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Abstract: Extraction conditions can exert a remarkable influence on extraction efficiency. The aim of
this study was to improve the extraction efficiency of carotenoids from Dunaliella parva (D. parva).
Dimethyl sulfoxide (DMSO) and 95% ethanol were used as the extraction solvents. The extraction time,
extraction temperature and the proportions of mixed solvent were taken as influencing factors, and the
experimental scheme was determined by Central Composite Design (CCD) of Design Expert 10.0.4.0
to optimize the extraction process of carotenoids from D. parva. The absorbance values of the extract at
665 nm, 649 nm and 480 nm were determined by a microplate spectrophotometer, and the extraction
efficiency of carotenoids was calculated. Analyses of the model fitting degree, variance and interaction
term 3D surface were performed by response surface analysis. The optimal extraction conditions
were as follows: extraction time of 20 min, extraction temperature of 40 ◦C, and a mixed solvent
ratio (DMSO: 95% ethanol) of 3.64:1. Under the optimal conditions, the actual extraction efficiency of
carotenoids was 0.0464%, which was increased by 18.19% (the initial extraction efficiency of 0.03926%)
with a lower extraction temperature (i.e., lower energy consumption) compared to the standard
protocol.

Keywords: Dunaliella parva; Central Composite Design; extraction efficiency; carotenoids; optimization

1. Introduction

Carotenoids are important phytochemicals contributing to health benefits in the hu-
man diet. They are lipophilic pigments produced by organisms, especially plants and
microorganisms [1–3]. Carotenoids have a terpenoid structure consisting of a long, con-
jugated chain. Most of the important carotenoids are tetraterpenes, which are usually
condensed from eight isoprene units [4–6]. Carotenoids can be divided into two groups
according to their structure, carbohydrate type and oxidized type. Carotenoids have im-
portant biological activities in organisms [6–9] and can play an important role in enhancing
immunity, anti-oxidation and delaying aging, preventing tumor, cardiovascular and cere-
brovascular diseases, and fighting cancer [10]. Carotenoids also reduce the risk of many
types of cancer, metabolic syndrome, obesity, cataracts and chronic diseases such as macular
degeneration [11]. Therefore, as food colorants and nutritional supplements, carotenoids
are widely used in food, medicine and health care products [12,13].

Carotenoids are mainly extracted from natural organisms. Dunaliella are unicellular
algae with higher salt tolerance that are mainly distributed in salty water and lake water.
Extreme environmental conditions, such as high salt concentrations, low temperature,
and the lack of nutrition, could induce the accumulation of natural carotenoids [14–20].
Dunaliella can thrive under high NaCl concentrations (0.3 to 3.0 M) [21]. Interestingly,
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D. parva, a halophilic microalga devoid of a cell wall and with high carotenoid content, has
been used in the cosmetics and dietary supplements industries [14,22]. D. parva lacks a cell
wall, which is favorable for genetic manipulation and product extraction [23,24]. Previous
studies reported the tolerance of D. parva against various unfavorable conditions associated
with nutrition, illumination, heavy metal ions and hyperosmotic shock, demonstrating the
high carotenoid production of D. parva under the above stress conditions [25–28]. These
unique traits give D. parva considerable advantages.

Compared with first-generation plant-based biofuels, microalgae have many potential
advantages for biofuel production. Microalgae do not require agricultural land and can fix
CO2 with higher efficiency. In addition, microalgae can be used for wastewater treatment,
biogas upgrades and nutrient removal [29]. As a halophilic microalga, D. parva could
yield lipid and abundant carotenoids and adapt to environmental stresses such as high salt
concentration.

Regarding the Dunaliella genus, many studies have focused on its mechanism of salt
resistance. Proteomic analysis revealed the mechanism of the Dunaliella salina Ds-26-16
gene by enhancing salt tolerance in Escherichia coli [30]. Four enzymes functioned together
to keep up the glycerol requirements in order to adapt to high salt concentrations [31].
Our laboratory performed a series of in-depth studies about D. parva. We cloned and
characterized several key genes of D. parva related to photosynthesis and carbohydrate and
lipid metabolism [32–36]. We studied the changes in the transcriptome and proteome under
nitrogen limitation conditions and identified the gene DpWRI1-like as a regulator of lipid
metabolism in D. parva [18,19]. In addition, we cloned three carotenoid biosynthesis genes
(Psy, Pds and GGPS) and investigated the changes of expression of three key genes [37,38].
Although our previous studies have greatly explored the lipid and carotenoid metabolism of
an important microalga, D. parva, at the molecular level, the lack of studies about carotenoid
extraction from D. parva has significantly limited the application and development of
D. parva.

