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Abstract: A novel double aza-oxa[7]helicene was synthesized from the commercially available
NT,N*-di(naphthalen-2-yl)benzene-1,4-diamine and p-benzoquinone in two steps. Combining the
acid-mediated annulation with the electrochemical sequential reaction (oxidative coupling and
dehydrative cyclization) afforded this double hetero[7]helicene. Moreover, the structural and optical
features of this molecule have been studied using X-ray crystallographic analysis, and the absorption
and emission behaviors were rationalized based on DFT calculations.

Keywords: polycyclic aromatic hydrocarbon; double hetero[7]helicene; short-step synthesis; electro-
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1. Introduction

Helicenes are polycyclic aromatic hydrocarbons (PAHs) in which aromatic rings are
annulated in a helical architecture, giving them unique electronic, photophysical and chi-
roptical properties [1-4]. Over the past couple of decades, the great advances achieved
in this chemistry [2-6] promoted a broad spectrum of material-based applications [7-10],
transistors [11,12], and semiconductors [13]. Incorporation of one or more heteroatoms
in the helicene scaffolds modulate their physical and optical features, and alter the elec-
tronic properties in order to expand their applications [14,15]. With these extra features,
the trend in helicene chemistry has begun to move towards heterohelicenes after the
domination of carbohelicenes [16-21]. Another approach to promote characteristics of
helicenes is to induce multihelicity which means combining two or more helical scaffolds
in a single molecule [22,23]. Multiple helicenes show a lot of favorable properties due
to their amplified non-planarity, diverse conformations, and maximized intermolecular
interactions [24,25]. Various smart core scaffolds were used to induce this multihelicity
such as perylene diimide (PDI) that afforded valuable twisted structures for different
material-based applications [26-29]. Hence, a lot of efforts were dedicated for designing
and synthesizing multiple heterohelicenes [30], in particular, double heterohelicenes [14].
After the first report of double helicene reported by Rajca, many examples of these double
heterohelicenes were conducted and exhibited clear superiority over their single coun-
terparts, especially in terms of optical properties (Figure 1a) [31-40]. However, during
that frantic pursuit to promote the properties of helicenes, another problem, in particular,
synthetic difficulty emerged. With the increase in structural complexity, the synthesis of
multiple heterohelicenes becomes more challenging and requires many steps. Although
few reports succeeded to introduce effective short-step synthetic protocols for double
heterohelicene, most of these successes were concentrated in the double hetero[5]helicene
derivatives (Figure 1b) [41-43]. In 2016, Narita, Cao, and Miillen introduced an efficient
two-step synthesis of a highly strained OBO-fused double hetero[7]helicene K via the
nucleophilic aromatic substitution reaction of hexabromobenzene, followed by a sequential
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step of demethylation and C-H aryl borylation (Figure 1c) [44]. Earlier in the same year,
Hatakeyama showed the potential of this synthetic approach to afford their boron-fused
double hetero[5]helicene I (Figure 1b) [42]. In 2021, Wang and coworkers developed the
first examples of B,N-embedded double hetero[7]helicenes L that showed excellent chirop-
tical features in the visible range [45]. With only two steps, they succeeded to prepare this
double hetero[7]helicene L via the nucleophilic aromatic substitution of dibromotetraflu-
orobenzene with carbazole, followed by a tandem process of substitution with BBr; and
C-H aryl borylation [45].

(a) Selected examples of double heterohelicenes

ReSsSon
N N TMS
JOSOOT
t-Bu
A

t-Bu
. B
Double hgtero[5]hel|cene Double hetero[7]helicene Double hetero[5]helicene
Rajca, 2005 Cheng & Wang, 2010 Nakamura & Hatakeyama, 2014

R = hexylheptyl

G
Double hetero[6]helicene Double hetero[7]helicene Double hetero[7]helicene Double hetero[7]helicene
Tanaka, 2014 Peng & Hu, 2020 Nakano & Nozaki, 2021 Oh & Lin, 2021
(b) Selected examples of double hetero[5]helicenes 3 (c) Selected examples of double hetero[7]helicenes

(that can be synthesized by short-steps '2-3 steps’) : (that can be synthesized by two-steps)

Y s ) . R
X = N-Me, N-CgHy3, or O | R=HortBu L Q Q\B T
H Double hetero[5]helicene ‘ ~o” 0 R N O R
Double hetero[5]helicene Hatakeyama, 2016 K N N
B (
R R
L

R =H, t-Bu, or
4-(t-Bu)phenyl

Sakamaki & Seki, 2015 O : Double hetero[7]helicene
OO © Narita, Cao & Muillen, 2016
N 1
N !
OO :@ . Double hetero[7]helicene
O |
J 1

Wang, 2021

Double hetero[5]helicene
Sakamaki & Fujiwara, 2021

Figure 1. The selected examples of double heterohelicenes in short-step synthesis: (a) Double
hetero[5-7]helicenes (more than four-step synthesis); (b) Double hetero[5]helicenes (two- or three-
step synthesis); (c) Double hetero[7]helicenes (two-step synthesis).

