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Abstract: Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and
vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcrip-
tion, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and
neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction
results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disor-
ders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and
clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders,
Parkinson’s disease, drug addiction, pain, and epilepsy. These findings outline the importance of
developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of
the central nervous system. Several small molecules inhibiting calcium channels are currently used in
clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette
of molecules available and the emerging extent of VGCC pathophysiology require the development
of additional drugs targeting these channels. Here, we provide an overview of the role of calcium
channels in neurological disorders and discuss possible strategies to generate novel therapeutics.

Keywords: voltage-gated calcium channels; small molecules; splice variants; CaV1; CaV2; CaV3;
seizure; autism spectrum disorders; anxiety; pain; PYT; Compound 8; gabapentin; pregabalin

1. Introduction

Ion channels are the molecular underpinnings of membrane permeability and ex-
citability and are essentially involved in the function of every organ in the body. Over
fifty inherited channelopathies are attributed to ion channel dysfunctions [1]. Currently,
small molecules targeting ion channels represent 18% of the drugs approved by the Food
and Drug Administration, highlighting the importance of ion channels in clinical pharma-
cology [2]. The aberrant expression of VGCCs, mutations in their amino acid sequence,
and altered post-transcriptional regulation are associated with several brain disorders and
comorbidities [3–12]. Small molecules directed at VGCCs available in medical practice
include blockers, some of which lack the selectivity to channels’ isoforms and cause pro-
nounced side effects. These inhibitors are not sufficient to treat VGCC-dependent diseases.
Therefore, new molecules targeting VGCCs need to be identified and characterized on
channel-mediated functions. In this manuscript, we discuss the impact of alternative
splicing on channel drug sensitivity, the importance of restoring proper calcium current
kinetics in dysfunctional channels, and the efficacy of selective blockers in the treatment
of pain and seizure. Furthermore, preclinical findings show that several small molecules
that are in use for specific conditions of VGCCs may be potential candidates for additional
applications. We report some compounds exhibiting isoform selectivity or the ability to
offset aberrant signaling pathways downstream of calcium channel mutants that are as-
sociated with diseases. Ideally, innovative molecules should selectively target only those
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channels involved in pathological processes, while sparing those participating in normal
functions. To this end, understanding the physio-pathological regulation of VGCCs and
the underlying molecular and cellular mechanisms is paramount.

2. Voltage-Gated Calcium Channels

VGCCs are pore-forming multisubunit complexes that allow calcium influx upon
membrane depolarization and control a plethora of tissue-specific processes, including
excitation-contraction coupling, neurotransmitter and hormone release, gene transcription,
synaptic plasticity, membrane excitability, and cardiac and neuronal pacemaker activity [13].
In the 1980s and early 1990s, VGCCs were classified into L-, N-, P/Q-, and R-types, based
on their pharmacological, voltage-dependence, and kinetic properties (Table 1) [13,14].
Long-lasting L-type calcium currents are endowed with a large single-channel conductance
and sensitivity to dihydropyridine (DHP), phenylalkylamines, and benzothiazepines [15].
T-type calcium channels activate at low voltages, inactivate rapidly, deactivate slowly, and
are characterized by a tiny single-channel conductance [13,16,17]. N-type currents were
first recorded in dorsal root ganglion neurons; being non-L-type and non-T-type, they were
designated as neuronal [16]. N-type calcium currents are inhibited by the snailω-conotoxin
GVIA and the related molecules [18,19]. P-type currents were initially recorded in Purkinje
neurons. P-type currents are typically DHP- andω-conotoxin GVIA-insensitive, and are
inhibited by the spiderω-agatoxin IVA [20,21]. Q-type currents were originally identified
in cerebellar granule neurons. The ω-agatoxin IVA also blocks Q-type calcium currents
with a lower affinity than the P-type [22]. Theseω-agatoxin IVA-sensitive calcium currents
are commonly referred to as P/Q-type. Finally, additional R-type currents were recorded
in cerebellar granule neurons and were found to be sensitive to the tarantula toxin SNX-
482 [23]. However, SNX-482 was later shown to be rather unselective as it also inhibits
potassium channels [24].

Table 1. Subtype, function, and disease of calcium channel types.

Current
Type

CaV
Nomenclature

Specific
Blocker Gene Main Physiological Role Disease

L

CaV1.1 DHP CACNA1S

Excitation-contraction
coupling in skeletal muscle,

regulation of
gene transcription

Hypokalemic periodic paralysis
[5], normokalemic periodic

paralysis; malignant hypothermia
susceptibility [5]

CaV1.2 DHP CACNA1C

Excitation-contraction
coupling in cardiac muscle,

regulation of gene
transcription, endocrine

secretion, spine and
dendritic calcium signaling

in neurons

Timothy syndrome [25–29],
bipolar disorder [30,31],

depressive disorder [32–34],
schizophrenia [33,35–39],

post-traumatic stress
syndrome [40,41], Brugada

syndrome (# 611875), cardiac
Long QT syndrome [# 618447]

CaV1.3 DHP CACNA1D

Hearing, cardiac and
neuronal pace-making

activity, spine and dendritic
calcium signaling

in neurons

Deafness [42,43], autism [44],
bipolar disorder [45,46], sinoatrial

dysfunction (# 614896)

CaV1.4 DHP CACNA1F Retinal neurotransmission

Congenital stationary night
blindness [47,48], X-linked

Cone-Rode dystrophy (# 300476),
Aland Island eye disease

(# 300600)



Molecules 2022, 27, 1312 3 of 20

Table 1. Cont.

