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Abstract: β-Hydroxy sulfones are important in organic synthesis. The simplest method of β-hydroxy
sulfones synthesis is the hydrogenation of β-keto sulfones. Herein, we report the reducing properties
of alkyl aluminum compounds R3Al (R = Et, i-Bu, n-Bu, t-Bu and n-Hex); i-Bu2AlH; Et2AlCl and
EtAlCl2 in the hydrogenation of β-keto sulfones. The compounds i-Bu2AlH, i-Bu3Al and Et3Al
are the at best reducing agents of β-keto sulfones to β-hydroxy sulfones. In reactions of β-keto
sulfones with aluminum trialkyls, hydroalumination products with β-hydroxy sulfone ligands
[R2AlOC(C6H5)CH2S(O)2(p-R1C6H4]n [where n = 1,2; 2aa: R = i-Bu, R1 = CH3; 2ab: R = i-Bu, R1 = Cl;
2ba: R = Et, R1 = CH3; 2bb: R = Et, R1 = Cl] and {[Et2AlOC(C6H5)CH2S(O)2(p-ClC6H4]·Et3Al}n 3bb
were obtained. These complexes in the solid state have a dimeric structure, while in solutions, they
appear as equilibrium monomer–dimer mixtures. The hydrolysis of both the isolated 2aa, 2ab, 2ba,
2bb and 3bb and the postreaction mixtures quantitatively leads to pure racemic β-hydroxy sulfones.
Hydroalumination reaction of β-keto sulfones with alkyl aluminum compounds and subsequent
hydrolysis of the complexes is a simple and very efficient method of β-hydroxy sulfones synthesis.

Keywords: β-keto sulfones; β-hydroxy sulfones; hydroalumination; hydrogenation; alkyl
aluminum compounds

1. Introduction

β-Hydroxy sulfones are motifs for the synthesis of a wide variety of organic products.
The anions of these versatile β-hydroxy sulfones react, forming olefins by reductive elimina-
tion [1–4], vinyl sulfones by β-elimination reaction [5,6], lactones [7,8] and 2,5-disubstituted
tetrahydrofurans [9,10]. It should be noted that chiral β-hydroxy sulfones are extremely
useful building blocks for the synthesis of a variety of chiral organic compounds, e.g.,
γ-butenolides or allylic alcohols [11–13]. A number of methods for the β-hydroxy sulfones
syntheses have been reported. They can be obtained, for instance, through a regioselec-
tive opening of β-epoxy sulfones [14] and oxiranes with various catalytic systems [15,16].
However, the reduction of carbonyl group of β-keto sulfones is considered as the most
popular method of β-hydroxy sulfones synthesis. The reduction with NaBH4 without the
addition of chiral additives leads to a racemic mixture of β-hydroxy sulfones [17–20], while
enzymatic reduction and chemical enantioselective reduction of the C=O group lead to the
chiral β-hydroxy sulfones with high enantioselectivity [21–25].

In the solution of β-keto sulfones, a tautomeric equilibrium takes place that is, however,
almost completely shifted towards the ketone form (Scheme 1).
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Recently, we have found that the reaction between β-keto sulfones and t-Bu2AlH 
leads to the formation of aluminum complexes with β-hydroxy sulfone ligands, which 
indicates the reduction of β-keto sulfone to β-hydroxy sulfone by the alkyl aluminum 
compound [26]. The results of these studies inspired the development of a method for the 
β-hydroxy sulfones synthesis that uses aluminum alkyls bearing hydrogen atoms in the 
β-position of the alkyl substituents as β-keto sulfone-reducing agents. 

It should be noted that, for many decades, alkyl aluminum compounds have been 
widely used in carbonyls reduction [27–34] and alkenes and alkynes hydroalumination 
reactions [35–37]. i-Bu2AlH is commonly used in selective reduction reactions, such as the 
reduction of trioxohexaaza[3.3.3]propelane to saturated hexaazapropelane derivatives, 
regioselective transformation of the CN group to the amine or the direct reduction of 
carboxylic acid esters to aldehydes [38–40]. 

In this paper, a β-keto sulfone reduction by various alkyl aluminum compounds, 
followed by the hydrolysis of the obtained aluminum complexes to β-hydroxy sulfones, 
is presented. Despite many methods that have been previously developed for the syn-
thesis of chiral β-hydroxy sulfones, simple and efficient methods for the synthesis of ra-
cemic derivatives are still missing. We found that the efficiency of the reduction of β-keto 
sulfones to β-hydroxy sulfones depends mostly on the type of aluminum compounds, 
while the structure of β-keto sulfones affects the reduction process and the efficiency of 
β-hydroxy sulfone production to a lesser extent. Reactions of β-keto sulfones with i-Bu3Al 
and Et3Al, followed by the hydrolysis of postreaction mixtures, appear as a simple, effi-
cient and cheap method of synthesizing β-hydroxy sulfones from starting β-keto sul-
fones. During the reaction of β-keto sulfones with aluminum alkyl compounds, com-
plexes of aluminum alkyls with β-hydroxy sulfones as hydroalumination products are 
formed. The crystalline complexes were isolated and characterized by X-ray. 

