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Abstract: The ability of the human oral microbiota to hydrolyze the glycosidic aroma precursor extract
isolated from sour guava (Psidium friedrichsthalianum Nied.) fruits was studied herein. The glycosidic
extract (GP) was incubated with a mixture of the oral microbiota isolated from three individuals’ saliva
to evaluate the hydrolytic capacity of oral bacteria in the generation of odor-active compounds. The
oral microbiota was able to release 1-hexanol from GP, under both aerobic and anaerobic conditions.
Additionally, the aroma precursor extracts showed a decrease in the growth of harmful oral bacteria
(Streptococcus and Actinomyces). This effect can be considered beneficial to human health because
these bacteria have been related to different diseases of the bucco-respiratory tract.

Keywords: aroma precursors; glycosides; oral microbiota

1. Introduction

Psidium friedrichsthalianum Nied. is a tropical fruit that belongs to the Myrtaceae family.
It is highly consumed in Central America and the Caribbean coast of South America. Its
intense and pleasant aroma was characterized, identifying ethyl butanoate, (Z)-3-hexenal,
ethyl hexanoate, and linalyl butyrate as key aroma compounds, as well as some sulfur
compounds that were characterized as relevant odorants to its flavor [1]. This fruit has an
intense aroma that somewhat resembles that of the common guava (Psidium guava), because
ethyl butanoate, (Z)-3-hexenal, methional, 3-sulfanylhexyl acetate, and 3-sulfanyl-1-hexanol
were also identified as P. guava odor-active volatiles. However, 4-methoxy-2,5-dimethyl-
3(2H)-furanone, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 3-hydroxy-4,5-dimethyl-2(5H)-
furanone, trans-4,5-epoxy-(E)-2-decenal, cinnamyl alcohol, ethyl butanoate, hexanal, me-
thional, and cinnamyl acetate were identified as aroma-active compounds only in Psidium
guava [2].

Aroma precursors have been widely studied in grapes and wine, mainly because
of their role during the aging process in wine production [3]. During the 1980s and
1990s, several papers were published relating to the characterization of glycosidically
bound volatiles and, hence, the influence of glycosides on the wine aroma by the effect of
enzymatic or acid hydrolysis [4,5]. Since then, the related research has advanced, finding
that flavors can also be released from odorless glycosides or amino acid conjugates by
oral microbiota [6,7]. In this regard, it was first demonstrated, using one individual, that
in-mouth hydrolysis of a simple glucoside can occur during tasting, together with the
corresponding flavor perception [8]. Other sensory studies showed that phenol glycosides
in smoke-affected wines can give a smoky retronasal aroma by in-mouth hydrolysis of
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the glycosides [9–12]. These studies indicated that whole fresh human saliva was able
to release the smoky- and medicinal-smelling volatile phenols. More recently, Muñoz-
González et al. [13] verified that the oral microbiota isolated from fresh saliva samples
was able to hydrolyze odorless grape glycosides and release the corresponding volatile
aglycones (terpenes, benzene derivatives, and C6-aliphatic compounds). This hydrolytic
activity seems to be dependent on the bacteria present in the saliva, since it did not occur
when the saliva was free of microorganisms (sterilized saliva). Later on, Parker et al. [14]
showed the sensory significance of monoterpene glycosides during tasting by way of the
retronasal perception of odorant aglycones released in the mouth and related to fruity
flavors. Both works confirmed that the hydrolysis of glycosides and the production of
odorant molecules is highly variable across individuals. Additionally, other oral processing
parameters, such as the volume of the oral cavity, the dilution effect of saliva, and air
flows, among others, can affect oral aroma release and, consequently, the in-mouth aroma
perception [15].

There are no existing studies of the role of the oral microbiota on the hydrolysis of
glycosidically bound volatiles in fruits during oral processing. Considering the relevance of
precursors in the flavor of P. friedrichsthalianum Nied., the aim of this work was to determine
the role of the oral microbiota in the generation of odor-active volatiles from glycosides.
Therefore, the hydrolytic action of the oral microbiota over flavor precursors was evaluated
in vitro, as well as the impact of these glycosides on the growth of oral microorganisms.

