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Abstract: The process of electrocatalytic CO2 reduction and H2 evolution from water, regarding
renewable energy, has become one of the global solutions to problems related to energy consumption
and environmental degradation. In order to promote the electrocatalytic reactivity, the study of the
role of ligands in catalysis has attracted more and more attention. Herein, we have developed a
copper (II) complex with redox-active ligand [Cu(L1)2NO3]NO3 (1, L1 = 2-(6-methoxypyridin-2-yl)-6-
nitro-1h-benzo [D] imidazole). X-ray crystallography reveals that the Cu ion in cation of complex 1
is coordinated by two redox ligands L1 and one labile nitrate ligand, which could assist the metal
center for catalysis. The longer Cu-O bond between the metal center and the labile nitrate ligand
would break to provide an open coordination site for the binding of the substrate during the catalytic
process. The electrocatalytic investigation combined with DFT calculations demonstrate that the
copper (II) complex could homogeneously catalyze CO2 reduction towards CO and H2 evolution,
and this could occur with great performance due to the cooperative effect between the central Cu
(II) ion and the redox- active ligand L1. Further, we discovered that the added proton source H2O
and TsOH·H2O (p-Toluenesulfonic acid) could greatly enhance its electrocatalytic activity for CO2

reduction and H2 evolution, respectively.

Keywords: copper (II) complex; redox-active ligand; electrocatalysis; CO2 reduction; H2 evolution

1. Introduction

The enormous global consumption of fossil fuel leads to critical environmental, energy,
and climate issues [1]. Several promising strategies have been developed to resolve the
above issues. Firstly, applying renewable electricity to drive CO2 into high-value fuels
such as carbon monoxide (CO), formic acid (HCOOH), methanol (CH3OH), and methane
(CH4), etc., has been considered a sustainable route to alleviate energy shortages and global
warming [2]. Secondly, as a green energy and high energy carrier, hydrogen (H2) is a
great candidate to replace fossil fuels in the near future [3]. Therefore, catalytic hydrogen
evolution reaction (HER), with high efficiency and low cost, has become a hot research
area [4]. Thirdly, due to the similar reduction potentials, HER is the main competing
reaction during electrocatalytic CO2 reduction reaction (CO2RR), which is a crucial problem
to be solved for CO2RR [5]. Nevertheless, the competition reactions of HER and CO2RR
can be rationally used in exploring efficient ways to produce syngas, the gaseous mixture
of CO and H2, which are very useful in producing fuels such as alcohols, hydrocarbon,
dimethyl ether, and more fuels through the industrial Fischer–Tropsch process, etc. [6].

In recent years, the uses of low-cost non-precious transition metal complexes as cata-
lysts have aroused the interest of researchers. Among these non-precious metal complexes,
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due to the special electron structure of copper, copper complexes have been confirmed to
be effective electrocatalysts in various reactions. In 2021, Lan et al. reported a copper (I)
based complex with excellent electrocatalytic selectivity for CO2-to-CH4 reduction, which
occurs because of the chalcophile interactions in crystalline catalysts [7]. Mitsopoulou
and coworkers investigated the electrocatalytic activity for hydrogen evolution of a Cu (I)
diimine complex, and they found that the coordinated nitrogen atoms play an important
role, while Yang’s group developed a copper (0) enriched material to tune the syngas
production with great electrochemical activity [8,9].