At present, the extraction technologies of carotenoids mainly include organic solvent
extraction, green solvent extraction, microwave-assisted extraction, ultrasonic-assisted
extraction and supercritical fluid extraction [39–43]. The organic solvent extraction method
has the following advantages: the clear experiment principle, mature technology, ease
of operation, and a growing public familiarity. Common organic solvents are anhydrous
ethanol, ethyl acetate, 95% ethanol, n-hexane, petroleum ether, methanol solution, 2% acetic
acid solution, acetone, and so on [9]. Because carotenoids belong to a class of lipid-soluble
pigments, they can be dissolved by fat-soluble solvents. The objective of this study was to
determine the optimal conditions for the extraction of carotenoids from D. parva. Based on
the study of a single extraction solvent, two better extraction solvents were mixed. Through
CCD of the response surface method, optimized carotenoid extraction conditions were
obtained to improve the extraction efficiency of carotenoids, which laid a good foundation
for the further application of carotenoids in D. parva.

2. Materials and Methods
2.1. Algal Species

D. parva (FACHB-815) was purchased from the Freshwater Algae Culture Collection
at the Institute of Hydrobiology.

2.2. Experimental Design

In order to determine the solvent with higher extraction efficiency, the extraction
efficiencies of 7 commonly used solvents (petroleum ether, ethyl acetate, 95% ethanol,
n-hexane, ethanol, DMSO and acetone) were compared. These solvents were of analytical
grade (Sangon Biotech). Then, two solvents with higher extraction efficiencies were mixed
in fixed proportions as the mixed solvent.

In this study, three factors, including extraction time, extraction temperature and the
proportions of the mixed solvent, were selected as the main influencing factors for the
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extraction of carotenoids from D. parva (Table 1). The CCD method was used to optimize
the values of the influencing factors. The design was carried out using Design Expert
10.0.4.0 software. Three replicates were performed for each group.

Table 1. The levels of the variables in this study.

Factors
Levels

−α −1 0 +1 +α

A (time, min) 6.59 10 15 20 23.41
B (temperature, ◦C) 33.18 40 50 60 66.82

C (mixed proportion of DMSO and 95% ethanol) 0.3:1 1.5:1 3.25:1 5:1 6.3:1

2.3. Extraction of Carotenoids

The extraction of carotenoids was performed based on the former study with minor
modification [44]. After culturing D. parva, 1 mL of culture was centrifuged at 12,000 rpm for
5 min at room temperature; then, the supernatant was discarded to obtain the precipitation.
A total of 1 mL of extraction solvent was added to the precipitate and mixed by a vortex
oscillator. Then, the mixture was incubated at the preset temperature (60 ◦C in the standard
protocol) for the preset time (20 min in the standard protocol) and centrifuged at 12,000 rpm
for 2 min. At last, 250 µL supernatant was added to the microplate.

2.4. Determination of Carotenoids Content

The absorbance values of the extract (250 µL) at wavelengths of 665 nm, 649 nm
and 480 nm were measured by a BioTek Epoch 2 microplate spectrophotometer (Agilent,
Santa Clara, CA, USA) in order to calculate the carotenoid content in D. parva. The corre-
sponding extraction solvent was used as a blank control. The concentration of carotenoids
(µg mL−1) and the extraction efficiency of the carotenoids (%) were calculated according to
the following formulas [44].

Chla = 12.47 × A665 − 3.62 × A649 (1)

Ch1b = 25.06 × A649 − 6.5 × A665 (2)

C = (1000 × A480 − 1.29 × Chla − 53.78 × Ch1b)/220 (3)

Carotenoids extraction efficiency (Y) =
C × V

W × 1000 × 1000
× 100 (4)

where Chla represents the concentration of chlorophyll a (µg/mL), Ch1b indicates the
concentration of chlorophyll b (µg/mL), C represents the concentration of carotenoids
(µg/mL), V stands for the volume of extraction solvent (µL), and W indicates the dry
weight of D. Parva (mg).