2. Results and Discussion

The Psidium friedrichsthalianum fruits were selected according to their ripeness, based on
the values of the following parameters: pH (2.67 ± 0.06), soluble solid content (9.6 ± 0.3 ◦Bx),
and titratable acidity expressed as citric acid percentage (2.75 ± 0.08%). Cuadrado-Silva et al. [1],
by AEDA analysis of the SAFE extract of the whole fruits (without seeds), revealed the presence
of 18 odor-active volatile compounds responsible for fruity, sweet, green, citrus, sulfury, and
rancid-fermented odor notes. The volatile compounds with the highest FD values were ethyl
butyrate, ethyl hexanoate, 3-sulfanylhexyl acetate, and δ-dodecalactone. Likewise, the role of
glycosides as aroma precursors in P. friedrichsthalianum fruit was also studied by Cuadrado-
Silva et al. [1], using a commercial glucosidase enzyme. The obtained extract was analyzed by
GC–MS, finding that hexanol (562.4 mg/kg fruit) was the only odor-active volatile released
from glycosidic precursors; this fact agrees with the presence of hexyl-β-D-glucopyranoside in
this extract.

2.1. Impact of Oral Microbiota on Glycosidic Precursors (GP)

The oral microbiota is one the most complex bacterial communities associated with the
human body; the SHI (bacteriological growth medium) culture medium was used because
it is specific for this type of microorganism, very rich in nutrients, and it thus ensures the
growth of a larger population of culturable oral bacteria [16]. The saliva samples of three
volunteers were mixed because the variability of the oral microbiota of each individual
greatly affects the hydrolysis of the aroma precursors [13].

In this experiment, only the microbiota isolated from raw saliva was used. To verify that
bacteria from the oral cavity were able to hydrolyze the fruit glycosides under the established
conditions, the standard octyl-β-D-glucopyranoside (20 ppm) was incubated as the positive
control of the experiment. This glycoside was incubated separately under two conditions,
aerobic (C1) and anaerobic (C2), and in both cases, the volatile compounds released were
analyzed at four times, T1–T4 (0, 2, 24, and 72 h, respectively). The hydrolysis of this compound
released 1-octanol under anaerobic conditions only at 24 h (2.09 ppm). This compound was
identified by comparison of its MS and retention index (RIDB-Wax = 1599) with those of the
corresponding standard. Under aerobic conditions, 1-octanol was also detected, but at a lower
intensity (not quantifiable). These results corroborate the hydrolytic capacity of oral cavity
bacteria on glycosidic-type compounds, as already shown previously [13].
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In the assays carried out with the GP extract from P. friedrichsthalianum fruit, 13 volatile
compounds were detected after the incubation assays. These compounds were measured
at four times, T1–T4, but in Table 1, only the data at initial time T1 are reported. Among the
compounds, it seems that hexanol comes from the hydrolysis of glycosidic precursors be-
cause it was not detected in the control experiments without GP under anaerobic conditions
(A3C2) and aerobic (A3C1) conditions.

Table 1. Volatile compounds detected at the initial time (t = 0 h, T1) of the incubation of P. friedrich-
sthalianum glycosidic extract with oral microbiota isolated from saliva under different conditions.

No. Compound a RIDB-wax Aerobic Conditions (C1, Amount in ppm) e Anaerobic Conditions (C2, Amount in ppm) e

A1 A2 A3 A1 A2 A3

V1 2-Methyl-1-propanol b 1085 0.00315 0.00168 0.00297 0.00178 0.00064 -
V2 1-Butanol b 1176 0.02510 0.01480 0.03870 0.02450 0.01400 0.03430
V3 2-Hexanol b,d 1197 0.05350 - 0.05800 0.01510 - -
V4 3-Methyl-1-butanol 1213 0.03060 0.00476 0.05430 0.01620 0.00406 0.02960
V5 Hexanol c,d 1368 0.02200 0.03800 - 0.19100 - -
V6 2-Ethyl-1-hexanol b 1494 0.14400 0.20400 0.15800 0.13100 0.14500 0.13700
V7 4-Butoxy-1-butanol b 1691 0.01680 0.00707 0.01270 0.01360 0.00874 0.00944
V8 Isoamyl acetate b,d 1159 0.02500 - 0.03220 - - -
V9 Ethyl hexanoate c 1238 0.00592 0.00304 - 0.00877 0.00207 -
V10 4-Methyl-2-heptanone b 1250 0.00898 0.00805 - 0.00550 0.00269 -
V11 Benzaldehyde 1528 0.42000 0.14800 0.54000 0.23900 0.16500 0.25000
V12 4-Ethyl benzaldehyde b 1786 0.02020 0.01430 0.02860 0.01960 0.01450 0.02200
V13 Acetic acid 1452 0.08790 0.01740 0.10900 0.01150 0.01920 0.05060