In order to promote the electrocatalytic reactivity, the study of the role of ligands
in catalysis has attracted more and more attention [10]. Redox-active ligands, e.g. non-
innocent ligands, have been affirmed to be a multifunctional tool for improving electro-
catalysis both dynamically and thermodynamically, because they can act as an electron
reservoir to accept or donate electrons, regulating the electronic properties of the central
metal ions, etc. [11–13]. Those extraordinary features enable the redox active ligands to
facilitate various catalysis of the transition metal complexes with high reactivity. Jurss’
group reported a cobalt (II) complex with bipyridyl-NHC ligand, showing high selectivity
for electrocatalytic CO2 reduction to CO, occurring due to the redox-active synergy effect
between the cobalt center and redox-active ligands [14]. Our group also explored the crucial
effect of the redox-active ligand bis(imino)pyridine (PDI) on the electrocatalytic activity for
CO2 reduction [15]. Hess and co-workers investigated the electrocatalytic H2 evolution by
a Co (II) complex bearing macrocycle ligand, and they found that the redox-active ligand
could modulate the energy and activity of HER [16]. Marinescu’s group prepared a cobalt
(II) complex with thiolate ligand, and they found that protonation of the redox non-innocent
ligand could influence the electrocatalytic reactivity for syngas generation [17]. Imidazole
and its derivatives, as forms of redox-active ligands with various structures and rich elec-
trons, have been proven to assist and even stabilize the metal centers in electrocatalytic
reactions [18–20].

Regarding the aforementioned reasons, we have synthesized an imidazole derivative
redox-active ligand L1, 2-(6-methoxypyridin-2-yl)-6-nitro-1h-benzo [D] imidazole, and
obtained a copper (II) complex [Cu(L1)2NO3]NO3 (1) in which the central Cu (II) ion is
coordinated by this ligand. The cation of complex 1 is coordinated by two redox ligands
L1 and one labile nitrate ligand. The systematic electrocatalysis investigation of complex 1
reveals that it can homogeneously electrocatalyze CO2 reduction and H2 evolution, and this
occurs with great performance owing to the cooperative effect between the redox-active
ligand L1 and the metal center Cu (II). The added proton source, H2O, could highly enhance
its electrocatalytic efficiency for CO2 reduction to CO. Meanwhile, in the process of catalytic
CO2 reduction to CO, there is an inevitable competition reaction of hydrogen generation,
which is a promising process for the synthesis of syngas, with the mixture of CO and H2.
Therefore, we also investigated its catalytic reactivity for H2 evolution, and we found that
the added proton source TsOH·H2O could highly enhance its electrocatalytic activity for
H2 evolution.

2. Results and Discussion
2.1. The Nature and Character of the Complex

X-ray crystallography demonstrates that complex 1 belongs to monoclinic crystal
and the space group is C12/c1 system (Table S1, Supplementary Materials). The cation
of complex 1 is surrounded by two redox-active ligands L1 and one labile nitrate ligand.
According to the bond valence sum calculations, the oxidation state of the copper atom in
the complex is +2 [21]. As presented in Figure S17 (Supplementary Materials), the magnetic
moment (µeff) of complex 1 at room temperature is around 1.80 µB, and, in addition, the
ligand L1 and the copper ion did not undergo reduction during the synthesis procedure,
which confirms that the copper ion should be in +2 oxidation state. Furthermore, according
to the bond valence sum calculations, the copper atom in the complex is in +2 oxidation
state [21]. The metal center CuII in the complex is coordinated with four N atoms from
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the ligand L1 and two O atoms from the nitrate ligand, forming a twisted tetravacant
octahedral construction, as illustrated in Figure 1 and Table S9 (according to the analysis
of SHAPE). The coordination geometry of complex 1 can be classified as a distorted four
vacancy octahedron (vOC-2, 3C2v). Due to the special d9 electronic configuration of the
metal center CuII ion, it is witnessed that the Jahn-Teller effect and Bailar distortions of the
octahedron and Cu1-N6 and Cu1-O4 bonds are distorted almost on the same axis [22–24].
Meanwhile, the longer Cu-O bond between the metal center and the labile nitrate ligand
would break to provide an open coordination site for the binding of the substrate during
the catalytic process [25,26].

Figure 1. (a) The crystal structure of the complex 1. (b) The spatial configuration of the complex 1, all
are 50% probability ellipses. Color codes: green, Cu; red, O; blue, N; gray, C; and hydrogen atoms are
omitted for clear visibility.

