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Abstract: This study investigated the chemical composition, antioxidant and antimicrobial activity of
essential oil extracted from Artemisia aragonensis Lam. (EOA). Hydrodistillation was employed to
extract EOA. Gas chromatography with flame ionization detection (GC-FID) and gas chromatography-
mass spectrometry analyses (GC-MS) were used to determine the phytochemical composition of
EOA. Antioxidant potential was examined in vitro by use of three tests: 2.2-diphenyl-1-picrilhidrazil
(DPPH), ferric reducing activity power (FRAP) and total antioxidant capacity assay (TAC). Agar
diffusion and microdilution bioassays were used to assess antimicrobial activity. GC/MS and GC-
FID detected 34 constituents in the studied EOA. The major component was Camphor (24.97%)
followed by Borneol (13.20%), 1,8 Cineol (10.88%), and Artemisia alcohol (10.20%). EOA exhibited
significant antioxidant activity as measured by DPPH and FRAP assays, with IC50 and EC50 values
of 0.034 ± 0.004 and 0.118 ± 0.008 mg/mL, respectively. EOA exhibited total antioxidant capacity of
7.299 ± 1.774 mg EAA/g. EOA exhibited potent antibacterial activity as judged by the low minimum
inhibitory concentration (MIC) values against selected clinically-important pathogenic bacteria. MIC
values of 6.568 ± 1.033, 5.971 ± 1.033, 7.164 ± 0.0 and 5.375 ± 0.0 µg/mL were observed against
S. aureus, B. subtills, E. coli 97 and E. coli 57, respectively. EOA displayed significant antifungal
activity against four strains of fungi: F. oxysporum, C. albicans, A. flavus and A. niger with values
of 21.50 ± 0.43, 5.31 ± 0.10, 21.50 ± 0.46 and 5.30 ± 0.036 µg/mL, respectively. The results of
the current study highlight the importance of EOA as an alternative source of natural antioxidant
and antibacterial drugs to combat antibiotic-resistant microbes and free radicals implicated in the
inflammatory responses accompanying microbial infection.
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1. Introduction

Plants constitute a natural reservoir of substances with antioxidant potential [1]. The
use and development of natural antioxidants are highly appreciated due to their role
in the protection of human cells from damage caused by free radicals [2,3]. Natural
antioxidants, rather than synthetic antioxidants, appear to be preferred by food industry
users for preventing oxidative deterioration of foodstuffs caused by free radicals. It has been
previously reported that the use of synthesized antioxidants such as tertbutyl hydroquinone
(TBHQ), butylated hydroxytoluene, and butylated hydroxyanisole is no longer advised
because of their carcinogenic potential [4]. BHA and BHT are also involved in liver damage
along with other adverse health effects. Indeed, TBHQ is currently banned by some
European countries and Japan [5].

Antimicrobial resistance (AMR) is a phenomenon whereby microorganisms develop
a variety of strategies to combat medications designed to kill them, resulting in microbes
that are resistant to treatment protocols [6]. Globally, growing attention is being allocated
by scientists to AMR since it has evolved into a widespread and serious problem affecting
the entire healthcare system. In addition, the World Health Organization has pointed
out that AMR is the most significant concern in 2019 and has classified it among the top
10 global public health threats to humanity. The overuse of antibiotics in human medicine,
animal husbandry, hygiene, and the food industry can contribute to the rise of AMR [7,8].
Fatalities attributed to AMR are alarmingly increasing and it is being projected to claim
10 million annually by the year 2050. Significant global economic losses are also expected
to reach a cumulative $100 trillion if more efficient and novel therapeutic alternatives
are not developed soon to contain the rapidly-evolving causative microbial agents [9].
The list of microbes that are becoming resistant to all known antibiotics is expanding,
under the currently limited and insufficient repertoire of new treatments, necessitating the
development of novel classes of drugs to avoid serious public health problems.

The microorganisms examined in this study are classified among the drug-resistant
pathogens namely Escherichia coli and Staphylococcus aureus. As previously documented,
these species are multidrug-resistant [10,11]. In addition, Candida albicans, which was
also evaluated in this study, is known to be a drug-resistant pathogen. Candida albicans
resistance is being widely recognized as one of the greatest expanding health burdens,
owing to the widespread use of various drugs, particularly oral azoles to control this
strain [12]. However, none of the currently available traditional antimycotic medications
fit all of the criteria in terms of patient toxicity, ease of administration and minimal risk of
resistance development.