3. Results and Discussion
3.1. Regression Model and Statistical Test

The extraction efficiencies of 7 commonly used solvents are shown in Figure 1. The
results indicated that DMSO and 95% ethanol had higher extraction efficiencies (0.03926%
and 0.03868%). Therefore, these two solvents were selected for further study. The previous
studies also reported extracting carotenoids from microalgae with high efficiency using
these two solvents. The efficiency of pulsed electric field-assisted extraction combined
with DMSO in extracting carotenoids from microalgae Tetraselmis chui (Chlorophyta) and
Phaeodactylum tricornutum (Bacillariophyta) was higher [45]. The cosmeceutical potential of
ethanol extract including carotenoids (astaxanthin, β-carotene, canthaxanthin, violaxanthin,
zeaxanthin) from microalga Nannochloropsis sp. (Eustigmatophyceae) G1-5 isolated from
the Republic of Korea was investigated [46]. It was speculated that DMSO and ethanol had
higher extraction efficiency due to their highly polar organic solvents.
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Figure 1. Extraction efficiency of seven commonly used solvents.

Using CCD to optimize the carotenoid extraction conditions, 20 group tests were
carried out, and the results of the extraction efficiency are depicted in Table 2. The second-
order polynomial regression equation showing the connection among carotenoid extraction
efficiency (Y) and three variables, time (A), temperature (B) and the proportion of mixed
solvent (C), is shown in the following equation:

Y = 34.81 + 0.012A + B + 0.5C − 0.25AB + 0.038AC + 0.15BC − 1.07A2 + 1.75B2 − 1.34C2 − 0.063ABC − 4.89A2B + 0.14A2C + 0.26AB2

Table 2. Experimental results of CCD design.

Group A
(Time, Min)

B
(Temperature, ◦C)

C
(Proportion of

Mixed Solvent)

Actual
Extraction
Efficiency
(Y, 10−5)

Predictive
Extraction
Efficiency
(Y, 10−5)

1 10 60 5:1 30.78 31.07
9 20 60 5:1 34.00 34.81
2 15 50 3.25:1 35.87 34.81
3 15 50 3.25:1 38.87 39.16
4 20 40 5:1 32.17 31.77
5 6.59 50 3.25:1 33.54 34.81
6 15 50 3.25:1 36.85 37.14
7 10 40 1.5:1 35.41 34.81
8 15 50 3.25:1 30.76 31.05
10 23.4 50 3.25:1 32.21 31.81
11 10 40 5:1 37.63 37.92
12 10 60 1.5:1 29.14 29.43
13 15 50 6.19:1 32.28 31.88
14 15 66.8 3.25:1 41.83 41.43
15 15 50 3.25:1 33.84 34.81
16 15 33.18 3.25:1 38.48 38.08
17 15 50 0.31:1 30.59 30.19
18 20 60 1.5:1 29.22 29.51
19 15 50 3.25:1 36.07 34.81
20 20 40 1.5:1 37.69 37.98

The experimental data in Table 2 were analyzed by Design-Expert 10.0.4.0 software
to determine the significance. As shown in Table 3, the F-value of the model was 13.31,
and the p-value was 0.0023 (less than 0.01), which indicated that the selected regression
model was extremely significant. In this case, A2, B2, C2 and A2B were very significant or
significant terms. Meantime, the p-value of the lack of fit (0.3064) indicated that the lack of
fit was not significantly associated with the pure error. The coefficient R2 represents the
reliability of the model. The value of R2 (0.9665) indicated that the data showed a good
agreement for the model, and this model had a huge potential for the prediction of the
response value.
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Table 3. Analysis of variance for the model.

