminoquinoline derivative 71 was synthesized by the Knoevenagel reaction us-
ing bromosalicyl aldehyde as the carbonyl component and benzothiazol-2-yl acetonitrile,
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followed by intramolecular cyclization and reflux with hydrazine hydrate in ethanol
(Scheme 51) [10].
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Scheme 51. Synthesis of benzothiazole hybrid molecules 71.

The cascade multicomponent reaction of product 71 with p-chlorobenzaldehyde and
benzothiazol-2-ylacetonitrile in dioxane led to the formation of the triazepine derivative 72
(Scheme 52) [11].
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Scheme 52. Multicomponent assembly of the benzothiazole-triazepine hybrid molecule 72.

A series of biologically active compounds was obtained from 2-[3(4)-aminophenyl]ben-
zothiazoles 73 or 74 [17,18,20,29]. Thus, the reaction of (3-aminophenyl)benzothiazole 73
with ethyl acetylacetonate with the subsequent formation of the pyrazole ring by the reac-
tion with hydrazines afforded 2-benzothiazolyl pyrazole derivatives containing hydrazone
spacers 75a,b (Scheme 53) [17].
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Scheme 53. Benzothiazole–pyrazole hybrid molecules with hydrazone spacer 75a,b.

Condensation of the isomeric 4-aminophenylbenzothiazole 74 with aromatic aldehydes
or ketones in glacial acetic acid or in the presence of conc. H2SO4 leads to benzothiazoles with
the azomethine bonds 76a–p and 76q–s (Scheme 54) [18]. These Schiff bases show anticancer
activity and compounds possessing dihydroxy groups with very high inhibitive activity.

With chloroacetyl chloride, compound 74 forms 2-substituted benzothiazole with
chloroacetamide group 77 which, upon the reaction with substituted piperazines, gives
2-aryl benzothiazole derivatives 78a–o possessing anticancer activity. The reaction of 74
with propargyl bromide followed by cyclization of arylazides to the triple bond gives
products with the 1,2,3-triazole motif 79a–k in 67–91% yields (Scheme 55) [20].
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Scheme 55. Synthesis of benzothiazole hybrid molecules 78a–o and 79a–k. 

With primary and secondary amines, compound 77 reacts with the formation of a 
large library of heterocyclic benzothiazole derivatives 80a–m and 81a–о, for which anti-
cancer activity has been evaluated (Scheme 56) [21].  

Scheme 54. Synthesis of benzothiazoles 76a–p and 76q–s from 4-aminophenylbenzothiazole 74 and
aldehydes or ketones.
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With primary and secondary amines, compound 77 reacts with the formation of a 
large library of heterocyclic benzothiazole derivatives 80a–m and 81a–о, for which anti-
cancer activity has been evaluated (Scheme 56) [21].  
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With primary and secondary amines, compound 77 reacts with the formation of a large
library of heterocyclic benzothiazole derivatives 80a–m and 81a–o, for which anticancer
activity has been evaluated (Scheme 56) [21].

The synthesis of azo-linked-substituted benzothiazoles 82 and 83 in good yield by
the diazotation of 2-(5’-amino-2’-hydroxyphenyl)benzothiazole was reported [32]. Di-
azotation was performed under the usual conditions with subsequent treatment with
N,N-dibutyl-4-phenylthiazole-2-amine or 3-(diethylamino)phenol in acidic medium upon
cooling (Scheme 57). The antibacterial activity of the obtained products was investigated.

Using the reaction of the diastereoselective ketene-imine cycloaddition, sixteen new
benzothiazole β-lactam conjugates have been synthesized [33]. The reaction was performed
by the treatment of (benzothiazol-2-yl)phenols with bromoacetic acid in DMF in the pres-
ence of solid K2CO3. The subsequent reaction of the obtained oxyacetic acids with the
Schiff bases in the presence of tosyl chloride gave the target cis-β-lactams 84a–p in yields
from 60 to 90% (Scheme 58). The obtained hybrids showed good antimicrobial and anti-
malarial activity. The presence of the nitrophenyl group at the C-4 atom of the β-lactam
ring, or anisyl, tolyl, or naphthyl groups on the N-1 atom of the β-lactam ring enhances the
antimicrobial activity.
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The introduction of 2-(4-hydroxyphenyl)benzothiazole in the reaction with propargyl
bromide in the presence of a base affords 2-(4-propargyloxyphenyl)benzothiazole, which
enters cycloaddition reactions with various azides in the presence of copper fluorapatite,
leading to benzothiazole–triazole hybrid molecules 85a–t (Scheme 59) [22].
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Scheme 59. Synthesis of polyfunctional derivatives of benzothiazole 85a–t.