2.2. Electrochemistry under Atmosphere of 1 atm Ar

The cyclic voltammograms (CVs) of complex 1, obtained at different scanning rates
(100–500 mV s−1), in the electrolyte solution of 0.1 M nBu4NPF6/CH3CN in the argon (Ar)
atmosphere, are displayed in Figure 2. When scanning towards cathode potentials, it can
be observed that the complex has three irreversible reduction peaks at the potentials of
−1.38 V,−1.97 V and−2.59 V vs. NHE (all the potentials are versus NHE) (Figure 2). Based
on the DFT calculation, the LUMOs (lowest unoccupied molecular orbital) of complex 1
are mainly localized on the redox-active ligand L1. (Figure 3, the frontier molecular orbital
surfaces of 1 are depicted in Figures S2 and S3, Table S4, Supplementary Materials). We
have performed the Cyclic voltammetry under Ar atmosphere for the ligand L1 (Figure S5,
Supplementary Materials), which displays two reduction peaks at the potential of −0.48 V
and −0.93 V. By comparing the reduction potentials of the ligand L1, the first two reduction
peaks of complex 1 may be attributed to the reduction of the two redox active ligands L1

and the according two radical anions [L1•]. Meanwhile, the last reduction wave can be
ascribed to the CuII/CuI couple. In addition, as shown in Figure 2b, the cathode current
peaks (ip) at different scanning rates have a good linear correlation with the square root of
the scanning rates, which proves that the electrode process is mainly a diffusion control
process. We have listed all the data in these figures in the corresponding tables, as shown
in Tables S5–S8 (Supplementary Materials).
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Figure 2. (a) cyclic voltammetry of 2 mM complex 1 under 1 atm Ar with 0.1 M nBu4NPF6 as
supporting electrolyte at scan rates range from 100 to 500 mV s−1; and (b) the linear relationships
between the peak cathodic currents and the square root of scan rates.

Figure 3. LUMO of complex 1 (iso value = 0.02).
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2.3. Electrochemistry in the Presence of CO2

The electrocatalytic performance for CO2 reduction of compound 1 was investigated
under saturated CO2 atmosphere with 0.1 M nBu4NPF6 as the supporting electrolyte in
MeCN solution. The cyclic voltammetry curves at −1.15 V under 1 atm CO2 are subtracted
from the base line. We mainly studied the comparison of catalytic current of complex 1 at
100 mV s−1 in CO2 and Ar at −1.15 V, as shown in Figure S10 (Supplementary Materials).
By carrying out cyclic voltammetry experiments on glassy carbon (GC) electrodes, we
found that the CV plot in CO2 displays an enhanced irreversible reduction wave at −1.15 V
compared with that in Ar atmosphere at the same scanning rate, while it also repeats very
well at different scanning rates without new oxidation or reduction peaks emerging, as
illustrated in Figure 4. In addition, we used FTO as the working electrode to perform
controlled potential electrolysis of 2mM complex 1 in order to characterize the stability
of our catalyst and determine the Faraday efficiency according to the literature reported
before [27], and we detected CO based on GC (Gas Chromatography) analysis. All these
results indicate that compound 1 can electrocatalytically reduce CO2 to CO with great sta-
bility. Additionally, as illustrated in Figure 5, in order to explore the electrocatalytic activity
for CO2-to-CO of complex 1 in the presence of proton donor, different concentrations of
H2O were added to the CO2 saturated MeCN solution as the proton source for the CV
experiments under the same condition. We have observed that, by the addition of H2O, the
reductive peak current density increases, which suggests that the addition of proton source
can promote its catalytic reactivity for CO2 reduction, and the catalytic reaction should
be a PCET process [25]. Furthermore, Figure 6 and Table S8 (Supplementary Materials)
show the concentrations of complex 1 as exhibiting linear relationship with the catalytic
currents at the catalytic potential of −1.15 V, which suggests that the catalytic CO2-to-CO
conversion is the first-order reaction.

Figure 4. Cyclic voltammograms of 2 mM complex under 1 atm CO2 at scan rates range from 100 to
500 mV s−1 (all the plots are subtracted from the baseline).
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Figure 5. Cyclic voltammograms of the complex 1 containing the H2O system at different con-
centrations in the CO2 atmosphere. Scan rate: 100 mV s−1. Working electrode: glassy carbon.
Counter-electrode: Pt wire. Reference electrode: Ag/AgCl.