A1 = Incubation of the GP in the medium with oral microbiota (GP + OM); A2 = Incubation of the GP in the
medium without oral microbiota (only GP); A3 = incubation of the medium with saliva (only OM). a Volatile
compounds released were identified by comparing their retention indices (RI) on the DB-Wax column and their
mass spectra with respective data of reference compounds. b Identified only by comparison with the NIST
2.0 mass database and PubChem database. c Odor-active volatiles in P. friedrichsthalianum fruit [1]. d Compounds
detected after 24 h of incubation (T3), not detected at the initial time (T1). e All the analyses were performed in
duplicate, and 3-octanol was used as an internal standard. - = not detected.

The volatile compounds found under anaerobic conditions in the A3 assay (only
oral microbiota) were: 1-butanol, 3-methyl-1-butanol, acetic acid, 2-ethyl-1-hexanol, ben-
zaldehyde, 4-butoxy-1-butanol, and 4-ethyl benzaldehyde; these may come from the de-
composition of the SHI medium, which has a complex composition including peptone,
trypticase peptone, yeast extract, sucrose, arginine, mucin, and sheep blood, among other
constituents [16]. The mild conditions of incubation release a portion of these volatile
compounds, but the amount was higher in the presence of oral microbiota. It was also
determined that the highest production of volatile compounds was at 24 h when the oral mi-
crobiota was able to hydrolyze the glycosides; after that, the amount of volatile compounds
started to decrease.

Figure 1A,B show the results of discriminant analyses. Figure 1A used the conditions
(aerobic or anaerobic) as a qualitative variable and shows that high amounts of hexane, ethyl
hexanoate, and butanol were produced under anaerobic conditions. In contrast, higher
amounts of the other compounds were obtained under aerobic conditions. This finding
suggests that hydrolysis under anaerobic conditions is more effective in producing odorant
compounds. On the other hand, Figure 1B used the assay (A1, A2, or A3, the meaning
of which is explained in the footnote of Table 1) as a qualitative variable. According to
Figure 1B, there is an overlap between the A1 and A2 assays; namely, there are similar
amounts of some of the compounds in both assays (i.e., 4-methyl-2-heptanone). In the
assay A1 (GP + OM), high values (above the mean) of hexanol and 4-butoxy-butanol were
obtained. Additionally, above-average amounts of benzaldehyde, 2-ethyl-hexanol, and
2-methyl-propanol were obtained in the A3 assay (only oral microbiota). The volatiles
released during different hydrolysis assays could be grouped into three clusters, showing
that hexanol and ethyl hexanoate were only present in the A1 experiment. The volatile
compounds with hydroxyl groups are usually linked to sugars, but carboxylic acids can
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also be linked as glycosides. This could be an explanation for the presence of an ester in
this experiment.
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Figure 1. (A) Grouping of the volatile compounds obtained in the assays at different times (T1–T4)
according to the incubation conditions (aerobic or anaerobic), by means of discriminant statistical
analysis (DSA) by the square method. (B) Loading plot of linear discriminant analysis for volatile
compounds found in different assays (A1, A2, and A3). A1 = GP incubation with oral microbiota;
A2 = Only GP without oral microbiota; A3 = Only oral microbiota without GP.