As mentioned above, a number of hydroxyl-derivatives of benzothiazole demonstrate
fluorescent properties. For example, the synthesis of the benzothiazole-based water-soluble
biochemosensor 86 used for the detection of intracell zinc and aluminum ions has been
described [64]. For this, 3-(benzo[d]thiazol-2-yl)-2-hydroxy-5-methylbenzaldehyde is pre-
pared by successive treatment of hydroxymethylphenylbenzothiazole with trifluoroacetic
acid and diaminomalononitrile in the presence of catalytic amounts of acetic acid in dry
ethanol (Scheme 60).
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Scheme 60. Synthesis of benzothiazole chemosensor 86 for the detection of Zn2+ and Al3+ ions.

Another green and efficient approach to luminophores is mechanochemical, solvent-
free synthesis [65]. A mixture of 2-(2-hydroxyphenyl)benzothiazole, hexamethylenete-
tramine, trifluoroacetic acid and silica gel was thoroughly grinded for 3 h. The obtained
product was purified by chromatography and grinded with benzophenone hydrazone for
0.5 h. The synthesized dye 87 (Scheme 61) can be used for the detection of Cu2+ both in
solution and in the solid phase.

The syntheses based on the hydroxyphenyl derivatives of benzothiazole were reported
as fluorescent probes 88a–c for the detection of esterase in curing various diseases [60,66],
and trace amounts of Hg2+ [67], Cu2+ and S2– ions [68] were found (Scheme 62).
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Scheme 62. Synthesis of benzothiazole fluorescent probes 88a–c.

Nitrophenyl 2-(2-hydroxyphenyl)benzothiazole derivatives with –Ar–, –Ar–C=C–
and –Ar–C≡C– linkers have been synthesized by the Suzuki, Heck, and Sonogashira
reactions, respectively (Scheme 63) [136]. The presence of the strong electron acceptor group
4-NO2C6H4 facilitates a charge transfer and affects the photophysical properties of the
molecules. It also facilitates various intermolecular interactions. In the Heck reaction, the
substrate was first acetylated with acetic anhydride, and the formed acetate was introduced
to the reaction with (E)-4-nitrostyrene to obtain the acetate-protected product. Further
deprotection under alkaline conditions gave the target product d-HBT-NO2. To investigate
the fluorescent properties of the products, they were converted to the corresponding
methoxy derivatives by the action of methyl iodide. Nitrophenyl 2-(2-anisyl)benzothiazole
89b was found to be most promising for further investigation.
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responding alcohol, which was brominated with PBr3. The bromine atom in the formed 2-
(bromomethyl)benzothiazole was replaced by pyrimidine thiol, as shown in Scheme 65. 
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Scheme 63. Synthesis of bridged benzothiazole fluorescent probes 89a–c.

The Pd(PPh3)4-catalyzed Suzuki coupling of 2-(benzothiazol-2-yl)-5-bromophenol and
commercially available carboxylic acids gave three positional isomers 90a–c (Scheme 64) [69].
The products showed strong emission in both solid and aggregated states and a low emis-
sion in solvents of different polarities.
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Scheme 64. Synthesis of isomeric benzothiazole fluorescent probes 90a–c.

Benzothiazole-2-carbaldehyde was used for the synthesis of new anti-HIV drug biotin-
BMMP 91 [37]. First, the aldehyde was quantitatively reduced with NaBH4 to the corre-
sponding alcohol, which was brominated with PBr3. The bromine atom in the formed
2-(bromomethyl)benzothiazole was replaced by pyrimidine thiol, as shown in Scheme 65.
Subsequent hydrazinolysis and the EDC-mediated conjugation of primary amine with
biotine gave the target biotine-BMMP in 96% yield.
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Scheme 66. Synthesis of benzothiazole–thieno[2,3-b]pyridine hybrid molecules 92a,b. 

