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Abstract: Molecularly imprinted sol–gel silica (MIS) coupled to a microwave sensor was designed
and used to detect phenylacetaldehyde (PAA), a chemical tracer of wine oxidation. The developed
method is fast, cheap and could replace the classical chromatographic methods, which require a
tedious sample preparation and are expensive. To reach our objective, five MIS and their control
non-imprinted silica (NIS) were synthesized and their extraction capacity toward PAA was studied
in hydro alcoholic medium. The selected polymers, based on this first step, were subjected to a
selectivity study in the presence of PAA and three other competing molecules. The best polymer was
integrated in a microwave sensor and was used to assess PAA in red wine. The developed sensor
was able to detect PAA at the µg·L−1 level, which is below the off-flavour threshold.

Keywords: molecularly imprinted silica; microwave sensor; wine oxidation; phenylacetaldehyde;
fast analysis

1. Introduction

Off-flavours, related to wine oxidation, generate wine rejection and cause a significant
economic loss in wine production. Aldehydes are a known family of aroma compounds
associated with wine oxidation. Phenylacetaldehyde (PAA) can be considered among
chemical indicators of the oxidation level of a given wine [1]. Its aroma threshold varies
between 1 and 25 µg·L−1 depending on the matrix. It is important to have analytical tools
able to detect PAA below the sensory threshold of this aroma compound. Early detection
of this fault marker in wine, at concentrations under the aroma threshold, is required for an
efficient anticipation of proper enological practices to protect wine from oxidation.

The most used technics to follow PAA in wine are gas chromatography coupled to
mass spectrometry detection. These targeted technics are highly efficient but relatively
expensive, require a tedious sample preparation step and need high technical experience
for the lab staff. A rapid, cheap and real-time analytical tool is essential to assess the level
of wine oxidation.

Several sensors were developed to detect phenylacetaldehyde. They can be classified
into two categories: biosensors [2,3] or chemical sensors [4,5]. Biosensors use a biomolecule
as sensitive material; they are highly selective but not very stable in extreme conditions of
pH or temperature. Chemical sensors are generally stable but lack selectivity in complex
matrices such as wine and food. To the best of our knowledge, no chemical sensor or
biosensor was developed to detect PAA in wine.

Molecularly imprinted materials (MIM) are one of the most specific and selective
materials used in analytical chemistry. They are biomimetic synthetic materials able to
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mimic the specific interactions between antigens and antibodies, hormones and receptors or
substrates and enzymes. MIM have the big advantage of being stable in extreme conditions
of pH and temperature in comparison with biological materials [6]. MIM have a low cost of
production. They are used in this study as sensitive materials to interact specifically with
PAA. The most used MIM are acrylate-based polymers. We already demonstrated that
sol–gel molecularly imprinted polymers were more specific than their equivalent acrylate-
based polymers [7]. For this reason, only molecularly imprinted silica was prepared in
this study.

Microwave sensors are based on the dielectric evolution of a sensitive material af-
ter interaction with a chemical target. Microwave sensing technology is relatively recent
compared with other transduction methods such as electrochemistry, piezoelectric, ther-
mocouple and optical transduction. Microwave sensors have found application in several
fields such as medicine [8], environment [9], industry [10], food and agriculture [11].

The use of microwave sensing in a broad range of frequency (10 Mhz to 20 GHz)
provides a rich information spectrum, allowing easy quantification of the target molecule
in complex matrices such as wine [12].

In a previous work, we demonstrated the feasibility of such a MIS sensor to detect
a fungicide in wine model solution down to 0.33 ng·L−1 [13]. We present in this work
the strategy used to develop a microwave sensor, having molecularly imprinted silica
(MIS) as a sensitive material, able to detect PAA in wine below 1 µg·L−1 without any
sample preparation.

2. Results and Discussion

To select a molecularly imprinted silica (MIS) in order to integrate it in a microwave
sensor, the following strategy was used: (1) Synthesis of five different MIS and their
corresponding controls, non-imprinted silica (NIS). (2) Batch extraction studies of PAA in
hydro alcoholic medium by the five MIS and NIS in order to assess the sorption ability of
the polymers. (3) Batch selectivity studies in hydro alcoholic medium where the MIS and
NIS were contacted with PAA and other competing molecules.