Table S1 in the Supplementary Material shows (as an example of what happens with
the 13 volatiles) the results of a three-way analysis of variance carried out with the values
of 2-methyl-propanol and taking as factors the assay (three levels), experimental conditions
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(two levels), and time (four levels). A remarkable aspect is an interaction between the
factors (assay, condition, and time). Similar results (not shown to save space) were obtained
with the other 12 volatile compounds. This situation indicates that it is convenient to
complement discriminant analyses with others that help to visualize in an integrated way
the variability of the compounds concerning the combination of the levels of the three
factors (assay, condition, and time of hydrolysis). To this end, a principal component
analysis (PCA, Figure 2) was carried out with all available information, to analyze the
relationship between the compounds and factors simultaneously.
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Figure 2. Principal component analysis (PCA) results based on the data of 13 volatile com-
pounds released, using as supplementary variables the factors of assay (A1, A2, A3), experi-
mental conditions (C1, C2), and time (T1, T2, T3, T4). V1 = 2-Methyl-propanol; V2 = butanol;
V3 = 2-hexanol; V4 = 3-methyl-butanol; V5 = hexanol; V6 = 2-ethyl-hexanol; V7 = 4-butoxy-butanol;
V8 = isoamyl acetate; V9 = ethyl hexanoate; V10 = 4-methyl-2-heptanone; V11 = benzaldehyde;
V12 = 4-ethyl benzaldehyde; V13 = acetic acid. The labels used are the same as those in Table 1.

Figure 2 shows the results regarding the two first components, which explain 51.5% of
the variability of the analyzed data. The most notable results are interpreted as follows.
The records of assay A1 (GP+OM), under anaerobic (C2) conditions, at times T3 and T4 (24
and 72 h), are associated with values above the average in butanol (V2) and hexanol (V5),
indicating that these alcohols are produced by hydrolysis of glycosidic precursors by the
oral microbiota. 4-Butoxy butanol (V7), ethyl hexanoate (V9), and 4-ethyl benzaldehyde
(V12) also showed high values under both conditions (C1 and C2) but they showed interac-
tion in the three-way analysis of variance (data not shown) that did not allow us to draw
any conclusion. Ethyl hexanoate (V9) was present in significant amounts in the A1C1T3
and A2C2T3 assays, which means that it was present in GP extract without hydrolysis by
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oral microbiota. The PCA clearly shows that the compounds with values above the average
in assay A3—2-hexanol (V3), isoamyl acetate (V8), 3-methyl-butanol (V4), and 2-methyl-
propanol (V1)—were produced by the oral microbiota under aerobic (C1) conditions at
times T3 and T4 (24 and 72 h). Finally, 2-ethyl-hexanol (V6) and benzaldehyde (V11) did
not show preferable conditions for production.

2.2. Effect of P. friedrichsthalianum Glycosidic Precursors on the Oral Microbiota

The interaction between P. friedrichsthalianum glycosidic precursors and the oral mi-
crobiota is a two-way interaction because the microbiota is important for aroma release,
while glycosides enhance the beneficial bacteria in the mouth. Thus, the GP extract did
not cause any increase in the bacterium population during the total incubation time (72 h)
under aerobic conditions; in contrast, the GP extract produced an increase in the counts of
total anaerobic bacteria and Actinomyces with respect to the growth control. This behavior
is opposite to that observed for Streptococcus: their population decreased during the incu-
bation time (Figure 3). The octyl-β-D-glucopyranoside produced a significant decrease in
the bacterium population, under both aerobic and anaerobic conditions. This is evident in
the bars, since there are large and negative values, indicating a lower population for the
bacteria incubated with octyl-β-D-glucopyranoside in comparison with when the bacteria
were alone.
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Figure 3. Changes in bacterial group populations during incubation of GP extract and octyl-β-
D-glucopyranoside with the human oral microbiota of saliva from three individuals. The control
was a bacterial population without GP. Total aerobic and anaerobic bacteria counts were 62,000 and
240,000 CFUs/mL, respectively.