2. Results and Discussion 
2.1. Hydroalumination Reaction of β-Keto Sulfones 

β-Keto sulfones 1a–1e were subjected to the reaction with alkyl aluminum com-
pounds (i-Bu3Al, i-Bu2AlH, Et3Al, n-Bu3Al, n-Hex3Al, Et2AlCl and EtAlCl2), providing 
postreaction mixtures of β-keto sulfone hydroalumination products and the appropriate 
alkyl aluminum complex supported by β-keto sulfones. The compositions of the mixtures 
depended on the type of alkyl aluminum compounds and their reducing ability, as well 
as the structure of β-keto sulfones or the reaction conditions. The five hydroalumination 
products 2aa, 2ab, 2ba, 2bb and 3bb were isolated as crystalline solids, and their struc-
tures were examined in the solid state (Scheme 2). Moreover, all postreaction mixtures 
were subjected to hydrolysis in order to determine the degree of conversion of β-keto 
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Scheme 1. An equilibrium of β-keto sulfone tautomers.

Recently, we have found that the reaction between β-keto sulfones and t-Bu2AlH
leads to the formation of aluminum complexes with β-hydroxy sulfone ligands, which
indicates the reduction of β-keto sulfone to β-hydroxy sulfone by the alkyl aluminum
compound [26]. The results of these studies inspired the development of a method for the
β-hydroxy sulfones synthesis that uses aluminum alkyls bearing hydrogen atoms in the
β-position of the alkyl substituents as β-keto sulfone-reducing agents.

It should be noted that, for many decades, alkyl aluminum compounds have been
widely used in carbonyls reduction [27–34] and alkenes and alkynes hydroalumination
reactions [35–37]. i-Bu2AlH is commonly used in selective reduction reactions, such as
the reduction of trioxohexaaza[3.3.3]propelane to saturated hexaazapropelane derivatives,
regioselective transformation of the CN group to the amine or the direct reduction of
carboxylic acid esters to aldehydes [38–40].

In this paper, a β-keto sulfone reduction by various alkyl aluminum compounds,
followed by the hydrolysis of the obtained aluminum complexes to β-hydroxy sulfones, is
presented. Despite many methods that have been previously developed for the synthesis
of chiral β-hydroxy sulfones, simple and efficient methods for the synthesis of racemic
derivatives are still missing. We found that the efficiency of the reduction of β-keto sulfones
to β-hydroxy sulfones depends mostly on the type of aluminum compounds, while the
structure of β-keto sulfones affects the reduction process and the efficiency of β-hydroxy
sulfone production to a lesser extent. Reactions of β-keto sulfones with i-Bu3Al and Et3Al,
followed by the hydrolysis of postreaction mixtures, appear as a simple, efficient and cheap
method of synthesizing β-hydroxy sulfones from starting β-keto sulfones. During the
reaction of β-keto sulfones with aluminum alkyl compounds, complexes of aluminum
alkyls with β-hydroxy sulfones as hydroalumination products are formed. The crystalline
complexes were isolated and characterized by X-ray.

2. Results and Discussion
2.1. Hydroalumination Reaction of β-Keto Sulfones

β-Keto sulfones 1a–1e were subjected to the reaction with alkyl aluminum compounds
(i-Bu3Al, i-Bu2AlH, Et3Al, n-Bu3Al, n-Hex3Al, Et2AlCl and EtAlCl2), providing postreaction
mixtures of β-keto sulfone hydroalumination products and the appropriate alkyl aluminum
complex supported by β-keto sulfones. The compositions of the mixtures depended on the
type of alkyl aluminum compounds and their reducing ability, as well as the structure of
β-keto sulfones or the reaction conditions. The five hydroalumination products 2aa, 2ab,
2ba, 2bb and 3bb were isolated as crystalline solids, and their structures were examined in
the solid state (Scheme 2). Moreover, all postreaction mixtures were subjected to hydrolysis
in order to determine the degree of conversion of β-keto sulfones to β-hydroxy sulfones.

The treatment of 2-((4-methylphenyl)sulfonyl)-1-phenylethanol (1a) or 2-((4-chlorophe-
nyl)sulfonyl)-1-phenylethanol (1b) with the one equivalent of i-Bu3Al or i-Bu2AlH in
CH2Cl2, followed by crystallization from n-C6H14/CH2Cl2 solutions, afforded the crys-
talline β-keto sulfone hydroalumination products 2aa and 2ab (Scheme 2). Reactions of 1a
and 1b with Et3Al in a molar ratio of 1:1 led to the hydroalumination products 2ba and 2bb.
When the β-keto sulfones:Et3Al molar ratio was changed to 1:2, in the obtained compounds,
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an additional Et3Al molecule was coordinated to SO2 oxygen atoms. Compound 3bb was
crystallized and characterized (Scheme 2).
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Scheme 2. Synthesis of β-hydroxy sulfones 4a–4e by hydroalumination of β-keto sulfones and
hydrolysis of the compounds 2aa, 2ab, 2ba, 2bb and 3bb or hydrolysis of postreaction mixtures of
the reactions of β-keto sulfones 1a–1e with R3Al (where R = i-Bu, Et) or R2AlH (where R = i-Bu).

The molecular structures of compounds 2aa, 2ab, 2ba, 2bb and 3bb were determined
by X-ray diffraction study and are shown in Figures 1–5. Data collection and structure anal-
yses are listed in Tables S1 and S2 (see Supplementary Materials). In the solid state, all of the
described compounds were presented as centrosymmetric dimers. They consisted of central
four-membered Al2O2 rings formed by two monoanionic β-hydroxy sulfonic ligands and
two alkylaluminium moieties with four-coordinate aluminum centrum. Additionally, in
the 3bb molecule, there were two Et3Al molecules coordinated to the oxygen atoms in
the SO2 groups. The sum of the angles around the O(3) atoms was 354.9◦ for compound
2aa and 354.7◦ for compound 2ab, which indicated slight stress in the central part of the
molecule. Similarly, the sums of the angles around the oxygen atoms of the Al2O2 rings in
compounds 2ba, 2bb and 3bb were 354.8, 354.7 and 355.6◦, respectively.