2.1. Synthesis of Molecularly Imprinted Silica

The synthesized polymers are presented in (Table 1). The sol–gel process was used
to prepare the polymers. The most important parameters influencing the synthesis were
varied: the functional monomer, the pH and the relative ratio of water/ethanol. The choice
of the functional monomer is crucial in the MIS synthesis. It must present chemicals comple-
mentarity with the phenylacetaldehyde (PAA) template. [3-(Phenylamino)propyl]trimethox
ysilane (PATMS) was chosen because it allows π–π interaction and hydrogen bond inter-
action with PAA. Phenyltrimethoxysilane (PTMS) allows only π–π interaction with PAA.
Two pH conditions were considered. Under acid conditions, the hydrolysis kinetic of the
sol–gel process is fast and the condensation kinetic is slow. In this case, linear polymers are
produced. Under alkali conditions, condensation is faster than hydrolysis, and a highly
condensed polymer is favored, leading to an agglomerate of fine particles [14].

Table 1. Experimental design for the synthesis of the five MIS/NIS.

Reagent/Polymer Name MIS1 MIS2 MIS3 MIS4 MIS5

FM 1 PATMS APTMS PATMS PTMS APTMS
C 2 TEOS TEOS TEOS TEOS TEOS
I 3 NH4OH NH4OH NH4OH NH4OH HCl

S 4 W/EtOH 5

50/50
W/EtOH

90/10
W/EtOH

90/10
W/EtOH

90/10
W/EtOH

90/10

Polymerisation no yes yes Yes yes
1 FM = functional monomer, 2 C = Crosslinker, 3 I = Initiator, 4 S = Solvent, 5 W/EtOH = Water/Ethanol.
PATMS = Propylaniline trimethoxysilane, APTMS = Aminopropyl trimethoxysilane, PTMS = Phenyl trimethoxysi-
lane, TEOS = Tetraethoxysilane.
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MIS1 was eliminated because polymerization did not occur. This could be due to
the high solubility of the polymer in this medium, which prevents it from polymerization.
MIS2 was eliminated because a parasitic reaction occurred between the amine group of
(3-aminopropyl)trimethoxysilane (APTMS) and the aldehyde function of phenylacetalde-
hyde. MIS3-5 were kept for the second step. Their sorption capacity toward PAA was
studied in hydro alcoholic medium.

2.2. Batch Extraction Studies of PAA in Hydro Alcoholic Medium

A batch extraction of phenylacetaldehyde by all the polymers was carried out in hydro
alcoholic medium. Results of the batch extraction are shown in Figure 1.
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Figure 1. Adsorbed PAA/g of polymer vs. initial concentration in water/EtOH (90/10; v/v). Error
bars represent standard deviation. MIS are the imprinted polymers, NIS the non-imprinted polymers.

The quantity of adsorbed phenylacetaldehyde is expressed in function of the initial
concentration. Polymer 5 showed low or no adsorption of phenylacetaldehyde, whatever
the initial concentration. For this reason, it was discarded for the selectivity tests. Sorption
by polymers 3 and 4 increased with the initial concentration of PAA reaching 41.5 mg/g
for polymer 3. Polymers 3 and 4 were kept for the selectivity study. The non-imprinted
polymer (NIS) with the formulations n◦3 and n◦4 was able to capture the AAP, but less
efficiently compared with the imprinted polymers (MIS).

The MIS has chemical and steric complementarity with the target molecule. The
NIS has only chemical complementarity. MIS and NIS have the same chemical structure:
they contain both of the functional monomers. The latter is responsible for the chemical
interaction with the target molecule. As the difference between MIS and NIS is small, this
means that the chemical interaction is more important than the steric interaction.

2.3. Batch Selectivity Studies in Hydro Alcoholic Medium

The selectivity study was conducted in hydro alcoholic medium in the presence of
phenylacetaldehyde and three competing molecules: benzaldehyde (BA), 1-octene-3-one
(1o3o) and 2′-aminoacetophenone (AAP). BA has a chemical structure very similar to PAA
with one less carbon atom. 1o3o has a chemical structure very different from PAA: it is a
linear structure without the aromatic ring. AAP represents and intermediate interfering
compound. Selectivity results were presented as partition coefficients between the initial
solution of PAA or the interferent and the polymer (Figure 2).
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Figure 2. Partition coefficient in water/EtOH (90/10; v/v). Phenylacetaldehyde (PAA), Benzaldehyde
(BA), 1-octen-3-one (1o3o) and 2-aminoacetophenone (AAP). Error bars represent standard deviation.