Current
Type

CaV
Nomenclature

Specific
Blocker Gene Main Physiological Role Disease

N CaV2.1 ω-conotoxin-
GVIA CACNA1A

Neurotransmitter release,
somatodendritic calcium

signaling

Familial hemiplegic
migraine [49,50], ataxia

(# 108500, # 183086)

P/Q CaV2.2 ω-agatoxin-
IVA CACNA1B

Pain [8,51–61],
neurodevelopmental

disorder # 618497

R CaV2.3 SNX-482 CACNA1E Neurotransmitter release,
membrane excitability

Seizure [62–65],
neurodevelopmental

disorder(# 618497),
encephalopathy (# 618285)

T

CaV3.1 Ethosuximide
Zonisamide CACNA1G

Membrane excitability,
pace-making, firing,

subthreshold oscillations

Seizure [66], spinocerebellar
ataxia (# 616795 and # 618087)

CaV3.2 Ethosuximide
Zonisamide CACNA1H

Seizure [67–72], autism [73],
pain [51–54], hyperaldosteronism

(# 617027)

CaV3.3 Ethosuximide
Zonisamide CACNA1I Seizure and neurodevelopmental

disorders [74]

Note: # indicates the reference number in the “Online Mendelian Inheritance in Man” (OMIM) database
for channelopathies.

The advent of molecular cloning allowed the understanding of VGCCs at a molecular
level and revealed the multi-subunit composition of the channel complex [13,75,76]. VGCCs
consist of an α1 and associated β and α2δ subunits. The α1 constitutes the channel pore
and allows calcium influx from the extracellular space into the cells, whereas the β and α2δ

support channel trafficking and tune the kinetic properties of calcium currents (Figure 1).
The α1 subunit comprises four homologous domains, each composed of six transmembrane
helices. The four homologous domains are bridged via intracellular loops and are flanked
by amino- and carboxy-terminal cytoplasmic regions, which function as a hub for multiple
regulatory interactions and signaling mechanisms [13]. In 2000, a new nomenclature was
adopted for VGCCs, grouping the α1 into CaV1 (L-type), CaV2 (non-L-type), and CaV3
(T-type) [77]. The channel subunits are also termed CaVα1, CaVβ and CaVα2δ by the
scientific community in the field.

Figure 1. The topology of voltage-gated calcium channels with known drug-binding regions and the
mechanisms of channel inhibition. The image represents the channel complex including the CaVα1
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pore forming subunit with the auxiliary CaVβ and CaVα2δ which regulate channel trafficking
and biophysical properties. The CaVα1 is organized in four transmembrane domains (I–IV), each
containing six membrane-spanning helices (S1–S6). All S5-S6 segments form the channel pore (P)
whereas the S1-S4 constitute the voltage-sensing domain (VSD). Inhibition is achieved by modifying
channel gating (dark green arrows, gating modifiers) through binding with the extracellular linkers
of the VSD (e.g., agatoxin) or with the activation gates of the pore (e.g., DHP). Another blocking
mechanism includes the direct occlusion of the pore from the extracellular space (e.g., conotoxin).
Small molecules are membrane permeable and can access the pore from the cytoplasm, thereby
impeding the ion permeation (light green, pore blockers) (e.g., PAA). BTT-266 and BTT-369 disrupt
the CaVα1–CaVβ interaction interfering with channel trafficking. Gabapentin and pregabalin reduce
channel membrane expression by binding with the CaVα2δ subunit. BZT, benzothiazepine; DHP,
dihydropyridine; PAA, phenylalkylamine.

3. Physiological Roles of VGCCs in the Nervous System

VGCCs are ubiquitously expressed in the nervous system. Isoform diversity and
localization confer specific functions to VGCCs [3,14,78–84]. L-type CaV1.2 is the predom-
inant L-VGCCs expressed in the brain and is highly represented in the cardiovascular
system [80,85]. CaV1.2 channels are localized on the soma and dendrites of most types of
neurons, where they control gene expression [86–88], synaptic plasticity [89,90], calcium-
dependent enzymes, and calcium-activated potassium channels [91]. CaV1.3 channels
exhibit a neuronal somatodendritic distribution that is similar to CaV1.2. These two L-type
isoforms are often co-expressed in the same neuronal type [85,92]. CaV1.3 participates
in postsynaptic signaling integration and regulates membrane excitability [3,44,93,94].
CaV1.3 is also localized at the ribbon synapse of the inner cochlear hair cells, where it
controls synaptic release and is necessary for the transmission of impulses to the auditory
cortex [78,95,96]. Consistently, CaV1.3 knock-out mice and humans expressing dysfunc-
tional non-conducting CaV1.3 mutants present with congenital deafness [42,43]. CaV1.4
is predominantly expressed in the rod photoreceptors of the retina. Here, CaV1.4 controls
synaptic release and allows the transmission of visual stimuli [79]. CaV1.4 knock-out
mice are blind [97]. Mutations inducing loss-of-function in CaV1.4 lead to night blindness
in humans [47]. CaV1.1 expression is restricted to the skeletal muscle, where it couples
plasmalemma excitation with muscle contraction [5].