2-Acetylbenzothiazole has also been used for the synthesis of thiazole-, benzothia-
zole-, and benzofuran-containing molecules, as well as bis-benzothiazole derivatives. The 
main advantage of these reactions is their easy handling and cheap starting materials 
[105]. The transformations leading finally to benzothiazoles 93a–c with ethylidenehydra-
zinyl linkers are shown in Scheme 67. The components of condensation were prepared by 
the reaction of 2-acetylbenzothiazole with thiosemicarbazide or with bromine. The subse-
quent reactions of compounds A and B gave the target hybrid molecules.  

Scheme 65. Synthesis of Biotin-BMMP 91 from benzothiazole-2-carbaldehyde.

2-Acetylbenzothiazole is often used for the synthesis of hybrid molecules. Benzothia-
zoles containing thieno[2,3-b]pyridine moieties 92a and 92b were obtained in two steps:
the bromination of 2-acetylbenzothiazole; and cyclization with mercaptonicotine nitrile
(Scheme 66) [137].
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2-Acetylbenzothiazole has also been used for the synthesis of thiazole-, benzothiazole-,
and benzofuran-containing molecules, as well as bis-benzothiazole derivatives. The main
advantage of these reactions is their easy handling and cheap starting materials [105]. The
transformations leading finally to benzothiazoles 93a–c with ethylidenehydrazinyl linkers
are shown in Scheme 67. The components of condensation were prepared by the reaction of
2-acetylbenzothiazole with thiosemicarbazide or with bromine. The subsequent reactions
of compounds A and B gave the target hybrid molecules.
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Scheme 67. Synthesis of benzothiazole hybrids 93a–c.

2-Bromacetyl benzothiazole reacts with mono- and bis-N-amino-2-mercaptotriazoles
to give hybrid molecules 94a,b and 95a–d with one or two triazolothiadiazine moieties
(Scheme 68) [105].
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Scheme 68. Synthesis of benzothiazoles with triazolothiadiazine fragments 94a,b and 95a–d.

In a similar way, 2-bromacetyl benzothiazole with bis(thiosemicarbazones) affords
hybrid molecules 96a–c linked by the aliphatic spacer via phenoxy groups (Scheme 69) [105].

Condensation of benzothiazole-2-carbohydrazide with 1H-indole-3-carbaldehydes
gives rise to the formation of N-acylhydrazone derivatives 97a–e possessing antitumor
activity (Scheme 70) [19]. The products are shown to exist as the E-diastereomers. The
method is characterized by mild conditions, high yields, and easy handling.
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A series of benzothiazole-based condensed derivatives with 1,3,4-oxadiazole frag-
ments 99a–j with pronounced biological activity were synthesized via a multistep reac-
tion sequence [23]. In the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
(EDCI) and hydroxybenzotriazole (HOBt), benzothiazole-2-carboxylic acid reacts with
4-hydroxy-3,5-dimethoxybenzohydrazide to form hydrazide, which cyclizes via thiona-
tion with Lawesson’s reagent. Esterification of the product of cyclization and subsequent
hydrazinolysis and cyclization with substituted benzoic acids afford new polyfunctional
heterocycles 99a–j (Scheme 72).
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The synthesis of highly sensitive probes for the detection of chemical warfare agents
100a,b by the reaction of diethyl chlorophosphate with benzothiazole containing iminocouma-
rine residue in the C-2 position has been reported [138]. The target products were syn-
thesized by the use of triethylamine, conc. hydrochloric acid, and organic Good’s buffers
(Scheme 73).
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The functionalization of the phenylene fragment of benzothiazole is another pos-
sibility of modification. However, we were able to find only one example of such a
transformation. A microwave-assisted regioselective three-component reaction of 2-methyl-
5-aminobenzothiazole, aromatic aldehydes and 2-hydroxy-1,4-naphthoquinone in acetic
acid afforded polycyclic condensed acridine derivatives 102a–h [102]. The sequence of
reactions included the Knoevenagel reaction, the intermolecular Michael addition with
subsequent intramolecular nucleophilic cyclization, and the reactions of dehydration and
oxidation. The MW-assisted [2+2+1] cyclization of acridinediones 101a–n with aldehydes
in the presence of ammonium acetate results in the oxazolole–thiazolole-condensed acri-
dine ensembles 102a–h (Scheme 74). The proposed procedure is simple to perform, uses
readily available reagents, provides selective modification of the acridine framework, and
is characterized by a high efficiency of bond formation.