These results indicate a decrease in the growth of human oral cavity bacteria after
in vitro hydrolysis of glycosidic precursors, suggesting a role of the released volatile com-
pounds. In this study, the microbiota composition was not characterized by molecular
techniques; however, the growth conditions employed and the use of a culture medium spe-
cific for representative bacteria of the oral cavity allowed us to characterize the main groups
as follows. Staphylococcus aureus and Enterococcus faecalis are representative of the total
aerobic bacterial species, while Granulicatella adiascens, Veillonella dispar, and Fusobacterium
nucleatum are the corresponding for total anaerobes; in addition, Streptococcus sanguinis is
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the most representative species within Streptococcus of the oral cavity, whereas Actinomyces
naeslundii is one of the most representative among Actinomycetes [13]. It is known that the
genus Streptococcus is a group of Gram-positive coccus bacteria belonging to the Firmicutes
family and to the group of lactic acid bacteria. Depending on the species, some of them
have been linked to oral cavity and respiratory tract diseases, such as tonsillitis, pneumonia,
and dental caries. The genus Actinomyces corresponds to Gram-positive bacteria. Some
species are anaerobic, while others are facultative anaerobes. Many Actinomyces are oppor-
tunistic pathogens of humans and other mammals, particularly in the oral cavity; in some
cases, these bacteria can cause actinomycosis, a disease characterized by the formation of
abscesses in the mouth, lungs, or gastrointestinal tract [17].

Both the GP of the fruits of P. friedrichsthalianum and the released aglycones can reduce
the growth of some of the bacteria in question under in vitro conditions. It has been
reported that this type of bacteria easily adapts to in vivo conditions and can recolonize
clean surfaces in the mouth in a few minutes, due to the formation of biofilms on the
teeth. Streptococcus and Actinomyces are the first settlers of the dental biofilm [18]. Thus,
these results open the possibility of new studies related to the possible prevention of
some bucco-respiratory tract diseases related to the oral microbiota by the consumption of
P. friedrichsthalianum.

3. Materials and Methods
3.1. Materials

Dichloromethane, pentane, methanol, sodium sulfate (anhydrous), sodium chloride,
ammonia (solution 25% w/w), sodium hydroxide, 3-methyl-1-butanol, acetic acid, 1-octanol,
and n-alkane mix (C8–C26) were acquired from Merck (Darmstadt, Germany). Peptide
protease, urea, mucin (Type III), and NAM (N-acetylmuramic acid) were acquired from
Sigma-Aldrich (Steinheim, Germany). Defibrillated lamb blood was supplied by Dismolab
(Madrid, Spain). Pure water was obtained from a Milli-Q purification system (Millipore,
Bedford, MA, USA). The following compounds were commercially acquired and used
as references: octyl-β-D-glucopyranoside, ethyl hexanoate, 3-octanol, and butanoic acid
from Sigma-Aldrich (Steinheim, Germany); hexanol and 3-sulfanyl-1-hexanol from Alfa
Aesar (Heysham, UK); and benzaldehyde and 2-methyl propanoic acid, generously sup-
plied by DISAROMAS S.A (Bogotá, Colombia). Bacteriological growth medium (SHI
medium) was purchased from Oxoid Ltd. (Basingstoke, UK); it contained peptone pro-
tease (10 g/L) (Difco), peptone trypticase (5 g/L) (Difco), yeast extract (5 g/L) (Difco),
KCl (2.5 g/L), sucrose (5 g/L), hemin (5 mg/L), vitamin K (1 mg/1µL), urea (60 mg/L),
arginine (0.174 g/L), mucin (type III) (2.5 g/L), lamb’s blood defibrillated at 5% (50 mL/L),
NAM (N-acetylmuramic acid) (10 mg/L), and distilled water [16]. Sterilization of culture
media and microbiology materials and instruments was carried out in an autoclave (brand:
BMT, model: Sterivap hp il, Brno, Czech Republic) at 121 ◦C for 15 min.

3.2. Plant Material

Ripe fruits were acquired from local markets of Montería (Córdoba, Colombia), and
they were selected according to their ripeness qualities. Titratable acidity was determined in
triplicate by using 10 g of fruit pulp, following the procedure published by AOAC [19], and
the results are expressed as a percentage of citric acid. The pH of the pulp was determined
by using a Jenway pHmeter (model 370, Essex, UK). Total soluble solids were determined
using an Atago refractometer (HRS-500, Tokyo, Japan), and the results are expressed in
degrees Brix (◦Bx).