Notably, these examples (Figure 1c) represent a quantum leap in the short-step syn-
thesis of double hetero[7]helicenes via the tandem process of nucleophilic substitution
with BBr3 followed by C-H aryl borylation [44,45]. As part of our effort to explore the
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electrochemical domino syntheses, we were interested in designing effective sequential
reactions to access double helicene motifs [46,47]. Herein, a facile preparation of a double
aza-oxa[7]helicene with a phenylene linker has been established through acid-mediated an-
nulation with the electrochemical sequential reaction (oxidative coupling and dehydrative
cyclization). We also studied the structural and optical features via x-ray crystallographic
analysis, spectrophotometric analysis, and DFT calculations.

2. Results and Discussion
2.1. Synthesis of Double Aza-oxa[7 Jhelicene 3

Recently, Zhang reported a facile acid-mediated synthesis of carbazole in which
aniline derivatives react with p-benzoquinone to produce 3-hydroxycarbazoles [48]. Com-
bining this approach with our unprecedented electrochemically enabled synthesis of het-
ero[7]helicenes and dehydro-hetero[7]helicenes [46,47], herein, we achieved the two-step
synthesis of double aza-oxa[7]helicenes as depicted in Scheme 1. The acid-mediated
annulation of the commercially available substrates; N!,N*-di(naphthalen-2-yl)benzene-1,4-
diamine 1 and p-benzoquinone afforded the corresponding bis-3-hydroxy-benzo[c]carbazole
2 in 54% yield via a tandem process of double Michael addition and subsequent double ring
closure. Next, a DCM solution of 2, 3-naphthol, and tetrabutylammonium hexafluorophos-
phate(V) as an electrolyte, was utilized to a constant current of 1.5 mA in an undivided
electrolysis cell with platinum electrodes for 3.5 h at room temperature, affording double
aza-oxa[7]helicene 3 in 26% yield. The electrochemical sequential synthesis of 3 proceeds
through the oxidative hetero-coupling of arenols to produce a diol intermediate that can
readily undergo a subsequent dehydrative cyclization to 3. All compounds showed good
chemical and thermal stabilities and no decomposition was observed upon purification on
silica column chromatography and heating at 100 °C in air.

(o]
ﬁ Pt 15mA Pt
H o Constant current
N (2 5 equiv.) (Undivided cell)
‘g “ SN : ‘g “ H3PO4 (2.0 equiv.) \:\ OO

H toluene (0.05 M)
1 50°C,5h (40equw)
HO (54% yield) BF3;0Et, (0.1 M)
BuyNPFg (0.1 M)
CH,CI, (0.01 M), rt, 3.5 h

Dehydrative
Cyclization
under the same
conditions /Q

26% yield)

-
-

OH

HO
Reaction intermediate after
oxidative coupling

Scheme 1. The synthesis of a double aza-oxa[7]helicenes 3.

2.2. Structure and Packing Mode of 3

The double aza-oxa[7]helicene structure of 3 was definitely confirmed by X-ray crystal-
lography using a single crystal, grown from its racemic solution. We used the liquid/liquid
diffusion technique between ethyl acetate and n-hexane to prepare this crystal slowly
over three days in a dark environment at —20 °C. As expected, the two helicene moi-
eties are connected via a phenylene linker (Figure 2a,b). The dihedral angles between
the phenylene linker’s plane and the pyrrole (ring B’) are —41.86° for (C;-Cs-N7-Cg), and
54.38° for (Cs5-C4-N7-Cy). Although the experimental values of (C5-C4-N7-Cy) dihedral
angle (54.38°) is comparable to that of the optimized structure using DFT calculations at
MN15/6-311G(d,p) level of theory (54.72°), (C;-C4-Ny-Cg) dihedral angle was smaller than
optimized structures at various levels (Table 1). This can be attributed to the intermolecular
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interactions between the double helicene molecules 3 in the packed structure. Only meso
isomer (P,M)-3 was observed in the crystal packing with achiral molecules packed along
the b-axis (Figure 2c,d). The packing of 3 shows a herringbone pattern with m-7t distance of
4.458 A°. This characteristic arrangement is optimum for many material-based applications,
especially semiconductors [49-51]. In addition, it maximizes the optical and electronic
properties of the obtained double helicene upon self-assembly [49,52-54]. Most of these
larger or multiple helicenes showed significant variations during DFT calculations owing to
the long-range conjugation and the effects of charge transfer [55,56]. Among the functions
we screened, Minnesota 15 (MN15) function was found to be the most suitable parameters
for our molecules (Table 1) [57].