CaV2.1 and CaV2.2 channels localize at the presynapse of nerve cells [78]. Here,
they integrate with the neurotransmitter release machinery by establishing interactions
with local molecules [98,99]. Upon depolarization, calcium influx via CaV2.1 and CaV2.2
triggers the fusion of presynaptic vesicles with the membrane and, consequently, allows
neurotransmitter release [98,100]. The relative content of CaV2.1 and CaV2.2 at the synapses
may vary according to neuronal type [101]. For example, the synapses of the spinal dorsal
horn express CaV2.2 exclusively, whereas CaV2.1 channels are also located in the soma
of glutamatergic neurons. Here, CaV2.1 mediates excitation-transcription coupling and
has been associated with the ability to control the expression of the synaptic syntaxin-
1A [87,102]. Gain-of-function mutations of CaV2.1 cause familial hemiplegic migraine and
impair synapse formation in animal models [49,103].

CaV3 channels are expressed throughout the nervous system and are involved in
cerebellar, thalamic, and cortical functions [104]. These channels are involved in the tuning
of neuronal excitability and participate in the processing of pain, sleep, motor functions,
and the release of neurotransmitters and hormones [11]. The three CaV3 isoforms confer
distinct firing patterns to neurons. A further level of regulation complexity is achieved by
channel-alternative splicing [105,106]. A comprehensive recent review comprises the latest
clinical findings on CaV3 channelopathies and their underlying cellular mechanisms [11].

4. L-type VGCCs in Psychiatric Disorders

Genome-wide association studies identified an intronic single-nucleotide polymor-
phism, rs1006737, of the CACNA1C encoding the Cav1.2 channel as a risk factor for bipolar



Molecules 2022, 27, 1312 5 of 20

disorders [31,32], unipolar major depressive disorder [32–34], schizophrenia [33,35–39] and
post-traumatic stress syndrome [40,41]. Individuals carrying the CACNA1C rs1006737
present altered neuronal circuitry in fMRI analysis, corroborating the central role of
these channels in information processing in the brain [107]. In healthy humans, the
CACNA1C rs1006737 is associated with decreased attention, working memory, and verbal
fluency [38,107–109]. In line with these findings, the DHP isradipine was shown to improve
verbal memory and attention in patients affected by schizophrenia in a recent randomized
controlled trial [110]. How non-coding intronic single nucleotide polymorphisms can cause
a pathological condition is unclear, but it is thought to happen by altering the expression
level of CaV1.2 and most likely the pattern of channel splice variants in the brain [111].
Recently, numerous splice variants of the human neuronal CaV1.2 have been identified, and
their sequences are available in an accessible repository [111]. Further research is needed
to attribute specific functions to these splice variants in neurons. From a pharmacological
point of view, alternative splicing may vary the sensitivity of L-type channels to DHP [112].

The CACNA1D gene encoding the CaV1.3 has been identified as a risk gene for bipolar
disorder [45,46]. In a pilot study on a very limited number of individuals with bipolar dis-
order, isradipine administration ameliorated the symptoms of comorbid depression [113].
Although it was too limited to draw valid conclusions, this study suggested a possible ther-
apeutic application of L-type VGCCs antagonists in bipolar disorders. Therefore, this topic
deserves further investigation. In this regard, a clinical trial (ClinicalTrials.gov identifier:
NCT01784666) was approved but, unfortunately, it was prematurely terminated because of
an insufficient enrollment of eligible patients.

Timothy syndrome (TS) is a multisystem disorder characterized by congenital heart dis-
ease, immunodeficiency, intermittent hypoglycemia, cognitive impairment, and autism [7,25].
This condition is associated with the mutually exclusive alternative splicing of the exons
8 and 8a of the CaV1.2. In one form of TS, the pathogenic G406R mutation is located within
the exon 8a. In a second form of TS, CaV1.2 exhibits the G406R or a G402R mutation within
the alternative spliced exon 8. Both forms of TS present autism, but the most pronounced
traits are displayed in the TS associated with exon 8, as this splice variant is more expressed
in the brain than the 8a [8,25]. The G406R substitution is a gain-of-function mutation and
reduces voltage-dependent channel inactivation [26]. Interestingly, iPSC-derived neurons
from individuals with TS showed an excessive expression of the tyrosine hydroxylase
(TH) gene. Treatment with roscovitine—which increases channel inactivation [27,28] and,
therefore, can rescue the inactivation impairment displayed by the G406R CaV1.2 mutant—
strongly reduced the redundant production of TH, restoring the physiological expression
levels of this gene [88]. This finding is consistent with other studies in which roscovitine
reduced the prolongation of the action potential in iPSC-derived cardiomyocytes from
individuals with TS, reestablishing proper membrane excitability [29,114]. Interestingly,
treatment with nifedipine did not retrieve adequate levels of TH production in TS-derived
iPSCs neurons [29]. This result suggests that restoring the amplitude of calcium currents
may not suffice to fully rescue an integrative physiological mechanism. Instead, restoring
physiological channel kinetics is necessary. Consistently, the signaling mode of CaV1.2 was
previously reported to be either voltage- or calcium-dependent, suggesting the existence of
multiple mechanisms by which the same channel can selectively control diverse cellular
processes [115]. These data indicate that the tailored rational design of new molecules able
to selectively target different gating modes can be fundamental to correcting the abnormal
signaling pathways that are determined by channel mutations.