Source Sum of Squares d. f. Mean Square F-Value p-Value Significance

Model 227.97 13 17.54 13.31 0.0023 **
A 0.0008 1 0.0008 0.0006071 0.9811
B 5.61 1 5.61 4.26 0.0846
C 1.43 1 1.43 1.08 0.3380

AB 0.51 1 0.51 0.39 0.5567
AC 0.011 1 0.011 0.008537 0.9294
BC 0.19 1 0.19 0.14 0.7200
A2 16.48 1 16.48 12.51 0.0123 *
B2 43.97 1 43.97 33.37 0.0012 **
C2 25.73 1 25.73 19.53 0.0045 *

ABC 0.031 1 0.031 0.024 0.8827
A2B 79.19 1 79.19 60.09 0.0002 **
A2C 0.065 1 0.065 0.049 0.8316
B2A 0.22 1 0.22 0.16 0.6993

Residual 7.91 1 1.32 - -
Lack of fit 1.63 1 1.63 1.30 0.3064
Pure error 6.28 1 1.26 - -

Sum 235.88 - - - -
R2 0.9665 - - - -

Adj R2 0.8939 - - - -
Precision 12.496 - - - -

Note: * (p < 0.05) represents significant findings, ** (p < 0.01) represents extremely significant findings, - represents
no data for this item, and d. f. represents degrees of freedom.

Figure 2 shows the relationship between the theoretical value and the actual response
value. The straight line indicates that the theoretical value was roughly equal to the
experimental value. As shown in Figure 2, most of the experimental values were distributed
in close proximity to a straight line, which suggested that there was little difference between
the experimental values and the theoretical values.

Figure 2. Comparison of predicted and actual response values.

The previous studies reported many conventional optimization studies. For enhancing
the biomass production of microalga Mychonastes homosphaera (formerly Chlorella minutissima)
(Chlorophyta), BBM and BG-11 were identified as the potential media, and the suitable
concentrations of nitrate, phosphate and glycerol were 0.375 g/L, 0.16 g/L and 12.5 g/L by
a single factor experiment [47]. The effect of different culture conditions such as light, pH,
shaking time and temperature on biomass productivity and growth rate was studied in
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Halochlorella rubescens (formerly Scenedesmus rubescens) (Chlorophyta), and the maximum
biomass productivity was obtained under the most optimal conditions (white light of 36 W
for 16 h, pH 8, 24 h shaking time and 26 ◦C) by a single factor experiment [48]. With
the progress of methodology, many advanced optimization methods such as orthogonal
design and response surface methodology (RSM) emerged. An orthogonal design was used
to obtain the optimal experimental conditions in iodine adsorption [49]. An orthogonal
design was used to optimize light irradiance and the ratio of photoperiods and LEDs in
order to increase the photosynthetic capacity and growth of cucumber seedlings by LED
illumination [50].

As a more advanced optimization method, RSM is a collection of mathematical and sta-
tistical techniques based on the fit of a polynomial equation to the experimental data which
describes the behavior of a data set with the objective of making statistical previsions [51].
RSM includes three kinds of designs, Plackett-Burman (PB), CCD and Box-Behnken Design
(BBD), which have been widely used for optimization tests. An optimization assay was
performed using RSM with CCD for microemulsion-assisted extraction of carotenoids
from watermelon pulp, and it was found that the CCD methods could be successfully
performed compared to conventional solvent extraction [52]. CCD was successfully used to
determine the optimum supplementation of organic carbon and nitrogen in new MSW me-
dia [53]. Under optimal medium conditions designed using BBD, a form of RSM, biomass,
beta-carotene and lipid yield were increased by 2.17 fold, 1.45 fold and 1.56 fold, respec-
tively [54]. A PB design was used to optimize the factors affecting polyphenol extraction
from Pleioblastus amarus (Keng) shell, such as ethanol concentration, extraction temperature,
liquid to solid ratio, extraction time and reflux extraction times [55].

3.2. Interaction among Influence Factors and Confirmation of Optimal Conditions

Three-dimensional response surfaces were generated to investigate the interaction
among three influence factors and to determine the ideal value of each influencing factor
for the maximum extraction efficiency of carotenoids. Figure 3 shows the effect of two
influencing factors on extraction efficiency.

In Figure 3a, the oval contour lines were dense, and the eccentricity of the flat ellipse
was large, which indicated that the influence of time and temperature on extraction effi-
ciency was complex. The pattern of response surface with a large slope was wavy. With
the increase of extraction time, the response surface formed a steep slope, which suggested
that the interaction of time and temperature had a great influence on extraction efficiency.