3.3. Preparation of Human Saliva Samples

Samples of stimulated saliva were collected from three different individuals (all fe-
male), aged 27–42 years. All volunteers were in good health, without any particular dietary
condition, and non-smokers, and they had not used antibiotics in the six months prior
to the study. The samples were collected at the site on the day of the experiment and
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used immediately. Before collecting samples, the volunteers brushed their teeth without
toothpaste or mentholated mouthwash and did not eat or drink anything one hour before
collecting saliva.

Saliva samples were collected per individual (15 mL); then, the three individual saliva
samples were homogenized, mixed, and finally centrifuged at 4500 rpm for 10 min at 4 ◦C.
The supernatant was diluted 1:5 (v/v) with the SHI medium and homogenized, and the
homogenate was divided into two parts to be incubated at 37 ◦C overnight: one under
aerobic and the other under anaerobic conditions.

3.4. In Vitro Experiments with the Glycosidic Extract (GP) and Human Saliva

The glycosidic precursor extract (GP, 4.1 g/Kg fruit) from P. friedrichsthalianum was
obtained following the procedure reported by Cuadrado-Silva et al. [1] by selective adsorp-
tion of fruit polar extract on Amberlite XAD-4. The experiments were set up by placing
24 mg of GP with 12 mL of saliva inoculum (2 mL of saliva mixture/10 mL of SHI medium)
in 50 mL sterile falcon tubes [16]. Additionally, three different control experiments were
performed: (A) incubation of the oral microbiota in the medium, but without the GP, to eval-
uate the volatile compounds derived from basal metabolism (A3); (B) incubation of the GP
in the medium but without the oral microbiota, to determine the changes due to chemical
transformation under the conditions of the incubation medium (A2); and (C) incubation of
the positive control, using octyl-β-D-glucopyranoside (20 ppm), the SHI medium, and oral
bacteria, to verify the hydrolytic activity of bacteria by releasing 1-octanol. All the cultures
were made at 37 ◦C for a 72 h period, with constant agitation at 140 rpm, in duplicate.
A 4 × 2 random experimental design was performed, with four sample collection times
that were representative of the original sample (0 h, T1), the initial stage of hydrolysis
(2 h, T2), the hydrolysis time (24 h, T3), and the post hydrolysis time (72 h, T4), and two
microbial growth conditions: aerobic (C1) and anaerobic (C2). At each time, 2 mL samples
were collected in glass vials (for HS-SPME, 20 mL volume); these were used for the analysis
of volatile compounds by GC–MS. Likewise, samples were taken in sterile Eppendorf tubes
(1.5 mL) at the indicated times and stored with aqueous 40% glycerol (1:1) at −70 ◦C.

3.5. HS-SPME (Headspace Solid-Phase Microextraction) of Volatile Compounds after Incubation of
the P. friedrichsthalianum Aroma Precursors with Human Saliva

The procedure was adapted from that described by Muñoz-González et al. [13]. In
vials, 40 µL of the internal standard for quantification solution (3-octanol 10 ppm) was
added to the sample (2 mL), as well as 0.5 g of NaCl. The extraction procedure was auto-
matically performed using a CombiPal system (CTC Analytics AG, Zwingen, Switzerland)
with a 2 cm long DVB/CAR/PDMS fiber (Supelco, Bellefonte, PA, USA). Samples were
preincubated for 10 min at 35 ◦C, and the extraction was done in the headspace of the
vial for 5 min at 35 ◦C. The desorption was performed in a gas chromatograph injector
(Agilent 6890N, Agilent, Palo Alto, CA, USA) in splitless mode for 90 s at 270 ◦C. After
each injection, the fiber was cleaned for 10 min to remove any residual volatile compounds.
To quantify the compounds, the internal standard method was used.