Several gain-of-function de novo missense mutations of CaV1.3 are causative of the
pathological conditions associated with intellectual disabilities, autism spectrum disor-
ders, developmental delays, and hypotonia, as well as hyperinsulinemic hypoglycemia
and/or congenital aldosteronism [44]. Interestingly, among all the described mutations,
the germline CaV1.3-S652L substitution shows increased sensitivity to isradipine [116],
suggesting that the DHP-hypersensitivity of this channel mutant may be exploited for
clinical practice. Therefore, further investigations in this direction are worthwhile. A recent
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review discusses in depth the CaV1.3 gain-of-function mutations linked to autism and
comorbidities, the underlying molecular mechanisms, clinical implications, and therapeutic
potential of channel blockers [44]. Autism is also associated with single-nucleotide poly-
morphism in CaV3 channel isoforms [117,118]. Furthermore, several missense mutations
of the CaV3.2 channel were identified in 6 out of 461 individuals with autism spectrum
disorders. These mutations are located within channel domains that are highly conserved
across species and were found to strongly reduce CaV3.2 channel activity [73]. Such a loss
of function may cause functional and structural alterations to the brain circuitry, leading
to the development of autism [73]. A possible pharmacological treatment may include
either promoting channel trafficking to the membrane or the administration of drugs able
to increase CaV3.2 activity.

Gabapentin and pregabalin (gabapentinoids) are effective in treating anxiety disorders
in humans [119]. Because gabapentinoids target CaVα2δ subunits, the anxiolytic efficacy of
these compounds is consistent with the finding that CaVα2δ1 level increased in a rat model
in which anxiety was chemically induced [119]. Anxiety intimately connects with fear, and
the underlying neural circuitries are tied [120]. In fear-conditioned rats, the expression of
CaV1.2 and CaV1.3 was found to be upregulated, and the administration of nimodipine
blocked the startle response in these rodents [121]. These results suggest that DHP could
be used as an anxiolytic. Nevertheless, some discrepancy is found in additional studies.
CaV1.2 haploinsufficiency or its deletion in the forebrain were shown to induce an anxiety
phenotype in mice [122]. Consistently, higher doses of nifedipine and verapamil exerted an
anxiogenic effect in rodents [8,123]. Direct evidence that CaV1.3 suppression may have an
anxiolytic effect is weak [8,123]. Therefore, the role of CaV1.2 in anxiety must be clarified
to ponder the therapeutic potential of selective L-type channel blockers. Finally, CaV2.2
knock-out mice show lower anxiety levels than wild-type mice, suggesting that inhibitors
of CaV2.2 might be potential anxiolytic drugs [124].

5. VGCC Inhibitors in the Treatment of Parkinson’s Disease

Parkinson‘s disease (PD) is a common neurodegenerative disorder, the incidence of
which is progressively increasing. PD is characterized by a loss of dopaminergic neurons in
the substantia nigra pars compacta and in the striatum. This neurodegeneration leads to a
progressive impairment in motor skills, tremors, and development of psychosis [125,126].
The mainstay pharmacological treatment that is currently available targets the motor symp-
toms and includes several drugs as anticholinergic agents, beta-blockers, and dopamine
receptor agonists [127]. Unfortunately, the etiology of loss in dopaminergic neurons is still
unclear and this gap of knowledge strongly hampers tailored therapeutic interventions
to avoid neurodegeneration. Research efforts provide an emerging frame comprising a
network of contributing causes, including specific genes, environmental risk factors, and
cellular metabolism stressors [128]. Multiple genes are involved in the development of PD,
including α-synuclein, Parkin, PTEN-induced putative kinase 1 (PINK1), and leucine-rich
repeat serine/threonine protein kinase 2 (LRRK2) [129]. Within the PD condition, these
genes are often associated with mitochondrial dysfunction and calcium homeostasis dys-
regulation [130]. Interestingly, several epidemiological studies reported that the incidence
of PD was reduced by 30% in patients treated with DHP for hypertension [131–133]. This
observation suggested that L-type VGCCs are involved in the pathogenesis and/or pro-
gression of this neurological disorder and that DHP could be used to prevent the loss of
neurons by inhibiting the L-type calcium channels. In line with this hypothesis, several
other findings suggest that the upregulation of L-type CaV1.3 may be critical in neuronal
loss from PD [134]. In the substantia nigra dopamine neurons, CaV1.3 contributes to pace-
maker activity, which is sensitive to DHP [135,136]. CaV1.3 pacemaker activity was shown
to be linked to mitochondrial-dependent oxidative stress, which is typical of PD [137].
Furthermore, the CaV1.3/CaV1.2 expression ratio increases in favor of the CaV1.3 in PD
brains [138]. Altogether, these results indicate that selective inhibitors of CaV1.3 channels
could be a potential strategy for treating PD. However, selective CaV1.3 inhibitors are
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not available in clinical practice, and the only possibility to test this hypothesis was to
use one of the existing DHP. The main pitfall of DHP is the blockade of both CaV1.2 and
CaV1.3 [139]. Hence, the selective pharmacological targeting of CaV1.3 is not possible as
both isoforms are concomitantly expressed in neurons. To complicate the issue, DHPs show
a higher affinity for CaV1.2 than CaV1.3 [134,140]. Among DHPs, isradipine shows a high
affinity for CaV1.3, although preferential selectivity for CaV1.2 persists [141]. Therefore,
isradipine has been the DHP candidate of choice for the clinical trials on PD.