Recently, alternative therapeutic solutions based on the exploitation of natural re-
sources have been thoroughly researched [13,14]. In this context, the chemical constituents
of the genus Artemisia have been the subject of numerous previous reports, which showed
that this genus possesses several potentially-bioactive classes of compounds including
flavonoids, polyphenols, tannins, sesquiterpene lactones and essential oil (EO) [14]. EOs
from the genus Artemisia were reported to possess multiple biological and pharmacolog-
ical effects including antimicrobial [15,16]. EOs are complex combinations of chemical
molecules from various chemical families, such as aldehydes, alcohols, esters, phenols,
ethers and ketones terpenes, among others. Terpenes, terpenoids, and other aromatic and
aliphatic components with low molecular weights make up the majority of EOs [10,11].

The current study investigated the chemical composition of EOA along with its an-
tioxidant and antibacterial potential against drug-resistant pathogenic microorganisms.

2. Materials and Methods
2.1. Plant Material Selection and Identification

In April 2021, A. aragonensis was collected from the southern slopes of Jbel Bou-Naceur
in Morocco (latitude 33.59885133, longitude −3.74447934, and altitude: 1350 m). Botanical
identification was conducted by a botanist under reference AHA001T7621. Thereafter,
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leaves were dried at room temperature for 11 days before being extracted by use of Cle-
venger equipment to obtain EO.

2.2. Extraction of Essential Oil

In the current study, hydrodistillation was used to extract EOA. Briefly, 100 g of the
dried aerial parts of A. aragonensis were soaked in 600 mL of distilled water and boiled for
2 h using a Clevenger-type apparatus. The obtained essential oil was kept at 4 ◦C and its
yield (%) was calculated on the basis of the dry weight of the plant material.

2.3. Essential Oil Chemical Identification

The EOA was characterized by GC-ULTRA apparatus equipped with VB-5 column
(length: 30.00 m, internal diameter: 0.250 mm, film thickness: 0.250 µm). Operational
conditions were set as follows: carrier gas (helium), injection temperature (220 ◦C), injection
volume (1 µL), flow rate (1.4 mL/min), temperature-programmed gas chromatography (40
to 180 ◦C at 4 ◦C/min, followed by 20 min at 300 ◦C). The temperature of the interface was
300 ◦C with the following conditions: type of ionization EI (70 eV) and temperature of the
ionization source (200 ◦C). The identification of the phytochemical components of EOA
was carried out by determining their retention indices relative to a homologous series of
n-alkanes and by comparing their registered mass spectra with those reported in referenced
databases (NIST MS Library v.2.00) (NIST MS Library v.2.00) [17].

2.4. Antioxidant Activity
2.4.1. Radical Scavenging Activity Test

DPPH assay was carried out according to Chebbac’s protocols [18]. To achieve this,
100 µL of EOA, at different concentrations, prepared with methanol (1.0, 0.25, 0.125, 0.0625,
0.0312, 0.0156, 0.0078, 0.0064 and 0.0019 mg/mL), were used for the testing purposes. The
anti-free radical effect was measured by mixing 100 µL of each concentration previously
prepared (EOA, Quercetin, Ascorbic acid and BHT) with 750 µL of DPPH (0.004%), while
methanol was included as a negative control. Next, incubation was conducted in the dark
for 30 min at room temperature prior to recording absorbance values at 517 nm by use of a
spectrophotometer and the DPPH trapping capacity was represented as percent inhibition
(Equation (1)):

PI (%) = (A0 − A/A0) × 100 (1)

where PI represents the proportion of inhibition, A0 represents the negative control
(methanol), and A represents the combined absorbance of DPPH and samples. All analyses
were performed three times, and the findings were presented as means with standard
deviations. The IC50 was calculated graphically by use of linear regression.

2.4.2. Total Antioxidant Capacity Test (TAC)

One milliliter of a solution containing sulfuric acid, sodium phosphate, and ammo-
nium molybdate was combined with 25 µL of each EOA concentration. The solution was
then incubated for 91 min at 96 ◦C. The absorbance was then recorded at 695 nm against
the blank with 25 µL of methanol [19]. TAC per gram of EO was expressed in milligrams of
ascorbic acid equivalent (mg EAA/g). The experiment was conducted in triplicates and the
obtained results were represented as means with standard deviations.