The central Al2O2 rings are similar to that of typical alkoxides of group 13 metal
alkyls obtained in reactions of R3M (R = Me, Et, i-Bu; M = Al, Ga) with diverse monoalco-
hols [41–43]. The bond lengths C(1)-C(2) [1.533(2) Å in 2aa] C(7)-C(8) [1.533(2) Å in 2ab],
C(1)-C(8) [1.534(2) Å in 2ba], C(5)-C(12) [1.538(2) Å in 2bb] and C(6)-C(13) [1.533(4) Å
in 3bb] are typical for single C–C bonds, which proves the transformation of the C=C
double bonds in the β-keto sulfones into single C–C bonds in the appropriate β-hydroxy
sulfone residues.
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80.00(6), Al(1)-O(3)-Al(1#) 100.00(6), C(2)-O(3)-Al(1) 124.2(1), C(2)-O(3)-Al(1) 130.7(1) and 
C(2)-C(1)-S(1) 113.0(1). The crystal structure contains two CH2Cl2 molecules per one C46H66Al2O6S2 
molecule. 

 
Figure 2. Thermal ellipsoid plot (50% probability) of compound 2ab. Hydrogen atoms have been 
omitted for the sake of clarity. Selected bonds and distances (Å) and angles (°): Al(1#)-O(3#) 
1.852(1), Al(1#)-O(3) 1.8723(1), O(3#) C(8)-1.444(2), C(7)-C(8) 1.533(2), S(1)-C(7) 1.784(1), 
C(8)-O(3)-Al(1) 130.69(9), C(8)-O(3)-Al(1) 124.11(8), Al(1)-O(3)-Al(1) 99.89(5), O(3)-Al(1)-O(3#) 
80.12(5) and O(3)-C(8)-C(7) 107.2(1). The crystal structure contains 1.91 CH2Cl2 molecules per one 
C44H60Al2Cl2O6S2 molecule. 

Figure 1. Thermal ellipsoid plot (50% probability) of compound 2aa. Hydrogen atoms have been omit-
ted for the sake of clarity. Selected bonds and distances (Å) and angles (◦): Al(1)-O(3#) 1.859(1), Al(1#)-
O(3#) 1.879(2), O(3)-C(2) 1.448(2), C(1)-C(2) 1.533(3), S(1)-C(1) 1.791(2), O(3)-Al(1)-O(3#) 80.00(6), Al(1)-
O(3)-Al(1#) 100.00(6), C(2)-O(3)-Al(1) 124.2(1), C(2)-O(3)-Al(1) 130.7(1) and C(2)-C(1)-S(1) 113.0(1).
The crystal structure contains two CH2Cl2 molecules per one C46H66Al2O6S2 molecule.
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Figure 2. Thermal ellipsoid plot (50% probability) of compound 2ab. Hydrogen atoms have been
omitted for the sake of clarity. Selected bonds and distances (Å) and angles (◦): Al(1#)-O(3#) 1.852(1),
Al(1#)-O(3) 1.8723(1), O(3#) C(8)-1.444(2), C(7)-C(8) 1.533(2), S(1)-C(7) 1.784(1), C(8)-O(3)-Al(1)
130.69(9), C(8)-O(3)-Al(1) 124.11(8), Al(1)-O(3)-Al(1) 99.89(5), O(3)-Al(1)-O(3#) 80.12(5) and O(3)-C(8)-
C(7) 107.2(1). The crystal structure contains 1.91 CH2Cl2 molecules per one C44H60Al2Cl2O6S2 molecule.