A Phase-II clinical trial demonstrated that 10 mg/day is the maximal daily dosage of
isradipine tolerated by early PD patients who do not yet require dopaminergic therapy [142].
Considering its short half-life, isradipine was administrated twice a day, 5 mg for each dose.
The most common side effects were peripheral edema and dizziness [142]. This therapeutic
regime was then used for a thirty-six-month randomized Phase-III trial, to test the efficacy
of isradipine in delaying the clinical progression of PD in early-diagnosed patients [143].
Participants were tested on their ability to score using the unified Parkinson’s disease
rating scale (UPDRS)—including cognitive functions, daily living activities, and motor
function, which are all sensitive to anti-Parkinson’s medications—the time to onset of
severe motor complications and the initiation of standard anti-Parkinson’s therapy. Despite
the researchers’ high hopes, treatment with isradipine failed to score positively against
the placebo for all these endpoints. Thus, the results of the clinical trial did not support
the hypothesis that isradipine, at this dosage, can slow the progression of PD [143]. One
possible explanation for this result is that the bioavailability of isradipine at the used dosage
was not sufficient to target the CaV1.3 channels in neurons, but a direct empiric measure
of effective local drug engagement is not feasible [143,144]. This explanation has been
further supported by modeling the pharmacokinetics of isradipine based on the trial data,
indicating that the critical threshold for therapeutic efficacy might have been reached only
transiently and for a short time [144]. The administration of higher doses is discouraged
because of the secondary cardiovascular effects that isradipine may induce. The most
effective strategy by which to test the therapeutic efficacy of blocking CaV1.3 in PD would
be the identification of CaV1.3-selective inhibitors. Ideally, such inhibitors should be able to
target the CaV1.3 channels in neurons and not in the other tissues where they are expressed,
such as the cardiac sinoatrial node, endocrine system, and the cochlea.

Finally, R- and T-type VGCCs are emerging as possible therapeutic targets for PD [8].
For example, the compound NNC 55-0396 was shown to offset locomotor deficits in a
rodent model of PD by inhibiting the T-type channels [145]. Furthermore, the activity of
T-type VGCCs was recently found to mediate the dysregulation of calcium homeostasis in
PARK6 patient-specific-induced pluripotent stem cells [146]. Therefore, the inhibitors of T-
type channels could represent a valid strategy in PD treatment [147,148]. Recent advances
and biomedical findings support this possibility and are extensively discussed in a recent
review [149].

6. The Potential of Pyrimidine-2,4,6-Triones (PYT) as CaV1.3 Selective Inhibitors

The clinical need for selective CaV1.3 blockers does not apply only to PD. Indeed,
gain-of-function mutations of CaV1.3 are associated with autism and epilepsy [116,150].
In the ventral tegmental area, CaV1.3 is involved in cocaine addiction and related comorbid
mood disorders [151]. In addition, genetic data identify CACNA1D as being a risk factor
for bipolar disorders [45,46]. The L-VGCCs inhibitors used in clinical practice, such as
isradipine, verapamil, and diltiazem, show a higher affinity for CaV1.2 rather than CaV1.3
channels [140,141]. Consequently, we can expect that the significant inhibition of CaV1.3 in
the brain would require the administration of high doses of calcium channel antagonists,
leading to cardiovascular side effects induced by the blockade of CaV1.2. Therefore, the
effective inhibition of CaV1.3 in the central nervous system requires selective molecules
sparing CaV1.2. The interest of the scientific community is high, and several laboratories
are currently testing innovative compounds targeting CaV1.3. These compounds could be
of great interest for both basic science and therapeutics. A novel class of small molecules,
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pyrimidine-2,4,6-triones (PYT), has been indicated as a potential molecular paradigm
for generating possible CaV1.3-selective inhibitors. In particular, 1-(3-chlorophenethyl)-3-
cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione) (also known as Compound 8 (or PYT06
in [152])) was shown to be highly selective for CaV1.3 (IC50 = 24.3 ± 0.7µM) over CaV1.2
(1162 µM) [153]. The structural bases for its selectivity to CaV1.3 and voltage-dependent
inhibition mechanism of channel gating were recently identified [154]. Compound 8 binds
to the CaV1.3 α1 subunit in the DHP-binding pocket in a voltage-dependent way, which
confers negative allosteric modulation [154]. However, electrophysiology recordings in
HEK-293 cells expressing various combinations of CaV1.3 or CaV1.2 α1 splice variants with
different CaVβ isoforms show that the selectivity of Compound 8 for CaV1.3 is modest and
is highly dependent on the molecular identity of the channel complex [155]. Intriguingly,
Ortner et al. (2014) [156] showed that under their experimental conditions, Compound
8, rather than reducing L-type currents, increased calcium influx through CaV1.3 and
CaV1.2 by slowing current activation and inactivation, as well as enhancing tail currents in
HEK-293 cells expressing the channel subunits and in chromaffin cells. In the same study,
the weak inhibition of L-type currents occurred only when using Ba2+ as a charge carrier,
but no selective action on CaV1.3 over CaV1.2 was observed [156]. These discrepancies were
in part explained by the presence of a critical mutation in the DHP-binding pocket—the
interaction site of Compound 8—of the CaV1.3 α1 subunit used by Ortner et al. (2014),
which could impede the proper interaction of Compound 8 with the channel pore [154,156].
The enhancement of tail currents could be interpreted as the effect of a secondary binding
site on the channel, which became evident in the absence of a higher-affinity binding on
the DHP pocket [154,156]. However, the mutated DHP-binding site could not explain the
agonist action of Compound 8 on native L-type currents in chromaffin cells, as reported by
Ortner et al. [156]. Nonetheless, the inhibitory function of Compound 8 on L-Type currents
was observed in neurons in another study [157]. While the mechanisms underlying the
action of Compound 8 on L-type channels are controversial, these studies indicate that the
cellular environment, subunit splice variants forming the channel complex, and the neu-
ronal firing mode affect the action of Compound 8 on L-VGCCs. Further characterization
in native cells expressing CaV1.3—for example, different types of neurons, sinoatrial node
myocytes, pancreatic beta cells, and chromaffin cells—will be necessary to understand the
mechanism of action of Compound 8. The outcome of these investigations could provide
important information on the tissue-specific effects of this molecule. These findings will be
useful to develop pharmacological treatments for CACNA1D-dependent neuropsychiatric
disorders and for the evaluation of potential side effects.