Figure 6. Cyclic voltammograms of the complex 1 at different concentrations in the CO2 atmosphere.
Scan rate: 100 mV s−1.

The turnaround frequency (TOF) of the electrocatalytic CO2 of complex 1 can be
determined by the Equation (1) below:

TOF =
Fvn3

p

RT
(

0.4463
ncat

)
2
(

icat

ip
)

2
(1)

F is the Faraday constant (96,485 C·mol−1), v is the scanning rate used (0.1 V s−1),
np is the number of electrons involved in the non-catalytic oxidation reduction reaction
(np = 1), and R is the gas constant (8.314 J·K−1·mol−1), T is temperature (293.15 K), ncat is
the number of electrons involved in the catalytic reaction (ncat = 2 indicates the reduction
of CO2 to carbon monoxide), ip and icat are identified as peak currents under Ar and CO2,
respectively. By Equation (1), TOF is calculated as 0.65 s−1 at the potential of −1.15 V vs.
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NHE (icat/ip = 1.82), which is comparable with those reported cooper based homogeneous
catalysts [28–31].

In order to further explore the electrocatalytic ability of this complex for CO2 re-
duction, a series of CPE experiments were recorded in CO2 saturated CH3CN solu-
tion, with the addition of distilled water as the proton source. As shown in Figure S7
(Supplementary Materials), by the red line, during 4000 s electrolysis, the current density
can reach ~−1.5 mA cm−2 at the potential of −1.15 V vs. NHE in present of 2 mM complex
1 and 0.139 mM water; the mixed-gas CO and H2 are detected, which reveals that com-
plex 1 is a potential catalyst for producing syngas [27–29]. As demonstrated in Figure S9
(Supplementary Materials), according to the GC analysis, the calculated Faraday efficiency
(FE) of CO evolution is nearly 10% and is about 90%. Furthermore, the current density
is very small at the potential of −1.15 V vs. NHE without complex 1 (the black line),
and no CO or H2 is detected, indicating that no catalysis occurs. Additionally, we also
examined the solution after electrolysis by MS analysis, but we did not observe HCOOH
or CH3OH. Moreover, the almost linear curve of CPE indicates that catalysts 1 can remain
stable in solution throughout the catalytic process. Meanwhile, as shown in Figure S7
(Supplementary Materials), the rinse test was also conducted on the FTO glass electrode
after electrocatalysis, displaying nearly no current density, similar with that of the blank
test before the catalysis, which assures that complex 1 is a stable homogeneous catalyst.
Additionally, we have carried out DLS of (dynamic light scatting) of complex 1 before
and after 4000 s electrolysis in MeCN solution (Figure S15b, Supplementary Materials),
which reveals that the particle distributions are in the range of the molecular hydrody-
namic diameter of the cluster, indicating that there are no nanoparticles formed during
electrolysis. In addition, Figure S8 illustrates the in-situ UV–vis spectroelectrochemistry of
complex 1, conducted during 4000 s CPE, which shows that there is close to no difference
in the spectrum, proving the high stability of catalyst 1 during electrolysis. During the
reduction process, the longer Cu-O bond between the metal center and the labile nitrate
ligand could break to provide an open coordination site for the binding of the substrate
CO2 to produce the possible intermediate Cu-COO* [23,24]. More importantly, via two
reduction steps, the two redox-active ligands are both reduced to radial two radical anions
[L1•], which could assist the mental center to cooperatively catalyze CO2 reduction [10].