2.4.3. Reducing Power Test (FRAP)

This test was carried out using the method proposed by Bourhia et al. [20]. In methanol,
500 µL of phosphate buffer solution and potassium ferricyanide were combined with 100 µL
of varied doses of EOA (0.1, 0.2, 0.4, 0.8, 1.6 mg/mL). Following a 21 min incubation period,
500 µL of a 10% aqueous TCA solution, 500 µL of distilled water and 100 µL of 0.1%
FeCl3 were added to the reaction medium. The absorbance was subsequently measured
against a reagent blank containing no sample. The results were expressed as a 50% effective
concentration (EC50).
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2.5. Antimicrobial Activity

Antifungal activity of EOA was tested against four fungal species, including Candida
albicans ATCC 10231, Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum, as well
as four bacterial strains, including Escherichia coli (ATB: 57/B6N), Escherichia coli (ATB:
97/BGM), Staphylococcus aureus, and Bacillus subtills, which were kindly provided by
Hassan II University Hospital Center of Fez, Morocco.

2.5.1. Disk Diffusion Method

In the present study, the disk diffusion method was used to evaluate antifungal and
antibacterial activity of EOA [21]. For this purpose, bacteria were grown in Petri plates
having nutrient broth medium (NB), whereas fungal strains were grown in Petri dishes
possessing a malt extract agar (MEA) medium. From fresh bacteria culture, a few colonies
were aseptically seeded in 0.9% sodium chloride (NaCl) at a density of 0.5 McFarland
(107 to 108 CFU/mL), whilst the yeast suspension was determined to be approximately
106 CFU/mL. After being soaked in 10 µL of EOA, 6 mm diameter disks were placed on the
surface of petri dishes. [15,22,23]. Next, the inoculated Petri dishes were incubated in the
dark at 30 ◦C and 37 ◦C for the fungal and bacterial species, respectively. The inhibition rate,
expressed in percentages, was calculated 24 and 48 h post-incubation for bacteria and C.
albicans, respectively, and 7 days post-inoculation for A. niger, A. flavus and F. oxysporum [18].
The growth inhibition zones were determined in mm.

2.5.2. Determination of the Minimum Inhibitory Concentration (MIC)

The microdilution method, which was originally published in Balouir’s earlier work [24],
was undertaken to determine the MIC of EOA against bacterial and fungal strains. In this
context, the MIC was calculated by direct observation of growth in the wells using the
colorimetric method (TTC 0.20 percent (w/v)) after an incubation period of 24 h for bacteria
at 37 ◦C, 48 h for yeast and seven days for fungi at 30 ◦C.

2.6. Statistical Analysis

The obtained findings in this research work were expressed as means with standard
deviations of triplicate tests. Normality was checked by use of the Shapiro–Wilks test and
the assumption of homogeneity of variance was evaluated using Levene’s test. The non-
parametric Tukey’s statistical test was employed as a post-hoc test for multiple comparisons.
When p < 0.05, a statistically significant difference was considered.

3. Results and Discussion
3.1. Essential Oil Yield

The yield of EOA was 1.18%, which was reasonable compared with EOs extracted
from plants that have been industrially exploited as a natural source of EOs. In this context,
species among genus Artemisia were used for comparison purposes including Artemisia
frigida (1.5%) and Artemisia cana (1.3%). By contrast, species of A. absinthium, A. dracunculus,
A. biennis, A. ludoviciana and A. longifolia were found to produce lower EO yield than
A. aragonensis [25]. The observed difference can be explained by the environmental and
edaphic factors, extraction technique, drying, harvesting period and cultural practices that
influence both quality and quantity of compounds in plants [26].

3.2. Chemical Composition Identification of the Essential Oil

The chromatographic analysis of EOA showed the presence of 34 compounds repre-
senting 99.96% of the EO (Figure 1). In this context, GC-MS results demonstrated that EOA
consisted of Camphor (24.97%), Borneol (13.20%), 1.8 Cineol (10.88%), Artemisia alcohol
(10.20), α-Bisabolone oxide A (5.63%) and Camphene (3.10%) (Table 1, Figures 2 and 3).
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Figure 1. Chromatographic profile of EOA profiled by GC-MS.

Figure 2. Molecular structure of some major phytochemicals identified in EOA.