7. VGCCs Inhibitors in Pain Treatment

Pain stimuli are detected by peripheral nociceptors innervating the skin and organ tis-
sues [9]. Then, action potentials propagate along the primary afferent fibers to the synapses
in the spinal dorsal horn, where the excitatory synaptic transmission connects to those
brain centers coding pain [8,158]. In dorsal horn neurons, CaV3.2 VGCCs participate in
nociceptive pathways by regulating membrane excitability, and, to a lesser extent, synaptic
transmission. Conversely, CaV2.2 is the main regulator of synaptic transmission [8,51].
CaV2.2 and CaV3.2 are upregulated in conditions of chronic pain [52–54], while their in-
hibition mediates analgesia in mice [51]. The inhibition of CaV2.2 constitutes a prime
pharmacological strategy to implement efficient pain therapy. CaV2.2 are known to form
complexes with µ-opioid receptors. The administration of the µ-opioid receptor agonist
morphine inhibits CaV2.2, reduces neurotransmitter release from primary afferent neurons,
and exerts a powerful analgesic function [55,56]. The expression of the CaV2.2 variant
containing the exon 37a plays a central role in pain signaling [57,58]. Interestingly, an
alternative splicing of CaV2.2 at exons 37a and 37b diminishes the efficacy of morphine,
probably by altering the composition of the CaV2.2 complex with µ-opioid receptors, pre-
venting channel regulation by morphine [55]. The same study showed that the analgesic
efficacy of gabapentin and Ziconotide is not affected by CaV2.2 alternative splicing [55].
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Such difference is attributable to the different mechanisms of action of these drugs with
respect to morphine. Ziconotide acts by occluding the channel pore, whereas gabapentin
targets the CaVα2δ subunits, inducing channel pore α1 internalization [55,59]. The CaVα2δ

subunits are upregulated in chronic pain states, determining an increase of CaV2.2 traf-
ficking and localization at synapses [60,61]. Gabapentinoids reduce the expression levels
of CaV2.2 at the presynaptic membrane by binding to CaVα2δ. This hampers synaptic
transmission, thereby reducing the efficacy of nociceptive signaling [159]. Ziconotide
is delivered intrathecally to treat pain in cancer patients. It has several disadvantages,
including its mode of administration—which depends on a minipump implant—and nu-
merous and severe side effects [160–163]. These side effects are possibly due to the lack
of state-dependence of the Ziconotide blockade of calcium channels. Indeed, Ziconotide
would block channels irrespective of the basal or hyperactive firing of neurons, whereas a
state-dependent inhibitor would preferentially target the channels in hyperactive neurons.
Along the same lines, several use-dependent small molecules inhibiting CaV2.2 that are
also capable of analgesic activity on animal models were developed over the years. Some
of these molecules, such as TROX-1, Z160 (also named NMED-160 or NP-118809), and
CNV2197944 entered clinical trials [8,164,165].

Small molecules isolated from the rhizome and roots of Valeriana jatamansi Jones
(Caprifoliaceae), an annual herb mainly found in China and India [166], show significant
inhibition of CaV2.2 and CaV3.1 channels. These molecules exhibit selectivity for CaV2.2
and CaV3.1 against CaV1.2, CaV2.1, and KCNH2 [167]. Together with other blockers of
CaV2.2 endowed with analgesic properties in animal models [168,169], these molecules may
represent an attractive option for exploring novel possibilities for treatment in pain therapy
targeting VGCCs. Another possibility could be interfering with CaV2.2 trafficking to the
membrane so that the presynaptic amount of calcium channels would be reduced, and the
transmission of nociceptive stimuli would be inhibited. A recent example of this strategy
exploits hot-spots at the interface of CaVα1- CaVβ interaction, constituted by three critical
amino acids: Tyr-437, Trp-440, and Ile-441 on the CaVα1 pore-forming subunit [170,171].
By the structure-based screening of commercial libraries, the BTT-3 small molecule was
selected and used as a molecular paradigm to develop BTT-266 and BTT-369—compound
6 and 14 in [170], respectively—which reduced CaV2.2 trafficking to the membrane and
modulated channel voltage-dependence activation and steady-state inactivation [170].
In mice, these compounds relieve pain with different duration and efficacy. The use of these
molecules may pave the way to treating other channelopathies with aberrant α1 trafficking
and biophysical properties [170]. Similarly, small molecules mimicking the interaction
of STAC3 with CaV1.1 could offset the abnormal muscle physiology of Native American
myopathy [172,173].