Surprisingly, on the basis of NMR spectra of compounds 2aa, 2ab, 2ba, 2bb and 3bb,
it was found that there are two types of structures in the solutions. Such was observed for
both redissolved crystalline solids, as well as for postreaction mixtures. This was evidenced
by the presence of four signals deriving from the alkyl groups of the alkyl aluminum
moieties. For compound 2aa, four overlapping doublets at 0.81, 0.77, 0.76 and 0.71 ppm of
AlCH2C(H)(CH3)2) protons and four doublets at −0.28, −0.39, −0.41 and −0.51 ppm of
AlCH2C(H)(CH3)2) protons were observed (Figure S2). Similarly, in the 1H NMR spectrum
of compound 2ab, the following signals of i-Bu protons were present: four overlapping
doublets at 0.82, 0.78, 0.77 and 0.72 ppm of AlCH2C(H)(CH3)2) protons and four doublets
at −0.26, −0.37, −0.39 and −0.50 ppm of AlCH2C(H)(CH3)2) protons (Figure S5). For
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compound 2ba, one triplet at 0.80 ppm, two overlapping triplets at 0.72 ppm and one
triplet at 0.64 ppm of AlCH2CH3 protons were observed, whereas the signals of AlCH2CH3
protons appeared as four quartets at −0.39, −0.53 (two overlapping signals) and −0.65 ppm.
Signals of two structures of 2bb were also observed in the 1H NMR spectrum: at 0.81, 0.73
(two overlapping triplets) and 0.65 ppm triplets of AlCH2CH3 protons and four quartets at
−0.36, −0.50, −0.51 and −0.64 of AlCH2CH3 protons.
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Figure 3. Thermal ellipsoid plot (50% probability) of compound 2bb. Hydrogen atoms have been
omitted for the sake of clarity. Selected bonds and distances (Å) and angles (◦): Al(1)–O(1#) 1.851(1),
Al(1)–O(1) 1.872(1), S(1)–O(2) 1.439(1), S(1)–O(3), 1.441(1), S(1)–C(8) 1.792(1), C(1)–C(8) 1.534(2),
C(1)–O(1)–Al(1) 128.72(8), C(1)–O(1)–Al(1#)–126.46(8), Al(1)–O(1)–Al(1#) 99.63(5), C(1)–C(8)–S(1)
115.3(1) and C(2)–C(1)–C(8) 114.9(1).
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Figure 4. Thermal ellipsoid plot (50% probability) of compound 2ba. Hydrogen atoms have been
omitted for the sake of clarity. Selected bonds and distances (Å) and angles (◦): S(1)–O(2) 1.443(1),
S(1)–O(3) 1.444(1), Al(1#)–O(1) 1.853(1), O(1)–Al(1) 1.874(1), C(5)–C(12) 1.538(2), C(5)–C(12)–S(1)
114.3(1), C(5)–O(1)–Al(1#) 128.31(9), C(5)–O(1)–Al(1) 126.70(9) and Al(1)–O(1)–Al(1#) 99.72(6).

In compound 3bb, due to the presence of Et3Al molecules coordinated to the oxygen
atoms from the SO2 groups, there was an additional triplet of (CH3CH2)3Al protons and
a quartet of (CH3CH2)3Al protons (at 0.92 and −0.29 ppm, respectively) in the 1H NMR
spectrum (Figure S13). In addition, there were four triplets at 1.03, 0.84, 0.74 and 0.63 ppm
of CH3CH2Al protons; three quartets at −0.03, −0.46, −0.64 ppm and one quartet at
−0.29 ppm overlapping the signal of the (CH3CH2)3Al protons.
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Figure 5. Thermal ellipsoid plot (50% probability) of compound 3bb. Hydrogen atoms have been
omitted for the sake of clarity. Selected bonds and distances (Å) and angles (◦): Al(1)–O(1#) 1.858(2),
Al(1)–O(1) 1.874(2), C(6)–C(13) 1.533(4), S(1)–O(2) 1.432(2), S(1)–O(3) 1.465(2), Al(2)–O(3) 1.971(2),
O(1)–Al(1)–O(1) 79.59(8), Al(1)–O(1)–Al(1#) 100.41(8), C(6)–O(1)–Al(1#) 129.2(2), C(6)–O(1)–Al(1)
127.0(2) and C(6)–C(13)–S(1) 115.0(2).

The 13C NMR spectra of the compounds revealed two signals of (SCH2CH) carbon
atoms (at 71.86 and 71.81 ppm for 2aa, at 72.09 and 72.04 ppm for 2ab, at 71.42 and
71.40 ppm for 2bb, at 71.02 and 70.95 ppm for 3bb and at 71.40 ppm broadened for 2ba),
which also confirmed the presence of two structures in solutions. Likewise, instead of
single signals, the SCH2CH carbon atoms showed two signals: at 61.92 and 61.85 ppm for
2aa, at 62.17 and 62.09 ppm for 2ab, at 61.66 and 61.64 ppm for 2ba, at 61.59 ppm broadened
for 2bb and at 61.74 and 61.45 ppm for 3bb.

The complex nature of the NMR spectra of 2aa, 2ab, 2ba, 2bb and 3bb complexes
could be explained by the monomer–dimer equilibria in the solutions (Scheme 3). To
confirm this, the molecular weight of the dissolved compounds was determined by the
cryometric method. In the solid state, the compounds had the structures of dimeric
(R*,S*) diastereomers, as shown by X-ray measurements (Figures 1–5). After dissolving the
compounds, Al2O2 rings in dimeric structures were easily dissociated to form monomeric
structures stabilized by the formation of Al–O coordination bonds between the oxygen
atoms of the SO2 group and aluminum atoms. The association degrees calculated from
the values of molecular weights ranged from 1.22 (for 3bb) to 1.50 (for 2ab), which means
that, in solutions of compounds 3bb and 2ab, there were 22 and 49 mol% of the dimeric
structure, respectively. Taking into account the results of NMR studies and molecular
weight measurements, it can be concluded that hydroalumination products of β-keto
sulfones exist as an equilibrium mixture of monomers–dimers in solutions (Scheme 3).

Since the tautomeric equilibrium in the β-keto sulfones solutions was almost com-
pletely shifted towards the ketone form, only this form was taken into account in the
hydroalumination mechanism suggested. When i-Bu2AlH was used, the mechanism was
based on the assumption of a charge distribution between the carbonyl C=O and Al-H
groups, allowing the formation of an intermediate state. The oxygen atom in the C=O
group with a partially negative charge interacted with a partially positive aluminum, and
the partially negative charged hydrogen atom Al–H was transferred to the C=O carbon
atom simultaneously (Scheme 4). We have recently proposed a similar mechanism for the
hydroalumination of β-keto sulfones with t-Bu2AlH [26].
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In the reactions of β-keto sulfones with i-Bu3Al an Et3Al, β-hydrogen from the i-Bu or
Et group bonded to the partially positive C=O carbon, and the aluminum atom interacted
with the negative oxygen atom C=O. An intermediate state involving six atoms, AlCCHCO,
was formed. In the next step, the alkene molecule was removed, and the aluminum complex
of β-hydroxy sulfone was formed (Scheme 4). The similar mechanism was previously
published by Ashby for a ketone reduction reaction with i-Bu3Al [27].