3.6. GC–MS (Gas Chromatography–Mass Spectrometry) Analysis of Volatile Compounds

The GC–MS analyses were performed on an Agilent 6890N gas chromatograph cou-
pled to an Agilent 5973N mass spectrometer (Agilent, Palo Alto, CA, USA), operated in
electronic impact ionization mode (EI) 70 eV; the positive ions with masses between 40
and 350 u were detected. A DB-WAX capillary column (60 m, 0.250 mm, 0.50 µm, Agilent,
Palo Alto, CA, USA) was used, with the following temperature program: the oven was
maintained for 5 min at 40 ◦C, and then the temperature was increased at 4 ◦C/min until
240 ◦C, where it was finally maintained for 20 min. The temperature was 270 ◦C for the
injector and 230 ◦C for the ion source. In all of the cases, the injections were made in
splitless mode, using helium (UAP grade) as a carrier gas at a rate of 1 mL/min. The data
were processed in the Agilent ChemStation software. The identification of the compounds
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was carried out by comparison of their retention index and mass spectra with those of
the corresponding reference substances; if they were not available, the identification was
done by comparison of their retention indices and the mass spectra with those reported
in the NIST 2.0 mass database. Quantitation of volatile compounds was performed by
comparison of the areas with that of the standard (3-octanol, 10 ppm, RIDB-Wax = 1429).

3.7. Counting of Microorganisms in Human Saliva

The samples stored in glycerol were serially diluted by using saline normal solution
(NaCl 0.9% in water). The number of total colony-forming units (CFU/mL) of each type of
bacteria was quantified by counting colonies after direct spot-seeding of plate dilutions of
four medium types: TSB-Agar (BD, Franklin Lakes, NJ, USA) for total aerobes; Wilkins-
Chalgren agar (BD, Franklin Lakes, NJ, USA) for total anaerobes; TBS-Agar modified with
0.3% yeast extract (BD, Franklin Lakes, NJ, USA) for Streptococcus; and BHI-Agar modified
with 1% casein, 0.5% glucose, and 0.5% yeast extract (BD, Franklin Lakes, NJ, USA) for
Actinomyces. The plates were incubated at 37 ◦C for 48 h under anaerobic conditions
(Bactron Anaerobic/Environmental Chamber, SHELLAB, Cornelius, OR, USA), except for
TSB-Agar plates, which were incubated under aerobic conditions.

3.8. Statistical Analysis

Initially, discriminant analysis was carried out to establish the relationship of the
released compounds with the three assays (A1, A2, and A3) or the presence of oxygen
(C1 and C2). A three-way ANOVA was performed for each compound in the second
instance, taking assay, time, and conditions as factors. These analyses allowed us to
determine whether there was an interaction between the factors, i.e., if the differences
between the levels of the factors can be identified separately or if they need to be taken
into account together. Subsequently, a principal component analysis (PCA) was used to
jointly establish the interrelationship of the compounds with the three factors of interest
from a descriptive perspective. The following programs were used for statistical data
processing and graphics: RWIZARD and RStudio for Windows (version 1.1), and Microsoft
Office EXCEL for Windows (version 2010). Differences at probability level p ≤ 0.05 were
considered significant. The levels were: 3 assays (A1, A2, and A3); 2 conditions related
to the presence of oxygen (C1 and C2: aerobic and anaerobic conditions, respectively);
4 incubation times (T1, T2, T3, and T4: 0, 2, 24, and 72 h, respectively); and the 13 volatile
compounds (V1–V13, see Table 1). All analyses were performed in duplicate.

4. Conclusions

The reported results show that the oral cavity microbiota from human saliva has
hydrolytic activity on the glycosides present in Psidium friedrichsthalianum Nied., which
was evidenced by the detection of 1-hexanol and butanol after incubation of the glyco-
sidic precursor extract (GP) with the cultivable bacteria from several healthy individuals.
Although this study is far from consumption conditions, the existence of this hydrolytic
activity could be a relevant mechanism in the generation of new odorant molecules when
sour guava (P. friedrichsthalianum) is consumed, and this could contribute to the perception
of its aroma and acceptability. Future research should aim to evaluate the effect of the
oral microbiota on aroma precursors and off-taste notes in P. friedrichsthalianum fruit using
in vivo conditions.

Supplementary Materials: The following supporting information can be downloaded online, Table S1:
Analysis of variance from data of 2-methyl-propanol obtained under the levels of three factors (assay,
condition, and time).
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