Both MIS3 and MIS4 gave high partition coefficients for PAA in comparison with
competing molecules. They are then highly selective to PAA. No difference was observed
between MIS3 and NIS3; this could be explained by the absence of a steric effect in the
imprinting process. Only chemical complementarity affected the behavior of MIS3 and
NIS3 since they were synthesized using the same functional monomer.

In the case of PAA, polymer 4 was the only one to show a difference between the
printed and unprinted polymer. In this case, the steric effect and the chemical complemen-
tarity between the functional monomer and the template explain the MIS/NIS difference.

In conclusion and based on the previous results, MIS4 was the best candidate to be
integrated in a microwave sensor to detect PAA in red wine: MIS4 presented a high sorption
of PAA (37 mg·g−1), a satisfactory difference between MIS and the corresponding control
NIS and a good selectivity for PAA. Morphologic characterizations were conducted on
MIS4 and NIS4 before their deposition on the surface of a microwave antenna.

2.4. Characterization of MIS4 and NIS4

MIS4 and NIS4 were characterized by MID infrared spectroscopy to check their chemi-
cal structure. The corresponding infrared spectra are presented in Figure 3.

MIS4 and NIS4 have identic IR spectra. All the observed peaks are related to the
absorption of the TEOS crosslinker and the PTMS monomer after the sol–gel hydrolysis
and condensation. The MIS and NIS spectra are similar because the MIS was washed in
order to release the template. The signature of the template cannot be observed. The FTIR
analysis has the main objective to show that the polymerization occurred: the Si-O-Si bonds
were formed, and the monomer was immobilized in the polymer. The condensed PTMS
has several absorption bands: peaks at 1431, 738 and 698 cm−1 correspond to the Si-phenyl
group and the one at 1597 cm−1 corresponds to the C=C aromatic group. The condensed
TEOS has several absorption bands: at 1075 cm−1 corresponding to the Si-O-Si asymmetric
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stretching, at 950 cm−1 corresponding to Si–O− stretching and at 790 cm−1 corresponding
to the Si-O-Si symmetric stretching.
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Figure 3. Infrared spectra of MIS4 and NIS4. Absorption assignements: (1) 1597 cm−1 (C=C) aromatic,
(2) 1431 cm−1 (Si-phenyl), (3) 1075 cm−1 (Si-O-Si), (4) 950 cm−1 (Si-O-), (5) 790 cm−1 (Si-O-Si),
(6) 738 cm−1 (Si-phenyl), (7) 698 cm−1 (Si-phenyl).

The morphology of MIS4 and NIS4 was assessed by SEM studies. Figure 4 shows
the SEM micrographs of the MIS4 at two magnifications: 350 (a) and 20,000 (c) and a
micrograph of NIS4 at 2 magnifications: 350 (b) and 3500 (d).

The MIS4 polymer seems to be an aggregate of regular and spherical particles. The
aggregate size is less than 100 µm and the average particle size is about 200 nm. The NIS4
polymer seems to be an aggregate of irregular particles with a larger size compared with the
MIS. The aggregate size is less than 300 µm and the average particle size is about 570 nm.

ATG results show that the percentage of grafted material was 37.6% for the MIS4 and
31% for the NIS4. It was calculated using the following formula:

Gra f ted material (%) =

(
mi −m f

)
mi

× 100 (1)

where mi and mf are the initial and final mass of the sample at 150 ◦C and 1000 ◦C,
respectively.

2.5. Measurements Using the Microwave Sensor

After the deposition of the imprinted and the non-imprinted polymers (MIS4 and
NIS4) on the surface of the microwave sensor, the microwave signal was measured at
different concentrations of phenylacetaldehyde in hydro alcoholic medium (Figure 5).

The MIS-based sensor showed a linear response in hydro alcoholic medium for PAA
concentrations between 0.1 and 100 µg·L−1. An important variation of the signal in function
of the PAA concentration was observed: 97% between the two farthest points. The NIS-
based sensor response was independent of PAA concentration and the corresponding signal
remained at zero whatever the PAA concentration. This result shows that the molecular
imprinting procedure was efficient. The lowest detected concentration in this case was
0.1 µg·L−1

.
Once the device was successfully applied in model wine, the PAA content of a Bur-

gundy red wine was determined using a standard addition method. Results are shown in
Figure 6.



Molecules 2022, 27, 1492 6 of 11Molecules 2022, 27, x FOR PEER REVIEW 6 of 12 
 

 

 

 

 

Figure 4. Cont.