The detected components were classified according to functional categories and the
results revealed that oxygenated monoterpenes (70.14%) were the most abundant in EOA.
These findings matched those reported in previous studies [16], which reported the richness
of EOA native to Spain, in Camphor (15%), Cineol (13.3%), Borneol (4.8%) and Camphene
(1.9%). The chemical composition, particularly amounts of monoterpene alcohols, found
in EOA in our study is similar to those reported in Israeli species. However, the chemical
composition of EOA was different when compared to Algeria and Tunisia cultivars in terms
of chemical content, notably monoterpene alcohols [23,24]. For a more detailed comparison,
the chemical content of EOs extracted from the aerial parts of four Artemisia species, A.
cana, A. frigida, A. longifolia and A. ludoviciana, growing in Canada was higher in 1,8-cineole
(21.5–27.6%), davanone (11.50%) and camphor (15.9–37.3%). EO of A. absinthium was found
to be rich in myrcene (10.80%), trans-sabinyl acetate (26.40%) and trans-thujone (10.1%). A.
biennis contained more (E)-β-farnesene (40%), (Z)-β-ocimene (34.7%), acetylenes (11.00%)
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(Z)- and (E)-en-yn-dicycloethers. Phenylpropanoids (16.2%) and methyl eugenol were the
primary components of the EO from A. dracunculus (35.8%) [27,28].

Table 1. Phytochemical components identified in EOA by GC-MS.

RI

Area (%) Lit Obs Chemical Classes Compound Name R.T (min) P

1.53 933 933 MO.H α-Pinene 7.84 1

3.1 949 948 MO.H Camphene 8.23 2

1.43 980 982 MO.H β-Pinene 9.17 3

2.75 999 998 MO.O Yamogi alcohol 10.15 4

0.69 1026 1024 MO.H o-Cymene 10.78 5

10.88 1032 1030 MO.O 1,8-Cineole 11.03 6

0.48 1017 1019 MO.H α-Terpinene 12.15 7

10.2 1083 1089 MO.O Artemisia alcohol 13.11 8

0.51 1102 1107 MO.O Thujone 13.39 9

24.97 1146 1151 MO.O Camphor 14.57 10

0.52 1139 1145 MO.O Trans-pinocarveol 14.65 11

0.44 1164 1163 MO.O Pinocarvone 15.16 12

13.2 1169 1171 MO.O Borneol 15.66 13

1.39 1082 1084 MO.O Terpinen-4-ol 16.09 14

1 1173 1178 O Artemisia acetate 16.24 15

0.69 1133 1137 MO.O α–Terpineol 16.51 16

2.73 1198 1195 MO.O Myrtenol 16.73 17

0.42 1216 1220 MO.O Trans-Carveol 17.46 18

1.44 1237 1239 MO.O Pulegone 17.87 19

2.33 1288 1286 O Bornyl acetate 19.8 20

0.83 1326 1327 O Myrtenyl acetate 21.05 21

0.75 1376 1372 SQ.H α-Copaene 23.11 22

0.71 1485 1480 SQ.H Germacrene D 26.12 23

1.26 1578 1579 SQ.O Spathulenol 28.66 24

1.26 1586 1583 SQ.O Caryophyllene
oxide 28.77 25

0.5 1624 1625 SQ.O Isospathulenol 30.12 26

2.2 1632 1633 SQ.O γ-Eudesmo 30.26 27

0.51 1640 1642 SQ.O Cadinol 30.5 28

1.3 1650 1652 SQ.O β-Eudesmo 30.64 29

0.45 1658 1657 SQ.O Bisabolol oxyde B 30.93 30

5.63 1685 1688 SQ.O Bisabolone oxide A 31.45 31

0.56 1749 1751 SQ.O α-Bisabolol oxide A 33.14 32

1.33 2800 2804 O Octacosane 40.32 33

1.63 2500 2503 ST.H Pentacosane 42.99 34

Chemical classes

7.23 Monoterpene hydrocarbons (MO.H)

70.14 Oxygenated monoterpenes (MO.O)

1.46 Sesquiterpene hydrocarbons (SQ.H)

13.67 Oxygenated sesquiterpenes (SQ.O)

1.63 Sesterpene (ST.H)

5.49 Other compounds (O)

99.62 Total identification

P: Peak; R.T: Retention time; Obs: Observed; Lit: Literature; R.I: Retention index; MO.H: Monoterpene hydrocar-
bons; MO.O: Oxygenated monoterpenes; SQ.H: Sesquiterpene hydrocarbons; SQ.O: Oxygenated sesquiterpenes;
ST.H: Sesterpene; O: Other compounds.
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Several studies indicated that A. aragonensis was characteristically distinguished
by the presence of potentially bioactive compounds including chrysantenone and da-
vanone [26,29,30], which are absent in our plant that was collected from the southern slope
of Jbel Bou-Naceur. Therefore, this difference in chemical composition can be an indicator
of the difference in the ecosystem diversity where species grow. Moreover, our results
showed that EOA contained artemisia alcohol and artemisia acetate, which can be used as
a distinctive indicator of A. aragonensis from the southern slope of Jbel Bou-Naceur of the
folded Middle Atlas of Morocco.