Molecules 2022, 27, 2598 33 of 39Molecules 2022, 27, x FOR PEER REVIEW 34 of 40 
 

 

 
Scheme 74. Synthesis of annelated benzothiazole derivatives 101a–n and 102a–h. 

6. Conclusions 
In summary, the versatile range of synthetic approaches to the C-2 derivatives of 

benzothiazole developed in the last five years is indicative of the relentless interest in this 
heterocycle, which is very promising from both a synthetic and biological point of view. 
In the present review, the methods of synthesis of the title compounds were divided into: 
(i) intra- and (ii) intermolecular assembling of the benzothiazole ring, (iii) the introduction 
of substituents at the 2-position, and (iv) the functionalization of the phenylene fragment. 
Among them, those including the thiazole ring closure and the modification of substitu-
ents at the C-2 position were dominant. Along with traditional multistep synthetic meth-
ods, new ecologically friendly atom economy one-pot procedures have been developed, 
which are the basis of modern organic synthesis. For the most interesting processes, only 
tentative mechanisms are given. Recent studies in this field have allowed the discovery of 
new C-2-substituted derivatives of benzothiazole and proven them to be good candidates 
for numerous drugs with various types of biological activity. Their pharmacological and 
biological activity strongly depend on the nature and position of the substituents, both in 
the benzene ring of the benzothiazole cycle and in the heterocycles formed by the func-
tionalization of benzothiazole. The authors hope that this review will help the develop-
ment of the targeted synthesis of benzothiazoles and their analogues.  

Author Contributions: Conceptualization, L.V.Z. and N.O.Y.; writing—original draft preparation, 
L.V.Z. and N.O.Y.; writing—review and editing B.A.S.; visualization, L.V.Z. and N.O.Y.; supervi-
sion, B.A.S.; project administration, L.V.Z.. All authors have read and agreed to the published ver-
sion of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Elgemeie, G.H.; Azzam, R.A.; Osman, R.R. Recent advances in synthesis, metal complexes and biological evaluation of 2-aryl, 

2-pyridyl and 2-pyrimidylbenzothiazoles as potential chemotherapeutics. Inorg. Chim. Acta 2020, 502, 119302. 
https://doi.org/10.1016/j.ica.2019.119302. 

2. Yan, F.; Sun, J.; Zang, Y.; Sun, Z.; Zhang, H.; Wang, X. Benzothiazole applications as fluorescent probes for analyte detection. J. 
Iran. Chem. Soc. 2020, 17, 3179–3203. https://doi.org/10.1007/s13738-020-01998-9. 

3. Singh, R.; Sindhu, J.; Devi, M.; Kumar, A.; Kumar, R.; Hussain, K.; Kumar, P. Solid-Supported Materials-Based Synthesis of 2-
Substituted Benzothiazoles: Recent Developments and Sanguine Future. ChemistrySelect 2021, 6, 6388–6449. 
https://doi.org/10.1002/slct.202101368. 

Scheme 74. Synthesis of annelated benzothiazole derivatives 101a–n and 102a–h.

6. Conclusions

In summary, the versatile range of synthetic approaches to the C-2 derivatives of
benzothiazole developed in the last five years is indicative of the relentless interest in this
heterocycle, which is very promising from both a synthetic and biological point of view.
In the present review, the methods of synthesis of the title compounds were divided into:
(i) intra- and (ii) intermolecular assembling of the benzothiazole ring, (iii) the introduction
of substituents at the 2-position, and (iv) the functionalization of the phenylene fragment.
Among them, those including the thiazole ring closure and the modification of substituents
at the C-2 position were dominant. Along with traditional multistep synthetic methods,
new ecologically friendly atom economy one-pot procedures have been developed, which
are the basis of modern organic synthesis. For the most interesting processes, only tentative
mechanisms are given. Recent studies in this field have allowed the discovery of new
C-2-substituted derivatives of benzothiazole and proven them to be good candidates
for numerous drugs with various types of biological activity. Their pharmacological
and biological activity strongly depend on the nature and position of the substituents,
both in the benzene ring of the benzothiazole cycle and in the heterocycles formed by
the functionalization of benzothiazole. The authors hope that this review will help the
development of the targeted synthesis of benzothiazoles and their analogues.
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