Molecules 2022, 27, 1492 7 of 11Molecules 2022, 27, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 4. Scanning electron micrographs (SEM) for MIS4 and NIS4. (a) MIS4 at 350 magnifications. 
(b) NIS4 at 350 magnifications. (c) MIS4 at 20 000 magnifications. (d) NIS4 at 3 500 magnifications. 

ATG results show that the percentage of grafted material was 37.6% for the MIS4 and 
31% for the NIS4. It was calculated using the following formula: 𝐺𝑟𝑎𝑓𝑡𝑒𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (%) = (𝑚 − 𝑚 )𝑚 × 100 (1)

where mi and mf are the initial and final mass of the sample at 150 °C and 1000 °C, respec-
tively. 

2.5. Measurements Using the Microwave Sensor 
After the deposition of the imprinted and the non-imprinted polymers (MIS4 and 

NIS4) on the surface of the microwave sensor, the microwave signal was measured at dif-
ferent concentrations of phenylacetaldehyde in hydro alcoholic medium (Figure 5). 

 
Figure 5. Effect of PAA concentration on the response of the MIS/NIS-microwave sensor in wa-
ter/EtOH (90/10; v/v). Uncertainty on ∆Γ/Γ = 0.1%. The correlation coefficients for linear correlation 
are over the critical values of the Pearson’s correlation coefficient in a one-tailed test at the level of 
significance of 1%. 8 points, 6 degree of freedom, R critical value = 0.789 < R observed = 0.965. 

y = -13.8ln(x) - 81.001
R² = 0.931

y = 0.0164ln(x) - 0.035
R² = 0.2125

-170

-150

-130

-110

-90

-70

-50

-30

-10

10
0.1 1 10 100

log[PAA] (µg.L-1)

ΔΓ/Γ (real) 
at 5.82 GHz

MIS4
NIS4

Figure 4. Scanning electron micrographs (SEM) for MIS4 and NIS4. (a) MIS4 at 350 magnifications.
(b) NIS4 at 350 magnifications. (c) MIS4 at 20,000 magnifications. (d) NIS4 at 3 500 magnifications.

Molecules 2022, 27, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 4. Scanning electron micrographs (SEM) for MIS4 and NIS4. (a) MIS4 at 350 magnifications. 
(b) NIS4 at 350 magnifications. (c) MIS4 at 20 000 magnifications. (d) NIS4 at 3 500 magnifications. 

ATG results show that the percentage of grafted material was 37.6% for the MIS4 and 
31% for the NIS4. It was calculated using the following formula: 𝐺𝑟𝑎𝑓𝑡𝑒𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (%) = (𝑚 − 𝑚 )𝑚 × 100 (1)

where mi and mf are the initial and final mass of the sample at 150 °C and 1000 °C, respec-
tively. 

2.5. Measurements Using the Microwave Sensor 
After the deposition of the imprinted and the non-imprinted polymers (MIS4 and 

NIS4) on the surface of the microwave sensor, the microwave signal was measured at dif-
ferent concentrations of phenylacetaldehyde in hydro alcoholic medium (Figure 5). 

 
Figure 5. Effect of PAA concentration on the response of the MIS/NIS-microwave sensor in wa-
ter/EtOH (90/10; v/v). Uncertainty on ∆Γ/Γ = 0.1%. The correlation coefficients for linear correlation 
are over the critical values of the Pearson’s correlation coefficient in a one-tailed test at the level of 
significance of 1%. 8 points, 6 degree of freedom, R critical value = 0.789 < R observed = 0.965. 

y = -13.8ln(x) - 81.001
R² = 0.931

y = 0.0164ln(x) - 0.035
R² = 0.2125

-170

-150

-130

-110

-90

-70

-50

-30

-10

10
0.1 1 10 100

log[PAA] (µg.L-1)

ΔΓ/Γ (real) 
at 5.82 GHz

MIS4
NIS4

Figure 5. Effect of PAA concentration on the response of the MIS/NIS-microwave sensor in wa-
ter/EtOH (90/10; v/v). Uncertainty on ∆Γ/Γ = 0.1%. The correlation coefficients for linear correlation
are over the critical values of the Pearson’s correlation coefficient in a one-tailed test at the level of
significance of 1%. 8 points, 6 degree of freedom, R critical value = 0.789 < R observed = 0.965.