3.3. Antioxidant Activities
3.3.1. Test DPPH

The ability of EOA to scavenge the DPPH free radical was used to assess its anti-
radical activity (Figure 3A). Figure 3B shows the obtained results of tests measuring the
percentage of DPPH inhibition as well as the IC50 values. In this respect, the results
indicated that the EOA was capable of inhibiting the DPPH free radicals with an IC50
value of 0.034 ± 0.004 mg/mL, whilst other tested synthetic antioxidants such as BHT,
Ascorbic Acid, and Quercetin showed IC50 values of 0.0203 ± 0.005, 0.0124 ± 0.001 and
0.0342 ± 0.002 mg/mL, respectively. Furthermore, when compared to other EOs from
Artemisia species tested by the same bioassays such as A. absinthium, A. biennis, A. cana,
A. longifolia, A. dracunculus, A. frigida and A. ludoviciana, the EOA exhibited the strongest
radical-scavenging activity [31]. Therefore, it can be concluded that EOA under investiga-
tion in the current study possesses a significant antioxidant capacity that is superior to EOs
extracted from the other species in the genus Artemisia.

Figure 3. (A) Anti-radical activity of EOA and controls (BHT, Ascorbic Acid and Qercetin) by use
of DPPH assay. (B) IC50 values of anti-radical activity of EOA and controls (BHT, Ascorbic Acid
and Qercetin).

The EOA was higher in oxygenated monoterpenes (Table 1), which can act as radical
scavengers. Our results are in agreement with other reports that documented that the
high antioxidant effects of EOs are attributed to their richness in oxygenated monoter-
penes and/or sesquiterpenes [32]. Terpenes are a type of natural chemical derived from
plants; they are generated by the condensation of isoprene units (C5H8) and are divided
into monoterpenes (C10) and sesquiterpenes (C15). Terpenoids are oxygen-containing
compounds of these plants [33]. Moreover, several studies have documented that EOs
possessing minimal phenolic components may exhibit antioxidant properties [34]. Fur-
thermore, camphor, which is a major constituent in our essential oil (24.97%), has been
reported to have a potent antioxidant activity [35]. Typically, the chemical characterization
of several EOs has indicated the existence of only 2–3 primary components at relatively high
concentrations (20–70%) relative to other constituents contained in minute quantities [36].
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The lipid peroxidation process, which is characterized by a radical chain reaction,
produces peroxyl radicals as intermediates. Antioxidants, including terpenes break the
chain and react with the lipid peroxyl radicals, and thereby interrupt this process. By
reacting with another radical, the antioxidant radical can be eliminated, resulting in a
stable product [37]. The presence of antioxidants in terpenoids causes the reduction of the
Fe3+ or ferricyanide complex to its ferrous form [38]. Polyphenols with hydroxyl groups
possessed powerful antioxidant activity, which was due to their ability to release more
atoms to stabilize free radicals [39]. Generally, antiradical activity depends on the number,
position and nature of substituents on the B and C rings (hydroxylated, methoxylated,
glycosylated groups) and the degree of polymerization [40].

3.3.2. Total Antioxidant Capacity

In the present work, the total antioxidant capacity (TAC) content of EOA was obtained
by use of an ascorbic acid calibration curve. The obtained results revealed that the examined
EOA had considerable antioxidant potency equivalent to 7.299 ± 1.774 EAA/g EOA. Earlier
studies identified a strong link between the chemical content of EOs and their antioxidant
activity, particularly when molecules possess hydroxyl functionalities [41]. In this context, it
was reported that EOs that are rich in oxygenated monoterpenes and phenolic compounds
possess high antioxidant potency, which conforms to our present findings revealing the
richness of EOA in oxygenated monoterpenes [42].