2.4. Electrocatalytic Property for Hydrogen Evolution

The electrocatalytic property for hydrogen evolution (HER) of complex 1 was also
investigated in CH3CN (0.1 M nBu4NPF6) electrolyte solution with the addition of p-
Toluenesulfonic acid (TsOH·H2O) as the proton source. As depicted in Figure 7, compared
with the CV plot without addition of the proton source, it can be found that, with the
increasing amounts of p-Toluenesulfonic acid added in the solution, the peak currents at
the potential of −1.97 V are greatly enhanced. Meanwhile, we detected amounts of H2 by
GC analysis, by CPE experiments, at this potential. These results prove that the reduction
reaction of H+ can occur in the presence of complex 1 at the presence of p-Toluenesulfonic
acid. In order to further study the electrocatalytic ability of complex 1 for hydrogen
evolution, a series of CPE experiments were carried out for 4000 s in CH3CN with and
without p-Toluenesulfonic acid at different potentials using FTO working electrode, which
suggest that, with 0.58 mM of p-Toluenesulfonic acid at the potential of−1.97 V, the current
density can reach ~5 mA cm−2, as illustrated in Figure 8. Furthermore, in order to prove
that H2 is not produced by TsOH·H2O, the comparative CV experiment, containing solely
TsOH·H2O in CH3CN solution without complex 1, is carried out, indicating that there are no
reduction waves around −1.97 V (Figures S13 and S14, Supplementary Materials). Beyond
this finding, in the absence of complex 1, the current density at −1.97 V is negligible, which
suggests that no catalytic reaction occurs without complex 1. According to Equation (1),
Equations (S1) and (S2), the calculated TOF of H2 evolution is 0.33 s−1, and FE is shown in
Figure S16 (Supplementary Materials), which is comparable with those reported copper
based homogeneous catalysts [8,32–34].



Molecules 2022, 27, 1399 8 of 13

Molecules 2022, 27, x FOR PEER REVIEW 8 of 13 
 

reaction of H+ can occur in the presence of complex 1 at the presence of p-Toluenesulfonic 
acid. In order to further study the electrocatalytic ability of complex 1 for hydrogen evo-
lution, a series of CPE experiments were carried out for 4000 s in CH3CN with and without 
p-Toluenesulfonic acid at different potentials using FTO working electrode, which sug-
gest that, with 0.58 mM of p-Toluenesulfonic acid at the potential of −1.97 V, the current 
density can reach ~5 mA cm−2, as illustrated in Figure 8. Furthermore, in order to prove 
that H2 is not produced by TsOH·H2O, the comparative CV experiment, containing solely 
TsOH·H2O in CH3CN solution without complex 1, is carried out, indicating that there are 
no reduction waves around −1.97 V (Figure S13, Figure S14, Supplementary Materials). 
Beyond this finding, in the absence of complex 1, the current density at −1.97 V is negligi-
ble, which suggests that no catalytic reaction occurs without complex 1. According to 
Equation (1), Equation (S1), and (S2), the calculated TOF of H2 evolution is 0.33 s−1, and FE 
is shown in Figure S16 (Supplementary Materials), which is comparable with those re-
ported copper based homogeneous catalysts [8,32–34]. 

 

Figure 7. Cyclic voltammograms of complex 1 (2 mM) recorded in the absence (rose red trace) and 
in the presence of TsOH·H2O: 1 equiv (black trace), 2 equiv (red trace), and 3 equiv (blue trace) in 
CH3CN (0.1 MnBu4NPF6) at a glassy carbon electrode and 100 mV s−1. 

Figure 7. Cyclic voltammograms of complex 1 (2 mM) recorded in the absence (rose red trace) and
in the presence of TsOH·H2O: 1 equiv (black trace), 2 equiv (red trace), and 3 equiv (blue trace) in
CH3CN (0.1 MnBu4NPF6) at a glassy carbon electrode and 100 mV s−1.

Figure 8. CPE of 2 mM complex 1 in CH3CN (0.1 M nBu4NPF6) (red) or in CH3CN (0.1 M nBu4NPF6)
(rose red) solutions with 0.58 mM TsOH·H2O added; no complex 1 (green) under an atmosphere of
Ar on the FTO working electrode; rinse test (blue).