2.2. Hydrogenation of β-Keto Sulfones to β-Hydroxy Sulfones

Reaction mixtures of β-keto sulfones with aluminum compounds were hydrolyzed
to decompose the complexes. The obtained products were characterized by NMR spec-
troscopy to determine the molar ratio of β-hydroxy sulfone to β-keto sulfone on the basis
of an integration of SO2CH proton signals in β-hydroxy sulfone and in β-keto sulfone.
The yield of β-hydroxy sulfones (Table 1) illustrated an efficiency of the β-keto sulfone
hydrogenation process. We determined the effect of the structure of β-keto sulfones, the
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type of aluminum compound and the reaction conditions on the efficiency of the hydro-
genation of β-keto sulfones to β-hydroxy sulfones. We found that the hydrogenation
reaction depended primarily on the nature of the aluminum alkyl compound. The most
active reagent was i-Bu3Al, which reduced quantitatively all β-keto sulfones regardless of
their structure. Et3Al was a good reducer for β-keto sulfones 1a,b and 1d,e, with electron-
withdrawing substituents in the β-position, while the hydrogenation of β-keto sulfone 1c
with an electron-donating methyl group was 75% efficient. Using an excess of Et3Al slightly
increased the yield of β-hydroxy sulfone 4c to 82% (Table 1, run 3). The activity of n-Bu3Al,
n-Hex3Al and t-Bu3Al in the hydrogenation of β-keto sulfones was weaker compared to the
activity of i-Bu3Al and Et3Al. However, using an excess of n-Hex3Al and t-Bu3Al to reduce
the β-keto sulfones 1a and 1b resulted in a significant increase in yield from 55 to 100% and
from 8 to 92%, respectively (Table 1, runs 1 and 2). The presence of chloride substituents in
alkyl aluminum compounds significantly reduced the activity of these compounds in the
hydrogenation of β-hydroxy sulfones. In the presence of an equimolar amount of Et2AlCl
only 17% of the beta keto sulfone, 1b was reduced. For a 1:2 molar ratio of Et2AlCl:1b,
β-hydroxy sulfone 4b was obtained with a yield of 25% (Table 1, run 2). EtAlCl2 was
inactive in the hydrogenation of β-keto sulfones (Table 1, run 1).

Table 1. Hydrogenation of β-keto sulfones to β-hydroxy sulfones.

Run β-Keto Sulfone
Alkyl

Aluminum
Reagents

Molar
Ratio a Solvent Yield

Molar Ratio b
β-Hydroxy

Sulfone

1.
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Table 1. Cont.

Run β-Keto Sulfone
Alkyl

Aluminum
Reagents

Molar
Ratio a Solvent Yield

Molar Ratio b
β-Hydroxy

Sulfone

3.
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a Molar ratio of β-keto sulfone:alkyl aluminum reagent. b Molar ratio of β-hydroxy sulfone:β-keto sulfone in the
reaction products based on 1H NMR spectra. c The isolated hydroalumination reaction product of β-keto sulfone
with aluminum compounds 2aa, 2ab, 2ba, 2bb and 3bb were subjected to hydrolysis.

The nature of the starting β-keto sulfones had a less significant effect on their ability to
be hydrogenated with alkyl aluminum compounds. The presence of electron-withdrawing
groups on the C=O carbon atom, such as the phenyl substituent in compounds 1a,b and
1d,e, caused an increase in the partial positive charge on the C=O carbon atom, which
favored the reduction of β-keto sulfones, as shown in the Scheme 4.

Earlier studies on ketone hydrogenation showed that the presence of a Lewis base
(e.g., diethyl ether, THF) inactivates the reducing properties of aluminum alkyls [31]. That
was why we used methylene dichloride, n-pentane and n-hexane as solvents; however,
methylene dichloride proved to be the best due to the good solubility of the compounds.

The reaction of aluminum alkyls with β-keto sulfones and subsequent hydrolysis of
postreaction mixtures was a simple method of β-keto sulfones hydrogenation. However,
this method was suitable when the β-keto sulfone was completely hydroaluminated by an
alkyl aluminum compound. On the other hand, in the presence of less active aluminum
alkyls, only a part of the β-keto sulfone could be hydroaluminated. Then, in the postreac-
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tion mixture, there were alkyl aluminum complexes with β-hydroxy sulfone and β-keto
sulfone ligands, which, after hydrolysis, yielded a mixture of β-hydroxy sulfone and β-keto
sulfone. In order to avoid a difficult separation of β-hydroxy sulfone from this mixture, the
alkyl aluminum complex with β-hydroxy sulfone ligands should be crystallized from the
reaction mixture and then hydrolyzed to pure β-hydroxy sulfone. Complexes with β-keto
sulfone ligands were thick liquids, which facilitated the separation of solid complexes with
β-hydroxy sulfone ligands.