TAC exhibited by EOA is likely to be attributed to some chemical constituents that
were identified by GC-MS (Figures 1 and 2), particularly pulegone [43]. It is well docu-
mented in the literature that the antioxidant effect of EOs prepared from aromatic plants
are mostly due to active molecules, particularly monoterpenes, ketones menthone, and
isomenthone [44–46]. As a result, EOs with a higher terpene content have been reported to
possess powerful antioxidant potential [35,36]. Minor compounds in EOs are more likely
than major chemicals to play a significant role in the observed antioxidant [47].

3.3.3. Ferric Reducing Antioxidant Power Assay

The findings of the FRAP test (Figure 4A,B) revealed that the EOA resulted in a dose-
dependent reduction in antioxidant power with an EC50 value of 0.118 ± 0.008 mg/mL.
EOA had a powerful antioxidant effect when compared to the EC50 obtained with
the positive control quercetin (EC50 = 0.032 ± 0.004 mg/mL) and ascorbic acid
(EC50 = 0.124 ± 0.011 mg/mL). The reducing power of the EOA extracted from the stud-
ied plant was probably due to the presence of chemically bioactive compounds such as
Camphor, Borneol, 1.8 Cineol, Artemisia alcohol, α-Bisabolone oxide and camphene, which
can serve as electron donors to scavenge free radicals [48]. Therefore, it can be confirmed
that the EOA under investigation has a very significant antioxidant capacity.

It has been suggested that the antioxidant effect of EOs is mostly attributed to their
chemical constituents possessing hydroxyl functionalities [49]. As a result, EOs higher in
terpene content have more antioxidant power, which is in agreement with our GC-MS
results, indicating the richness of EOA in terpenes. Moreover, results of TAC were in
accordance with the literature [50], where it was reported that EOs from species among
Genus Artemisia possessed antioxidant power, particularly Artemisia annua L., Artemisia
judaica L. and Artemisia vulgaris L.

3.4. Antibacterial and Antifungal Activity of EOA
3.4.1. Antibacterial Activity of Essential EOA

The results of the antibacterial effect of EOA, including the inhibition diameter and
minimum inhibitory concentration (MIC) are summarized in Tables 2 and 3 and Figure 5.
EOA showed significant antibacterial effects against all bacterial strains tested, whether
Gram-negative (E. coli ATB: 57, E. coli ATB: 97) or Gram-positive (B. Subtilis and S. aureus)
(p > 0.05). Although these bacteria are known to be highly virulent and pathogenic, they
were found to be sensitive to EOA.
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Figure 4. (A) Ferric reducing antioxidant power of EOA and controls (BHT, Ascorbic Acid and
Qercetin). (B) IC50 values of Ferric reducing antioxidant power of EOA and controls (BHT, Ascorbic
Acid and Qercetin).

Table 2. Inhibition zones induced by EOA and controls (Streptomycin and Ampicillin) vs. bacterial
strains (mm).

Compound
Gram-Negative Bacteria Gram-Positive Bacteria

E. coli (ATB:57) E. coli (ATB:97) S. aureus B. subtilis

Essential oil 13.00 ± 0.00 a 13.67 ± 1.15 a 14.67 ± 0.58 a 13.33 ± 0.58 a

Streptomycin _ _ 9.11 ± 0.43 _

Ampicillin _ _ _ _
Row values with the same letter (a) did not differ significantly (means ± SD, n = 3, one-way ANOVA; Tukey’s test,
p ≤ 0.05).

Table 3. Minimum inhibitory concentration induced by EOA and controls (Streptomycin and Ampi-
cillin) vs. bacterial strains (µg/mL).

Compound
Gram-Negative Bacteria Gram-Positive Bacteria

E. coli (ATB:57) E. coli (ATB:97) S. aureus B. subtilis

EOA 5.375 ± 0.00 a 5.971 ± 1.033 a 6.568 ± 1.033 a 7.164 ± 0.0 a

Streptomycin 0.25 ± 0.00 a 0.5 ± 0.00 b 0.062 ± 0.00 c _

Ampicillin _ _ _ _
Row values with the same letters (a, b or c) did not differ significantly (means ± SD, n = 3, one-way ANOVA;
Tukey’s test, p ≤ 0.05).