8. VGCCs in Seizure Disorders

Seizures originate from membrane hyperexcitability and/or the abnormal synchro-
nization of neurons in the brain, which perturbs the physiological pattern of neuronal
circuitry [8,174]. Proper connections between neural circuits permit the coordination of
different tasks and behaviors. Thus, the disruption of normal interconnectivity may ac-
count for epilepsy comorbidities, such as depression, learning disabilities, and autistic
features [174]. Within the epileptic focus, seizures are believed to derive from increased
excitation or decreased inhibition and can be determined by a brain tumor or damage to
brain structures [8,174,175]. Conversely, idiopathic seizures are triggered by systemic con-
ditions, such as fever or hypoxia. Genetic conditions of ion channels and GABA receptors
are also involved in seizures [147,176–178]. In the past two decades, important advances
in our understanding of the physiopathological mechanisms underpinning seizures have
led to an increase in the available antiepileptic drugs. Nevertheless, about one-third of
patients are refractory to validated pharmacological and medical treatments, while others
suffer severe side effects [174,179–183]. Therefore, there exists an urgent need to develop
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novel treatments that are able to contain the extent and frequency of seizure episodes in
drug-resistant patients and to minimize the adverse effects [174,179,184].

Several lines of evidence show that T-type VGCCs are involved in absence seizures.
The expression level of CaV3.2 mRNA and T-type currents increase in the reticular nucleus
of the thalamus in absence epilepsy rats from Strasbourg (GAERS), a model of absence
epilepsy [67]. Increased thalamic T-type currents are attributable to a gain-of-function
mutation in exon 24 of CaV3.2, identified in GAERS. Interestingly, the gain-of-function
phenotype depends on the alternative splicing of CaV3.2 exon 25 [68]. Furthermore, muta-
tions within the CACNA1H gene encoding CaV3.2 have been associated with several forms
of epilepsy [69]. These mutations generate gain-of-function channels or enhance channel
trafficking to the neuronal membrane, thereby increasing the amount of functional surface
that expressed CaV3.2 [70–72]. Mice overexpressing CaV3.1 channels show increased thala-
mocortical activity and absence seizures [66]. Recently, gain-of-function CaV3.3 channel
mutants, identified in patients with seizures and neurodevelopmental disorders, were
shown to cause hyperexcitability when expressed in chromaffin cells; this finding could
explain seizures in patients [74]. Overall, these data indicate that enhanced T-type currents
in the thalamus predispose a sensitivity to absence seizures. Therefore, the inhibition of
CaV3 channels represents a valid strategy for the pharmacological treatment of seizures.

The T-type VGCCs blocker ethosuximide is used in the treatment of absence seizures [185].
This small molecule exerts its action on all CaV3 isoforms and binds with a higher affinity
to inactivated channels [186]. However, ethosuximide is rather unspecific as it was also
shown to inhibit voltage-gated sodium channels and calcium-activated potassium channels
in the thalamic and cortical neurons [187,188]. Moreover, ethosuximide administration
increases GABA levels and decreases glutamate in GEARS [189]. Among the anti-epileptic
drugs, sodium valproate can inhibit T-type currents in addition to sodium channels [190].
Zonisamide is used to control seizures and was also shown to inhibit T-type VGCCs.
In addition, Zonisamide relieved pain responses in rodents, corroborating the role of
these channels in the nociceptive pathways [191,192]. The experimental evidence for the
involvement of T-type VGCCs in seizures prompted the development of a novel molecule
based on the rational design of NP118809 (or Z160), a high-affinity N-type channel blocker
able to control pain in animal models of inflammatory and neuropathic pain [164,193]. This
approach led to Z944, a high-affinity pan-T-type blocker, exhibiting state- and frequency-
dependent effects and that was able to reduce seizures by 85–90% in GAERS [193].

Gabapentin and pregabalin are used in clinical practice to treat focal and partial
seizures [194]. Because these drugs bind to the CaVα2δ subunit, they induce several
unwanted effects by targeting multiple VGCCs, irrespective of the CaVα1 isoform. Fur-
thermore, in patients treated for neuropathic pain with drugs targeting VGCCs, such as
benzodiazepines and opioids, the use of gabapentinoids is critical because of possible
pharmacodynamic interactions [194].

The antiepileptics lamotrigine and topiramate target multiple channels and receptors,
and both were shown to inhibit CaV2.3 channels, among others [62,63]. Indeed, in rodents,
the anti-seizure effect of lamotrigine is critically dependent on the expression of CaV2.3, and
it is lost in CaV2.3-null mice [64]. Topiramate blocks CaV2.3 in a state-dependent manner,
meaning that mainly hyperactive neurons are targeted [65].