3. Materials and Methods
3.1. General Remarks

All manipulations were carried out using standard Schlenk techniques under an inert
gas atmosphere. Methylene dichloride was deacidified with basic Al2O3 and distilled
over P2O5 under argon. 1H and 13C NMR spectra were obtained on a Varian Mercury-
400 MHz spectrometer (Varian International AG, Switzerland). Chemical shifts were
referenced to the residual proton signals of CDCl3 (7.26 ppm). 13C NMR spectra were
acquired at 100.60 MHz (standard: chloroform 13CDCl3, 77.20 ppm). NMR spectra can be
found in the Supporting Information (Figures S1–S15). Tri-iso-butyl aluminum and di-iso-
butyl aluminum hydride were from Sigma-Aldrich Company (Poznań, Poland). β-Keto
sulfones 1a–e were synthesized according to the literature data [44]. Hydrolysable alkyl
groups bonded to Al atoms for products 2aa, 2ab, 2ba, 2bb and 3bb were determined by
hydrolysis of the compound (0.2 to 0.3 g) using HNO3 solution (10% concentrated, 5 cm3)
and measurement of the volume of gaseous alkane (C4H10 or C2H6). Subsequently, the
sample was transformed into Al2O3 by mineralization, and the obtained white solid was
dissolved in a diluted water solution of HNO3. The content of aluminum was determined
by the complexation of Al3+ cations with versenate anions using an excess of the titrated
solution of calcium disodium versenate. Then, the excess of calcium disodium versenate
was titrated by FeCl3.

3.2. X-ray Crystallography

The X-ray measurements of compounds 2aa, 2ab, 2ba, 2bb and 3bb were performed
at 100(2) K on a Bruker D8 Venture Photon100 diffractometer equipped with a TRIUMPH
monochromator and a MoKα fine focus-sealed tube (λ = 0.71073 Å). The total frames were
collected with the Bruker APEX2 program [45]. The temperature of the samples was 100 K.
The frames were integrated with the Bruker SAINT software package [46] using a narrow
frame algorithm. Data were corrected for absorption effects using the multi-scan method
(SADABS) [47]. The structures were solved and refined using the SHELXTL software
package [48,49]. The atomic scattering factors were taken from the International Tables [50].
All hydrogen atoms were placed in calculated positions and refined within the riding
model. Detailed crystallographic data are listed in Tables S1 and S2.

3.3. Reactions of β-Keto Sulfones with Alkyl Aluminum Compounds—General Procedure

A solution of a suitable amount of alkyl aluminum compound in methylene dichloride
was added to a solution of 2 mmol of β-keto sulfone in 10 cm3 of methylene dichloride at
0–5 ◦C with stirring. After warming up to room temperature, the postreaction mixture was
subjected to hydrolysis.

3.4. Preparation of Hydroalumination Products
Reactions of i-Bu3Al, i-Bu2AlH and Et3Al with β-Keto Sulfones

A solution of i-Bu2AlH (0.284 g, 2 mmol) or i-Bu3Al (0.396 g, 2 mmol) in 10 cm3 of
methylene dichloride was added to a solution of β-keto sulfone (0.548 g, 2 mmol of 1a
or 0.589 g, 2 mmol of 1b) in 10 cm3 at 0–5 ◦C with stirring. A solution of Et3Al (0.228 g,
2 mmol) in 10 cm3 of methylene dichloride was added to a solution of β-keto sulfone
(0.548 g, 2 mmol of 1a or 0.589 g or 2 mmol of 1b) in 10 cm3 at −76 ◦C with stirring. A
solution of Et3Al (0.456 g, 2 mmol) in 20 cm3 of methylene dichloride was added to a
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solution of β-keto sulfone 1b (0.589 g, 2 mmol) in 10 cm3 at −76 ◦C with stirring. The
mixtures were stirred for 1 h at this temperature and then allowed to warm to ambient
temperature. The solvent was removed from the postreaction mixtures by distillation
under vacuum. A thick liquid was obtained when the reagent was i-Bu2AlH, while white
solids were obtained when the reagents were i-Bu3Al and Et3Al. White crystals of the
complexes 2aa, 2ab, 2ba, 2bb and 3bb suitable for X-ray measurements were precipitated
from n-C6H14/CH2Cl2 solutions. Before measuring the molecular weight by the cryoscopic
method in benzene and analysis, samples of compounds were placed under vacuum
(10−2 Torr) for 5 h to remove the solvent. Yield: i-Bu3Al reacted with β-keto sulfones 1a
and 1b, yielding compounds 2aa and 2ab quantitatively (based on NMR spectra), while
postreaction mixtures of i-Bu2AlH with β-keto sulfones 1a and 1b, besides 2aa and 2ab,
consisted of side products.