The observed antibacterial effect exhibited by EOA was significant compared to the
positive antibiotic controls Streptomycin and Ampicillin that have been shown to be
generally ineffective against most of the tested strains, with neither inhibition zones nor
bactericidal effect being observed (p < 0.05). The results presented here clearly document
the development of antibacterial resistance by bacterial strains, which is in agreement with
previous studies [17,51]. Additionally, our findings were consistent with those reported
elsewhere [50], which showed that the EO extracted from Withania frutescens L. possessed
significant antibacterial effects against S. aureus, E. coli 57 and E. coli 97.

Our findings were consistent with previous results [51,52], which showed that the
EOA from Tunisia had high efficacy against E. coli (11.30 mm) and B. cereus (23 mm), as
well as P. aeruginosa PAA1. Moreover, previous work showed significant activity of the
genus Artemisia against S. aureus SASMA1 (17.70 mm). The antibacterial activity of EOA
could be due to Borneol, 1,8 cineol and Artemisia alcohol identified by GC-MS [52]. Our
results were in agreement with a previous study that attributed the antibacterial power
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of EOA to the presence of a significant amount of Camphor [52], which can confirm that
the oxygenated monoterpenes possess antibacterial power against several bacteria [53,54].
The mechanism of action (MOA) of Bornoel, Artemisia alcohol and 1,8-cineole is most
likely due to their ability to form hydrogen bonds, which determines their activity towards
Gram positive bacteria [55]. Essential oils rich in terpenes including camphor can penetrate
cell walls and the cytoplasmic membrane, inducing polysaccharide structure, fatty acid,
and phospholipid permeability disorders [56]. Since camphor is the most predominant
component in EOA (24.97%; Table 1), it could be responsible for the observed antimicrobial
effect of EOA. The molecular interaction of the functional groups of the components of
EOA with the bacteria’s wall, which creates deep lesions, could explain EOA’s antibacterial
effectiveness. It’s also possible that this activity is the consequence of a synergistic effect of
various components of EOA [57].

Figure 5. Photographs displaying the effects of EOA on the tested bacteria.

The antibacterial capabilities of EOA documented in the current study can be explained
by the lipophilic nature of the oil, which allows it to easily infiltrate bacterial cells and
kill them. In this sense, it has been claimed that hydrocarbons make EOs preferentially
lodge in biological membranes leading to the disruption of membrane permeability and
eventually triggering rapid death of microorganisms [46,47]. Phytochemicals (Camphor,
Borneol, 1,8-cineole, Artemisia alcohol, -Bisabolone oxide, and Camphene) in the oil can
function in synergy more than individually since previous studies have demonstrated that
the antibacterial activity of EOs was shown to be greater than its individually examined
constituents [58–60]. In order to have an antibacterial effect, antimicrobial agents must
reach and interact with target microorganism-specific sites. In bacteria, the drug–target
interaction is commonly disrupted by a variety of resistance mechanisms, resulting in
ineffectiveness of antimicrobial drugs and ultimately aiding the development of bacterial
strains that are resistant to the examined agents [61,62]. However, EOs can easily permeate
cell walls and cytoplasmic membranes due to their lipophilic nature, which leads to bacterial
death by disrupting polysaccharide structure, fatty acids and phospholipids [63]. EOA has
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essentially the same efficacy against Gram-positive and Gram-negative bacteria, according
to our results, and therefore, it has great potential as a powerful broad-spectrum weapon to
control pathogenic and multidrug-resistant strains.

3.4.2. Antifungal Activity of the Essential Oil

In vitro testing of EO derived from A. aragonensis against A. niger, A. flavus, F. oxs-
porum and C. albicans revealed promising antifungal activity with inhibition zones of
68.51 ± 1.06; 71.72 ± 0.52, 46.50 ± 1.01 and 40.00 ± 1.00 mm, respectively. Addition-
ally, the MIC values observed for EOA against A. niger, A. flavus and F. oxysporum were
21.50 ± 0.43, 5.31 ± 0.10 and 21.50 ± 0.46 µg/mL, respectively (Table 4 and Figure 6).
EOA was more effective towards A. flavus (MIC = 21.50 ± 0.46 µg/mL) and C. albicans
(MIC = 5.31 ± 0.10 µg/mL) when compared to A. niger (MIC = 5.30 ± 0.036 µg/mL) and F.
oxysporum (MIC = 21.50 ± 0.43 µg/mL) (p < 0.05). Regardless of the dose used for testing,
EOA significantly inhibited fungal growth compared to the control antifungal pharma-
ceutical drug Fluconazole (p < 0.05). These findings agreed with those reported in earlier
works [51], which showed that the EO from Withania frutescens L. possess antifungal effects
against C. albicans, with a MIC value of 4 µg/mL.