The microwave signal (amplitude) was proportional to PAA concentration between
1 and 16 µg·L−1. Molecularly imprinted-based sensors were thus able to detect pheny-
lacetaldehyde in red wine at the µg·L−1 level below the off-flavor threshold. The lowest
detected concentration in red wine using the microwave sensor was 1 µg·L−1. This value
is lower than the limit of detection of PAA determined by solid phase micro-extraction
coupled to gas chromatography mass spectrometry (SPME-GCMS) [15].

To conclude, one of the main organoleptic defaults in wine is oxidation. Phenylac-
etaldehyde is a good chemical indicator of the oxidation level. Its aroma threshold varies
between 1 and 25 µg·L−1. The classical method of phenylacetaldehyde assessment is gas
chromatography coupled to mass spectrometry. GC-MS is time-consuming and expensive.
In this work, a microwave sensor having as sensitive material a molecularly imprinted
silica was developed as a fast and cheap method for the analysis of PAA. The developed
microwave sensor was able to detect PAA in red wine at the µg·L−1 level.
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Figure 6. Effect of PAA concentration on the response of the MIS-microwave sensor in red wine at
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1%. 6 points, 4 degree of freedom, R critical value = 0.882 < R observed = 0.986.

3. Materials and Methods
3.1. Chemiclas

Phenylacetaldehyde (PAA 95%, CAS number 122-78-1), Benzaldehyde (BA ≥ 99%,
CAS number 100-52-7), 1-octen-3-one (1o3o 96%, CAS number 4312-99-6), 2′-aminoacetophe
none (AAP 98%, CAS number 551-93-9), (3-Aminopropyl)trimethoxysilane (APTMS 97%,
CAS number 13822-56-5), [3-(Phenylamino)propyl]trimethoxysilane (PATMS 97%, CAS
number 3068-76-6), phenyltrimethoxysilane (PTMS 97%, CAS number 2996-92-1), tetraethox
ysilane (TEOS ≥ 99%, CAS number 78-10-4), ammonium hydroxide (NH4OH 28–30%, CAS
Number 1336-21-6), hydrochloric acid (HCl 0.1 mol·L−1, Titripur, CAS number 7647-
01-0) and ethanol (≥99.8%, CAS number 64-17-5) were purchased from Sigma Aldrich,
St. Quentin Fallavier, France. S1813 photosensitive resin and MF319 developer were
purchased from Chimie Tech Service, Antony, France. Polydimethylsiloxanes (PDMS)
was obtained from FARNELL, Limonest, France. The water used in all experiments was
deionized and obtained from an Elga Ionic system PURELAB Option. The model wine
consisted of water/ethanol (90/10, v/v) solutions. Red wine from Burgundy was bought
from a grocery store (Carrefour, Quetigny, France).

3.2. Molecularly Imprinted Silica Synthesis

MIS polymers were prepared at 40 ◦C in a thermostatic water bath under magnetic
stirring. The template molecule was first solubilized in ethanol. Then, water was added,
followed by the functional monomer and the crosslinker TEOS. Finally, NH4OH or HCl
was introduced in order to initiate base or acid condensation. The reaction mixture was left
under stirring for 20 h. The polymers were separated from the liquid phase by centrifu-
gation at 10,000× g for 10 min at room temperature. In order to eliminate the template,
polymers were washed several times with ethanol until it was no longer detectable by
chromatography in washing solvents. After washing, polymers were dried for 6 h at 60 ◦C.
In parallel, non-imprinted silica NIS were synthesized under the same synthesis conditions
as those of MIS, but without PAA, the template molecule. NIS served as control polymers.

3.3. Batch Extraction Studies of PAA in Hydro Alcoholic Medium

The tested polymers were suspended in water/EtOH (90/10; v/v). A stock solution of
water/ethanol with PAA was prepared at 400 mg·L−1. Three concentrations were studied:
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20, 80 and 200 mg·L−1. Tests were conducted in 2 mL Eppendorf tubes in triplicate. In each
tube, 1 mg of polymer (MIS or NIS) was contacted with PAA solutions at room temperature.
The tubes were agitated in an orbital shaker for 2 h at 20 rpm, then centrifuged 10 min at
15,000× g. In order to determine the PAA concentration in the supernatant, 500 µL of the
latter was mixed with 500 µL of 1-octanol internal standard solution and analysed by Gas
Chromatography Mass Spectrometry (GC-MS). The amount of PAA sorbed to the polymer
(mg/g), was calculated from the difference between the initial and the free PAA.