Moreover, the rinse test conducted on the FTO glass electrode after electrocatalysis
shows almost no current density, which resembles that of the blank test before the catalysis
(Figure 8), revealing that complex 1 can homogeneously catalyze H+ reduction with high
stability. The DLS of complex 1 proved that no nanoparticles were formed before and after
electrolysis for 4000 s, indicating that it has excellent stability, as illuminated in Figure S15a
(Supplementary Materials). Additionally, the nearly linear curve of CPE indicates that
catalyst 1 can remain stable in solution throughout the catalytic process. Furthermore,
as shown in Figure S12 (Supplementary Materials), during CPE for 4000 s, the in-situ
UV–vis spectroelectrochemistry of complex 1 displays negligible difference in the spectrum,
confirming the great stability of catalyst 1 during electrolysis.
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3. Materials and Methods
3.1. Synthesis

The ligand L1 = 2-(6-methoxypyridin-2-yl)-6-nitro-1h-benzo [D] imidazole was synthe-
sized according to the previous report [35]. Cu(NO3)2·3H2O (0.242 g, 1 mmol) was added
to 15 mL acetonitrile solution of L1 (0.782 g, 2 mmol), and stirred at room temperature
for 12 h. The resulting solution was filtered, and the filtrate was kept for evaporation at
room temperature for about 7 days to give X-ray-quality dark green crystals. Yield: 0.384 g
(57.9%). Calc. (Found) for C26H18CuN10O12: C, 48.75(48.62); H, 2.81(2.99); N, 19.69(19.54).
IR (KBr disk, cm−1): 3092 (m), 1591 (m), 1471 (m), 1422 (m), 1319 (s), 1047 (w), 803 (w),
732(w), and 607(w) (Figure S1, Supplementary Materials). The purity of the synthesized
complex 1 was confirmed by powder X-ray diffraction (PXRD) analysis, which shows that
the peak positions of the diffraction in their experimental and theoretical PXRD patterns
all agreed well (Figure S4, Supplementary Materials), demonstrating that the prepared
samples are all pure.

3.2. General Materials and Characterization

The solvents and materials used are reagent grade and have not been purified. Un-
less otherwise stated, all the operations are carried out under aerobic conditions, all the
chemicals are commercially available and can be used without further purification, and the
carbon dioxide and argon are purchased from Dehai Gas Company (Hainan, China). X-ray
powder diffraction (XRD) (Figure S4) is carried out on the Bruker D8 powder diffraction
instrument in order to obtain the purity of the complement and the sample of the complex.
After complex fracks with pure KBr, infrared spectral data (Figure S1, Supplementary
Materials) is recorded by the Nicolet 170SX infrared spectrometer (Thermo Fisher, Waltham,
MA, USA) in the 4000–500 cm−1 scanning range. Elemental analysis uses 2400 PerkinElmer
analyzers to examine the percentage content of C, H, and N elements of the mates, and the
theoretical values are basically consistent.

3.3. Crystal Structure Determination

The structural data of crystal is collected using the Bruker Smart-1000 CCD X-ray
monocrystalline diffraction instrument (Bruker, Germany), all of which is restored by the
SAINT v8.34A program (Bruker, 2013) and corrected and absorbed using the SADABS
program (Bruker, 2014/5). The SHELXL software (v.2014/7, Software Fayre, Madrid, Spain)
and Olex2 software (v.1.2, OlexSys Ltd., Durham, England) parse the initial structure by
direct method, refining it with F2-based full matrix least square technology [36,37], and
this technique is used to modify the non-O atomic coordinates and anisotropy. Table S1
(Supplementary Materials) gives cell parameters, spatial groups, some conventional ther-
modynamic parameters, and other data of the crystal, and it introduces the relevant crystal
information in detail. Tables S2 and S3 (Supplementary Materials) list the selected key
length and key angles. The anion of the molecule is severely disordered, thus a Platon-
Squeeze [38] was used to refine the anion-free structure of complex 1.