Table 4. Evaluation of the antifungal activity of EOA and Fluconazole by use of inhibition zone and
minimum inhibitory concentration (MIC).

Inhibition Diameter (mm) Minimum Inhibitory
Concentration (µg/mL)

Fungal Strains EOA Fluconazole EOA Fluconazole

A. niger 68.51 ± 1.06 a 36.12 ± 3.70 b 21.50 ± 0.43 c 2.01 ± 0.01 d

A. flavus 71.72 ± 0.52 a 29.41 ± 5.07 b 5.31 ± 0.10 c 1.21 ± 0.01 d

F. oxysporum 46.50 ± 1.01 a 39.52 ± 2.16 a 21.50 ± 0.46 a 1.82 ± 0.01 d

C. albicans 40.00 ± 1.0 a 33.08 ± 4.17 a 5.30 ± 0.036 c 3.12 ± 0.20 d

Row values with the same letters (a, b, c or d) did not differ significantly (means ± SD, n = 3, one-way ANOVA;
Tukey’s test, p ≤ 0.05).

Several studies have been devoted to the control of A. niger, A. flavus, Fusarium oxysporum
and C. albicans by the use of natural products including the study by El Barnossi et al. [10],
which demonstrated that the Bacillus sp Gn-A11-18 had antifungal activity against C.
albicans and A. niger. Bulgasem’s study also reported that cell-free supernatant produced
by Lactobacillus plantarum isolated from vegetables has strong antifungal activity against C.
albicans [31].

Results of the present work indicated significant antifungal activity of EOA against
Aspergillus flavus, which is classified as a saprophyte in soils worldwide. This fungal strain
has been reported to inflect a serious burden loss on cash crops including peanuts, corn and
cottonseed during both pre-and post-harvest conditions [45–47]. A. flavus fungus has also
been associated with human and animal diseases, either through invasive growth causing
aspergillosis or through consumption of contaminated food causing aflatoxicosis, which is
often fatal in immunocompromised humans [48].

The antimicrobial MOA of EOs is multifaceted, and it is determined by their chemical
makeup and quantities of the prominent single compounds present. Numerous studies
have revealed insightful data on the MOA of the observed antifungal activity exhibited
by EOs. The MOAs of the observed EO-mediated antifungal and antibacterial effects are
analogous to one another. A large number of studies have found that the phytochemicals
present in EOs disrupt cell membranes and alter a variety of other cellular functions,
including production of energy [63]. Reduced membrane potentials, interruption of proton
pumps and ATP exhaustion may all contribute to the observed antimicrobial activity [64].
The coagulation of cell content, potassium ion efflux, cytoplasm leakage, and finally cell
apoptosis or necrosis, which leads to cell death, are all biochemical hallmarks of the noted
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antimicrobial activity of EOs. In this context, it was reported that EOs rich in thymol and p-
cymene easily permeate fungal cells causing membrane damage [65]. The fungicidal effect
of natural agents is attributed to direct damage to the cell membrane rather than metabolic
impairment, eventually leading to the execution of fungal death [66]. This cytotoxic effect
can be linked to monoterpenes present in EOs, as it might potentially operate as a cell
membrane solvent. Similarly, previous literature revealed that the fungicidal activity of
an EO rich in thymol and p-cymene against Candida spp. was due to direct cytoplasmic
membrane disruption [31].

Figure 6. Photographs displaying the effects of EOA on the tested fungi.

4. Conclusions

The outcome of this work clearly indicated that the essential oil extracted from A.
aragonensis had excellent antibacterial and antifungal potencies against clinically impor-
tant drug-resistant pathogenic microorganisms. These finding are intriguing since they
suggest that EOA could potentially be employed as an alternative to traditional antimicro-
bial treatment. Camphor, borneol, 1,8-cineole, artemisia alcohol, α-bisabolone oxide and
camphene were identified in the EO of the investigated plant, which could be responsible
for the recorded activity. Although the MOA of EOA is still being investigated, it is well
recognized that a complex mixture of constituents can potentially have multiple biological
responses concurrently. Hence, future investigation will concentrate on determining the
MOA of single purified chemicals. Prior to any prospective application of EOA as a natural
medication to control microorganisms, assessment of the potential undesirable impacts on
non-target organisms along with pre-clinical and clinical studies on non-human primates
and humans will be essential.
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