Di-iso-butyl aluminum complex with 2-((4-methylphenyl)sulfonyl)-1-phenylethanol (2aa):
1H NMR (Figures S1 and S2) δ: 7.40–7.15 (9H, m, Haromat), 5.20 (1H, m, CH), 3.93–3.75
(2H, m, CH2), 2.37 (3H, s, CH3), 1.49, 1.40 and 1.31 (2 H, 3 multiplets, AlCH2C(H)(CH3)2),
0.81, 0.77, 0.76 and 0.71 (6H, 4 overlapping doublets, 3JH—4 Hz, AlCH2C(H)(CH3)2),
−0.28, −0.39, −0.41 and −0.51 (4H, 4 doublets, 3JH—4 Hz, AlCH2C(H)(CH3)2). 13C
NMR (Figure S3) δ 144.69, 144.65, 136.53, 136.45, 135.90, 135.86 129.80, 129.66, 129.65,
128.98, 128.38, 127.75, 127.72 (Caromat), 71.86, 71.81 (SCH2CH), 61.92, 61.85 (SCH2CH), 28.13,
28,10, 28.03 (AlCH2C(H)(CH3)2), 25.37, 25.27, 25.18 (AlCH2C(H)(CH3)2), 23.03, 22.99, 22.82
(AlCH2C(H)(CH3)2), 21.52 (PhCH3) ppm. Mp.: 153–156 ◦C. Molecular weight: 590 g/mol
(cal. for 2aa monomer 416.5 g/mol; for 2aa dimer 833 g/mol). Anal. Al, 6.15; hydrolysable
i-Bu groups, 26.55; calcd for 2aa (C46H66Al2O6S2): Al, 6.49; i-Bu groups, 27.40 wt%.

Di-iso-butyl aluminum complex with 2-((4-chlorophenyl)sulfonyl)-1-phenylethanol (2ab):
1H NMR (Figures S4 and S5) δ: 7.38–7.13 (9H, m, Haromat), 5.24 (1H, m, CH), 3.93–3.77
(2H, m, CH2), 1.50, 1.40 and 1.32 (2 H, 3 multiplets, AlCH2C(H)(CH3)2), 0.82, 0.78, 0.77
and 0.72 (6H, 4 overlapping doublets, 3JH—4 Hz, AlCH2C(H)(CH3)2), −0.26, −0.37, −0.39
and −0.50 (4H, 4 doublets, 3JH—4 Hz, AlCH2C(H)(CH3)2). 13C NMR (Figure S6) δ: 140.63,
140.60, 137.43, 137.38, 136.31, 136.23, 130.35, 129.52, 129.38, 129.35, 128.65 (Caromat), 72.09,
72.04 (CH2CH), 62.17, 62.09 (S-CH2), 28.40, 28,37, 28.31 (AlCH2C(H)(CH3)2), 25.67, 25.57,
25.49 (AlCH2C(H)(CH3)2), 23.33, 23.26, 23.04 (broad, AlCH2C(H)(CH3)2) ppm. Mp.:
113–118 ◦C. Molecular weight: 651 g/mol (calc. for 2ab monomer 436.5 g/mol; for
2ab dimer 873 g/mol). Anal. Al, 5.87; hydrolysable i-Bu groups, 25.30; calcd for 2ab
(C44H60Al2Cl2O6S2): Al, 6.18; i-Bu groups, 26.09 wt%.

Di-ethyl aluminum complex with 2-((4-methylphenyl)sulfonyl)-1-phenylethanol (2ba):
1H NMR (Figures S7 and S8) δ: 7.42 (2H, m, Haromat), 7.28–7.11 (7H, m, Haromat), 5.17 (1H,
m, CH), 3.88–3.80 (1H, m, CH2), 3.73–3.67 (1H, m, CH2), 2.35 (3H, s, CH3Ph), 0.80 (1.5H,
t, AlCH2CH3), 0.72 (3H, two overlapping triplets, AlCH2CH3), 0.64 (1.5H, t, AlCH2CH3),
−0.39 (1H, q, AlCH2CH3), −0.53, −0.53 (2H, two quartets, AlCH2CH3), −0.65 (1H, q,
AlCH2CH3). 13C NMR (Figure S9) δ: 144.80, 144.77, 136.90, 135.87, 135.60, 129.73, 129.69,
129.67, 128.93, 127.86, 127.75, 127.74 (Caromat), 71.40 (CH2CH, broadened), 61.66, 61.64
(S-CH2), 21.53 (CH3Ph), 8.63, 8.57, 8.49 (AlCH2CH3), 0.42 (AlCH2CH3, broadened) ppm.
Mp.: = 132–136 ◦C. Molecular weight: 450 g/mol (calc. for 2ba monomer 360 g/mol;
for 2ba dimer 720 g/mol). Anal. Al, 7.28; hydrolysable Et groups, 15.82; calcd for 2ba
(C38H50Al2O6S2): Al, 7.50; Et groups, 16.11 wt%.

Di-ethyl aluminum complex with 2-((4-chlorophenyl)sulfonyl)-1-phenylethanol (2bb): 1H NMR
(Figures S10 and S11) δ: 7.40–7.12 (9H, m, Haromat), 5.19 (1H, m, CH), 3.90–3.69 (2H, m, CH2),
0.81 (1.5H, t, AlCH2CH3), 0.73 (3H, two triplets, AlCH2CH3), 0.65 (1.5H, t, AlCH2CH3),
−0.36 (1H, q, AlCH2CH3), −0.50, −0.51 (2H, two quartets, AlCH2CH3), −0.64 (1H, q,
AlCH2CH3). 13C NMR (Figure S12) δ: 140.43, 140.40, 136.92, 136.34, 130.02, 129.28, 129.26,
129.16, 129.14, 129.09, 127.86 (Caromat), 71.42, 71.40 (CH2CH), 61.59 (S-CH2), 8.62, 8.56, 8.48
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(AlCH2CH3), 0.35 (AlCH2CH3, broadened) ppm. Mp.: 130–133 ◦C. Molecular weight:
505 g/mol (calc. for 2bb monomer 380.5 g/mol; for 2bb dimer 761 g/mol). Anal. Al,
7.01; hydrolysable Et groups, 15.79; calcd for 2bb (C36H44Al2Cl2O6S2): Al, 7.10; Et groups,
16.11 wt%.