3.4. Electrochemical Measurement and Electrolytic Product Analysis

All electrochemical experiments are tested with CHI660E electrochemical analyzers
in order to study their electrocatalytic properties, and these experiments are conducted in
single-chamber three-electrode reactors. A solution of 0.1 M nBu4NPF6 in a dry acetonitrile
was used as the supporting electrolyte. Cyclic voltammogram (CV) experiments were
carried out using a glass carbon working electrode with a diameter of 3 mm, which was
carefully polished with diamond plaster, and ultrasonically cleaned in aqueous ethanol
and deionized water, and then dried before use.

There is close to 20 mL of solution in the electrolytic cell, and the concentration of the
complex in the solution is close to 0.1 mol/L. The anti-electrode is platinum wire, and the
reference electrode is the Ag/AgCl electrode. A conductive glass substrate doped with
fluorine tin oxide (FTO) (1 cm × 1 cm, effective surface area of 1.0 cm2) (produced by
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Zhuhai Kaivo Optoelectronic Corp., Zhuhai, China) is used as an operating electrode to
control potential electrolysis (CPE), which is soaked with 5 wt% NaOH in ethanol solution
for several hours, and then washed with water, ethanol, and water in turn. Before each
experiment, the solution is blown away at room temperature with Ar or CO2 for 30 min.
CPE at the same condition on GCE is shown in Figure S6 (Supplementary Materials).

In-situ UV-visible spectral electrochemistry is performed by applying the constant po-
tentials of −1.15 V (Figure S8, Supplementary Materials) and −1.97 V vs. NHE (Figure S12,
Supplementary Materials) under CO2 and Ar atmosphere, respectively, and recorded using
the UV-visible spectrophometometer (Shimadzu, Kyoto, Japan). In-situ spectral electro-
chemistry studies use quartz dishes with a path length of 1 cm as electrochemical batteries,
including platinum mesh, platinum wire, and Ag/AgCl (saturated KCl) electrodes, respec-
tively, as working electrodes, anti-electrodes, and reference electrodes. The top space gas
sample (2 mL) produced by the capillary tube electrophoresis experiment is extracted using
a bait-locked airtight syringe and injected into the gas chromatography (GC, Shimadzu
GC-2014), equipped with a flame ionization detector (FID) containing a mechanical device
to analyze carbon monoxide, and equipped with a thermal conductivity detector (TCD,
Shimadzu) for analysis to quantify H2. Detection of CO2 and H2 are carried out with ultra-
high purity Ar as carrier gas. Liquid products are analyzed by NMR (Bruker AVANCE
III HD).

3.5. Density Functional Theory Calculations

Quantum-mechanical calculations were carried out utilizing the Gaussian 09 program
package, using the B3LYP hybrid functional [39,40]; the “double-ξ” quality LanL2DZ [41]
basis sets were used for transition metals (Cu), and 6-311G (d, p) basis sets were used for
non-metal atoms [42]. The atom coordinates used in the calculations were gained from
crystallographic data, and a molecule in the unit cells was selected as the initial model.

4. Conclusions

In this work, we have successfully synthesized a novel copper (II) electrocatalyst
[Cu(L1)2NO3]NO3 (1) containing the redox active ligand 2-(6-methyl-2-base)-6-nitro-1H-
benzene and [d] imidazole (L1). Through investigation, we discovered that complex 1 can
electrocatalyze CO2 reduction to CO and HER. While adding water as the proton source in
the system for CO2 reduction, the reactivity for CO2 reduction of complex 1 is enhanced.
However, due to the competitive reaction of H+ reduction, the mixed gas CO and H2
are both evolved with the FE of 10% and 90%, respectively. Resultingly, we additionally
studied its catalytic activity for HER, and observed that, with the increasing amounts
of p-Toluenesulfonic acid added in the solution, the electrocatalytic reactivity for HER
increased. Furthermore, in-situ UV–vis spectroelectrochemistry of complex 1 during CO2
reduction and HER were both carried out, and these both displayed negligible difference
in the spectrum, confirming the great stability of catalyst 1 during electrolysis. Combined
with DFT calculation, it has been confirmed that the great electrocatalytic performance
of complex 1 is owning to the synergistic effect between the metal center Cu (II) and the
redox-active ligand L1.