In Figure 3b, the contour lines were sparse and approximately oval, and the response
surface was spherical with a flat slope. The results showed that time and the proportion
of mixed solvent had little effect on extraction efficiency. The cross effect on extraction
efficiency was weak.

In Figure 3c, the contour lines were dense and oval, and the response surface was wavy
with a flat inclination of the surface. It was shown that two interaction terms (temperature
and the proportion of mixed solvent) had little influence on extraction efficiency.

In summary, the effects of three factors (time, temperature and the proportion of
mixed solvent) on the extraction efficiency of carotenoids were complex. A2, B2, C2 and
A2B were very significant or significant terms. In the future, more organic solvents will be
investigated regarding their extraction efficiency.
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Figure 3. Response using Central Composite Design obtained by plotting: (a) time and temperature;
(b) time and proportions of mixed solvent; (c) temperature and proportions of mixed solvent.

3.3. Response Optimization and Validation

Through the analysis of Design-Expert software, the optimal values of the corre-
sponding influencing factors could be obtained for the maximum extraction efficiency of
carotenoids from D. parva. The optimal conditions were as follows: extraction time of 20 min,
temperature of 40 ◦C, and a proportion of mixed solvent of DMSO: 95% ethanol = 3.64:1. Un-
der the optimal conditions, the theoretical extraction efficiency of carotenoids was 0.0400%.
Then, the optimal extraction efficiency under the optimal extraction conditions was sub-
jected to verification. The actual maximum extraction efficiency (0.0464%) was obtained.
The actual maximum was essentially in agreement with the theoretical maximum for the
extraction efficiency of carotenoids.

3.4. Related Research on Carotenoid Extraction from Microalgae

Carotenoids are antioxidant compounds that have been used for many industrial ap-
plications. The halophilic microalga D. parva is rich in natural carotenoids. A solvent-based
extraction method using a solvent mixture of acetone/ethanol/hexane (2/1/1 vol.) and a
method using supercritical CO2 to extract β-carotene from D. salina were compared based
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on environmental and economic perspectives [56]. The results indicated that the potential
advantages of the supercritical method (lower energy consumption and greenhouse gas
emission) did not balance the disadvantage (low extraction yield) [56]. Monte et al. used
n-heptane for the extraction of carotenoids from D. salina [57]. Rammuni et al. summarized
the conventional and modern extraction methods used for the recovery of β-carotene from
D. salina and highlighted the sustainability of integrated co-production of biofuels and
carotenoids [58]. However, few studies were reported about the optimization of extraction
conditions of carotenoids from D. parva, which is rich in oil and carotenoids. Here, the CCD
method, a widely used method, was used to optimize the extraction conditions [59,60].
Firstly, the extraction efficiencies of 7 kinds of solvents (petroleum ether, ethyl acetate,
95% ethanol, n-hexane, ethanol, DMSO and acetone) were compared. Secondly, two types
of solvents with higher extraction efficiencies (DMSO and 95% ethanol) were mixed as
a mixed solvent. The CCD method was used to optimize the levels of three influence
factors (time, temperature and the mixed proportions) in order to obtain the best extraction
efficiency. The optimized extraction temperature of 40 ◦C was significantly lower than
the standard temperature of 60 ◦C, which could obviously save energy. The optimized
extraction efficiency of 0.0464% improved by 18.19% and 19.96% compared with that of
DMSO (0.03926%) and 95% ethanol (0.03868%). In a word, lower energy consumption and
higher extraction efficiencies were obtained through CCD optimization.

Many environmental factors could affect the carotenoid content of microalgae. Nitrate
concentrations, salinity and light quality could affect carotenoid content in Dunaliella salina [61].
High light intensity in combination with nitrogen limitation could result in maximal
carotenoid yield [62]. The highest carotenoid yield was obtained under nitrogen and
salinity stress conditions in Auxenochlorella protothecoides (formerly Chlorella protothecoides)
(Chlorophyta) [63]. Therefore, the regulation of carotenoid content of microalgae is complex,
which accounted for the low extraction efficiency in this study.

4. Conclusions

In conclusion, we obtained optimized extraction efficiencies and extraction conditions
through the CCD method. This study would be helpful for the extraction of carotenoids
from D. parva and the application of D. parva, which is rich in oil and carotenoids.
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