3.4. Batch Selectivity Studies in Hydro Alcoholic Medium

The selectivity studies were performed the same way as the batch extraction study.
PAA was replaced by a mixture of competing molecules: phenylacetaldehyde (PAA),
Benzaldehyde (BA), 1-octen-3-one (1o3o) and 2-aminoacetophenone (AAP). The initial
concentration of each of these molecules was 400 mg·L−1. The partition coefficient (Kp) of
each compound between the polymer and the hydro alcoholic medium was used to assess
the selectivity. It was calculated using the following equation:

Kp =
Ci − C f

C f
× V

m
(2)

where Ci is the initial concentration of the target compound, Cf the concentration at equilib-
rium, V the solution volume and m the polymer mass. Ci and Cf were determined by GC-MS
using internal standardization method. All experiments were carried out in triplicate.

3.5. Gas Chromatography Mass Spectrometry (GC-MS)

One µL of solutions prepared in paragraphs 3.3 and 3.4. was injected in split mode
(split ratio15:1) using an auto-sampler on a 5973 gas chromatograph (Hewlett-Packard,
Palo Alto, CA, USA) equipped with a fused-silica capillary column (30 m × 0.32 mm ID,
0.5 µm film thickness) coated with a DB-Wax stationary phase (J & W Scientific, Santa
Clara, CA, USA). The injection temperature was 240 ◦C. Helium was used as the carrier
gas at a flow rate of 1.4 mL·min−1 and the chromatographic temperature was programmed
from 100 ◦C (initial time 2 min) to 220 ◦C at a rate of 10 ◦C·min−1, with a final isotherm
of 5 min. Mass spectrometry was taken in the electron ionization mode at 70 eV and the
scan range between 29 and 350 amu. The ion source was set at 230 ◦C and the transfer
line at 250 ◦C. Compounds were identified by comparison with mass spectra libraries
(WILLEY138 and NIST).

3.6. Characterisation of the Molecularly Imprinted and Non-Imprinted Sol–Gel Polymers

Fourier-transform infrared (FTIR) spectra were recorded on a Perkin Elmer spec-
trum 65 FT-IR spectrometer in the range 4000–600 cm−1 using attenuated total reflectance
sampling. 64 scans with a resolution of 4 cm−1 were carried out for each polymer pow-
der. For the surface morphological characterization, samples were suspended in ethanol;
then, a drop was placed on a silicon grid and examined in a JEOL-7600 scanning electron
microscope (SEM). The thermogravimetric analyses were carried out in a TA SDT Q600
instrument. The experiments were performed under air flow using a temperature increase
of 20 ◦C per minute. Samples were heated from room temperature to 1000 ◦C.

3.7. Microwave Sensor Design and Measurement

The microwave transduction is based on the electromagnetic wave excitation in a sen-
sitive material inside a propagative structure (coplanar sensor) in the range of microwave
(between 1 and 8 GHz). The reflected and transmitted waves are determined using a Vector
Network Analyser (VNA). The experimental setup (Figure 7) includes a portable VNA
connected to a computer. The VNA and its cable (included the phase of calibration) are
mechanically stable to avoid perturbations of the signal. The sensor was immersed in
100 mL of red wine alone (bank) or red wine supplemented with PAA. The concentration
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of PAA was varied using the standard addition method. The stock solution was prepared
in water/EtOH (90/10; v/v) and was at 10 mg·L−1.
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The microwave sensor consists of a microstrip transmission line with a trapezoidal
spiral [16,17]. The proposed circuit was obtained by making the sensor on Rogers RT/duroid®

6202 substrate (εr = 2.94). Trapezoidal spiral was made of 7 copper strips with a space
of 0.150 mm between the segments. The detailed dimensions and comparison with the
full wave simulation (CST) are given in the previous work [16]. Except the spiral, the
entire sensor is coated with polydimethylsiloxanes (PDMS). The MIS sensitive material
was deposited following a simple Dr. Blade protocol.

The microwave sensor response at a specific frequency (f ) was characterized by the
reflection coefficient Γ(f ) = Re(f ) + i·Im(f ). Re represents the real part of the coefficient and
Im the imaginary part. The exploited signals were obtained from the relative variation
of the reflection coefficient during the immersion in a sample, in comparison with the
immersion in a reference blank solution (without target compounds). It was calculated
from the following equation:

∆Γ

Γ
=

Γ(sample)− Γ(blank)
Γ(blank)

(3)

Transformation and logarithmic scaling were implemented on Γ(f ) coefficient giving:
A = 20 log

(√
Re2 + Im2

)
where A represents the amplitude in dB.
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