Supplementary Materials: Table S1. Crystallological data for the complex 1. Table S2. The main
key length of the complex 1. Table S3. The main key angle of the complex 1. Table S4. Cartesian
coordinates for 1. Figure S1. IR spectrum of the complex 1. Figure S2. HOMO-LUMO orbitals of
complex 1. Figure S3. (a) LUMO+1 orbital; (b) LUMO+2 orbital; (c) HOMO-1 orbital; and (d) HOMO-
2 orbital. Figure S4. Powder X-ray diffraction (PXRD) patterns of complex 1. Figure S5. Cyclic
voltammetry of 2 mM ligand L1 under 1 atm Ar at scan rate 100 mV s−1. Table S5. The reduction
potentials and peak currents of complex 1 under 1 atm Ar in a 0.1 M nBu4NPF6 CH3CN supporting
electrolyte. Table S6. The reduction potentials and peak currents of complex 1 under 1 atm CO2
(in addition to Ar) in a 0.1 M nBu4NPF6 CH3CN supporting electrolyte. Table S7. The reduction
potentials and peak currents of complex 1 containing different concentrations of H2O under CO2
(in addition to base line). Table S8. The reduction potentials and peak currents of complex 1 with
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different concentrations under 1 atm CO2 (in addition to base line) in a 0.1 M nBu4NPF6 CH3CN
supporting electrolyte. Figure S6. (a) CPE for H2 evolution (black line) at −1.97 V vs NHE on GCE
(0.07 cm2); (b) CPE for CO2 reduction (red line) at −1.15 V vs NHE on GCE (0.07 cm2) at the same
condition as using FTO. Figure S7. CPE with 2 mM complex 1 (rose red line), rinse test (green line)
and the blank experiment without 1 (blue line) on an FTO working electrode (1.0 cm2). Figure S8. The
in-situ UV-Vis spectroelectrochemistry of complex 1 in CO2 atmosphere. Figure S9: (a) the amount
of material in the proton supply system that is combined with the electrocatalytic reduction CO2
product; and (b) the Faraday efficiency curves of the electrocatalytic reduction products CO and H2 in
the proton supply H2O system. Figure S10. Cyclic voltammetry of complex 1 in the presence (green)
and absence (black) of CO2 recorded at 100 mV s−1 at glassy carbon in a 0.1 M nBu4NPF6 CH3CN
supporting electrolyte. Figure S11. Cyclic voltammograms of complex 1 (2 mM) recorded in the
presence of 0.58 mM TsOH·H2O under 1 atm Ar at scan rate range from 100 to 500 mV s−1 in CH3CN
(0.1 M nBu4NPF6) at a glassy carbon electrode. Figure S12. The in-situ UV-Vis spectroelectrochemistry
of complex 1 in Ar atmosphere. Figure S13. Cyclic voltammograms of complex 1 (2 mM, red trace)
and in the presence of 10 mM TsOH·H2O (black trace) in CH3CN (0.1 M nBu4NPF6) at a glassy carbon
electrode and 100 mV s−1. Figure S14. Cyclic voltammograms recorded in the absence (black trace) or
in the presence of 10 mM of TsOH·H2O (red trace). Scan rate: 100 mV s−1. Working electrode: glassy
carbon. Counter electrode: Pt wire. Reference electrode: Ag/AgCl. Figure S15. DLS spectra of the
electrolyte before and after the CPE test: (a) DLS of the complex 1 containing 0.58mM TsOH·H2O
in CH3CN (0.1 M nBu4NPF6) before and after 4000 s electrolysis; and (b) DLS of the complex 1 in
CH3CN (0.1 M nBu4NPF6) under 1 atm CO2 before and after 4000 s electrolysis. Figure S16. The
Faraday efficiency curves of the electrocatalytic hydrogen evolution products H2 in the proton supply
0.58 mM TsOH·H2O system. Figure S17. Plot of the magnetic moments (µeff) versus the temperature
T for solid sample of complex 1. Table S9. The molecular geometries of complex 1 as predicted
by SHAPE.
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