L-type CaV1.2 channels were proposed to be involved in the onset of febrile seizures [195].
Indeed, the activation of CaV1.2 in pyramidal neurons is shifted to hyperpolarized poten-
tials at a temperature of about 40 ◦C, allowing these channels to support intrinsic firing
properties and, therefore, likely supporting febrile seizures [195]. Consistently, nimodip-
ine prevented the development of temperature-induced seizures in rodents, indicating
that L-type channel blockers could be explored as a pharmacological tool to treat febrile
seizures [195]. However, it is well known that nimodipine also slightly blocks T-type
channels [196]. Therefore, the relative contributions of L-type and T-type channels in febrile
seizure and in the protecting effect of nimodipine need to be clarified.
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9. VGCCs in Migraine

Familial hemiplegic migraine 1 is caused by the S218L mutation of CaV2.1, which
alters the kinetic properties of the channel currents and hampers proper synaptic for-
mation and synaptic plasticity [49,50]. A small molecule termed 2,5′-di(tertbutyl)-1,4,-
benzohydroquinone (BHQ)—primarily known as the SERCA inhibitor—confers a dual ef-
fect on CaV2.1 channels by inhibiting voltage-dependent activation and enhancing calcium-
dependent facilitation [49]. The use of the BHQ on the CaV2.1-S218L mutant rescues
normal current properties and restores proper synaptic physiology in Drosophila and animal
models [49]. These results show that reestablishing normal channel kinetics rescues the
disease phenotype and indicates a strategy by which to treat familial hemiplegic migraines
in humans.

10. VGCCs in the Aging Brain

VGCCs undergo age- and gender-dependent alternative splicing, suggesting that
different ratios of precise splice variants may support changes in the aging brain [197].
Age-dependent forms of mid-channel proteolysis, with the generation of CaV1.2 with
diverse biophysical properties, were reported [198]. Mid-channel proteolysis may serve
as a homeostatic control of VGCCs activity. This hypothesis is supported by the finding
that proteolysis can be reduced by inhibiting L-VGCCs with the DHP nifedipine in cul-
tured neurons and slices [198]. In aging mice, neuronal CaV1.2 exhibited higher levels
of phosphorylation on serine 1928, which increases open-channel probability [199,200].
CaV1.2 phosphorylation may also be involved in the regulation of channel trafficking in the
hippocampal neurons [201]. Thus, knowing the age-dependent regulation of VGCCs might
offer therapeutic strategies to compensate for the consequences of changes in neuronal
calcium homeostasis that are typical of later life.

11. Summary

VGCCs are involved in several neurological and psychiatric conditions. However, the
palette of molecules targeting these channels is limited, applying only to some channel
subtypes, and is restricted to an inhibitory function. There exists the need to identify novel
specific modulators and inhibitors that could be considered for use in clinical practice. The
topics discussed in the previous paragraphs highlight two main points. First, compounds in
use for some disease may be considered also for other conditions (Table 2). Second, several
issues could be exploited in evaluating new small molecules toward VGCC-dependent
pathologies. These aspects include an understanding of the tissue- and function-specific
channel biophysical properties, splice variant expression patterns, and the molecular
composition of signaling complexes and transduction cascades. Based on these notions, the
researcher can direct drug development toward the most effective strategies.

Table 2. The applications of selected VGCC blockers and modulators in neurological and psychi-
atric conditions.

Small Molecules Approved Applications Target Potential Applications #

Isradipine Hypertension L-type channels Autism [44,116], failed Phase-III trial for
PD [116], dependency [151]

Nimpodipine Hypertension L-type channels Anxiety [121], febrile seizures [195]

Roscovitine NA CaV1.2, L-type currents Timothy syndrome [29,114]

Pregabalin Pain and seizures CaVα2δ Anxiety [119]

Gabapentin Pain and seizures CaVα2δ Anxiety [119]
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Table 2. Cont.

Small Molecules Approved Applications Target Potential Applications #

NNC 55-0396 NA T-type currents PD [145]

Valeriana jatamansi
derived small molecules NA CaV2.2, CaV3.1 Pain [167]

Ziconotide Pain CaV2.2 NA

BTT-266, BTT-369 NA β binding domain on α1 Pain [170]

Ethosuximide Seizures T-type channels Pain [185]

Valproate Seizures T-type channels PD [190,191]

Zonisamide Seizures T-type channels Pain and PD [191,192]

NP118809 (or Z160) NA N-type channels Pain [164,193]

Z944 NA T-type channels Seizures, pain [193]

Lamotrigine Seizures R-type channels Pain [62]

Benzohydroquinone NA CaV2.1 Familial hemiplegic migraine 1 [49]

NA, not applicable; # potential applications are given on the basis of preclinical findings.

Current research is progressively integrating those findings provided by genetic
screenings with the molecular and cellular mechanisms downstream of calcium channels
that are involved in diseases. Together with structural data on channel complexes, these
notions are crucial for screening existing small molecule libraries or planning the rational
design of substances already in use. Ameliorating the clinical course of VGCC-dependent
diseases still requires considerable transdisciplinary research efforts.
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