Di-ethyl aluminum complex with 2-((4-chlorophenyl)sulfonyl)-1-phenylethanol and triethyl
aluminum (3bb): 1H NMR (Figures S13 and S14) δ: 7.31–7.08 (9H, m, Haromat), 5.20 (1H, m,
CH), 4.26–3.94 (2H, m, CH2), 1.03, 0.84, 0.74, 0.63 (6H, four triplets, AlCH2CH3), 0.92 (9H, t,
Al(CH2CH3)3), −0.03, −0.46, −0.64 (3H, 3q, AlCH2CH3), −0.29 (6H of Al(CH2CH3)3 and
1H of AlCH2CH3, q, AlCH2CH3). 13C NMR (Figure S15) δ: 142.50, 142.47, 134.90, 134.83,
133.28, 130.79, 129.99, 129.91, 129.56, 129.08, 129.05, 128.72, 128.49, 128.35, 127.77, 125.39
(Caromat), 71.02, 70.95 (CH2CH), 61.74, 61.45 (S-CH2), 9.38, 8.50, 8.40, 8.27 (AlCH2CH3), 1.05,
0.67, 0.16, 0.08 (AlCH2CH3) ppm. Mp.: 148–150 ◦C. Molecular weight: 604 g/mol (calc. for
3bb monomer 494.5 g/mol; for 3bb dimer 989 g/mol). Anal. Al, 10.65; hydrolysable Et
groups, 28.97; calcd for 3bb (C48H74Al4Cl2O6S2): Al, 10.92; Et groups, 29.32 wt%.

3.5. Preparation of β-Hydroxy Sulfones

Method 1: Hydrolysis of isolated compounds 2aa, 2ab, 2ba, 2bb and 3bb. A solution
of 0.5 mmol of compounds 2 (or 3bb) in 10 cm3 of CH2Cl2 and 10 cm3 of a 10% solution of
hydrochloric acid was added to the separating funnel. After shaking, the organic layer was
separated, and the aqueous layer was washed twice with 10 cm3 of CH2Cl2. The organic
layers were combined, and the solvent was distilled under vacuum. White solids of a pure
β-hydroxy sulfones 4a (or 4b) were obtained.

Method 2: Hydrolysis of postreaction mixtures of the reactions of β-keto sulfones
1a–1e with aluminum compounds. The postreaction mixtures of the reaction of 0.5 mmol
of β-keto sulfone (10 cm3 of the CH2Cl2 solution) reacted with water, according to the
procedure described in Method 1.

The results of the conversion of β-keto sulfones to β-hydroxy sulfones are pre-
sented in Table 1. Mp of 2-hydroxy-2-phenyethyl-4-mehylphenylsulfone 4a: 74–75 ◦C,
(literature data 69–71 ◦C [17], 69.4–70.8 ◦C [51], 78–79 ◦C [52] and 74–75 ◦C [53]; Mp of
2-hydroxy-2-phenyethyl-4-chlorophenylsulfone 4b: 105–107 ◦C (literature data 106–108 ◦C [53],
105–106 ◦C [54] and 103.5–105 ◦C [55]); Mp of 1-(4-methylphenylsulfonyl)propan-2-ol 4c:
75–76 ◦C (literature data 78 ◦C [56]); Mp of 2-[(4’-methylphenyl)sulfonyl]-1,2-diphenylethanol
4d: 159–160 ◦C (literature data 156–157 ◦C [57]) and Mp of 1-phenyl-2-(4-methylphenylsulf-
onyl)propan-1-ol 4e: 100–103 ◦C (literature data 99–100.5 ◦C [58]).

4. Conclusions

Although aluminum trialkyls R3Al with substituents that have β-hydrogens are ac-
tive reducing agents of β-keto sulfones to β-hydroxy sulfones, the reducing properties
of aluminum iso-butyl compounds (i-Bu3Al and i-Bu2AlH) and Et3Al are the greatest. In
reactions of β-keto sulfones with R3Al, the hydroalumination of β-keto sulfones takes
place, resulting in the formation of aluminum complexes with β-hydroxy sulfones con-
sidered as intermediates in the production of β-hydroxy sulfones. In the solid state, these
complexes exhibit as dimers, while, in solutions, they undergo an equilibrium between
monomeric and dimeric forms. The hydrolysis of both the isolated aluminum complexes
with β-hydroxy sulfones and the postreaction mixtures quantitatively lead to pure racemic
β-hydroxy sulfones. Summarizing, the hydroalumination reaction of β-keto sulfones with
i-Bu3Al, i-Bu2AlH and Et3Al, followed by the hydrolysis of the resulting complexes in the
postreaction mixtures, is a simple and efficient method for racemic β-hydroxy sulfones.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27072357/s1: characterization of β-keto sulfones 1a–e and
β-hydroxy sulfones 4a–e; NMR spectra of the compounds 2aa, 2ab, 2ba, 2bb and 3bb and crystal
data and data collection parameters for the compounds 2aa, 2ab, 2ba, 2bb and 3bb. CCDC reference
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numbers 2104787, 2104788, 2154603, 2154605 and 2154606 contain the supplementary crystallographic
data of compounds 2aa, 2ab, 2ba, 2bb and 3bb for this paper. These data can be obtained free of
charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallo-
graphic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)-1223-336-033 or e-mail:
deposit@ccdc.cam.ac.uk.
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