Selected bond length
C6-N7  1.428 A°
N7-C9  1.389A°
C8-N7 1.383A°
C16-017 1.380A°
017-C18 1.357 A°

Selected Dihedral angle
C5-C6-N7-C9 54.38°
C1-C6-N7-C8 41.86°

Selected atom distance
C10-C11 3.040A°
C12-C13 4.158A°
C1-C15 3.181A°
C5-C14 3.166A°

Centroids' distance 4.949 A°

Figure 2. Single crystal structure of the double helicene 3: (a,b) ORTEP drawing structure of (P,M)-3
obtained by X-ray crystal analysis with ellipsoids at 50% probability (H atoms were omitted for
clarity); (c) crystal packing of (P,M)-3 with ellipsoids at 30% probability; (d) packing structure of
(P,M)-3 is viewed along the c-axis to show the herringbone arrangement.
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Table 1. The selected experimental and calculated structural parameters of double aza-oxa[7]helicene 3.

Parameters Experimental  B3LYP! wB97XD ! MN15!

Centroids’ distance (rings F’-H’) 4.949 A° 4.885 A° 4.721 A° 4.759 A°
d;-Ny-d; Centroid angle 46.36° 45.43° 44.24° 45.51°
C5-C¢-Ny-Cg Dihedral angle 54.38° 60.25° 59.03° 54.72°
C;1-C¢-Ny-Cg Dihedral angle 41.86° 57.08° 55.34° 51.42°

C1-Cy5 Distance 3.181 A° 3.316 A° 3.281 A° 3.241 A°

Cs-Cy4 Distance 3.166 A° 3.356 A° 3.316 A° 3.266 A°

L All calculations are carried out using 6-311G(d,P) basis set at three different functions (B3LYP, wB97XD,
and MN15).

Nucleus-independent chemical shift (NICS) calculations revealed the low aromaticity
of the central phenylene linker with a NICS (0) value of —5.8 ppm (Figure 3a), much lower
than that of benzene —7.6 ppm calculated at the same level of theory. The largest NICS
(0) values (between —7.3 ppm and —8.6 ppm) were found on the benzene of 6H-furo[3,2-
elindole (ring C’), pyrrole (ring B’) and naphthalene (rings F’ and H’). While the lowest
NICS (0) values (around —5.8 ppm) were found on the phenylene linker (ring A’) and furan
rings (D’) which is consistent with the aromatic character of this ring. Generally, symmetric
double hetero[n]helicenes (1 > 4) have three isomers, those being two chiral enantiomers
(P,P) and (M,M), and one meso diasteromer (P,M) [30]. All three isomers of 3 were afforded
under our reaction conditions which was confirmed by HPLC separation using DAICEL
CHIRALPAK IA column (eluent: n-hexane/i-PrOH = 20/1) (Figure 3b). The experimental
ratio among the three isomers was found to be around (1:2:1) with the meso isomer (P,M)-3
as the major formed product (confirmed by the absence of optical rotation). After HPLC
chiral resolution, the epimerization rate of 3 was studied at three different temperatures
(See SI). Eyring plot (Figure 3c) indicated a low chiral stability of 3 (epimerization barrier
~24.2 kcal mol~1) with an estimated half-life of the epimerization <6.5 h at 25 °C. These
observations were matching with our DFT calculations that showed similar epimerization
barriers 25.32 kcal mol ! and 25.62 kcal mol ! (Figure 3d).

2.3. Photophysical Properties

Our double aza-oxa[7]helicene 3 shows high luminescence upon photo-irradiation,
which can be attributed to the rigid scaffold that hinders the thermal energy loss upon
structural changes. The UV /vis absorption of 3 was recorded in different solvents to show
its high solubility in most of the organic solvents which increases the potential for some
applications that require good solubility such as solution-processed electronics [58—60]. In
all measured solvents, compound 3 showed similar UV /vis absorption patterns (Figure 4a).
The maximum absorbance exhibited in chloroform was shown at 407 nm (absorption
coefficient: 7.5 x 10* M~! cm™!) corresponding to an optical energy gap of (2.18 eV).
According to TD-DFT calculations at the MN15/6-311G(d,p) level of theory, this low-
energy absorption can be accountable to the HOMO—LUMO transition. The absorption
band at 385 nm possibly attributed to the equal contribution of both HOMO—-1—LUMO
and HOMO—LUMO+1 transitions. The band at 368 nm is estimated to be due to the
HOMO—-1—LUMO+1 transition, while the higher energy absorption band at 328 nm
would be attributed to HOMO—-2—LUMO corresponding to an optical energy gap of
(2.58 eV). Molecular orbital calculations indicated that the HOMO is spread mainly over
the phenylene linker (ring A’) and pyrroles (rings B’) and LUMO is spread over the whole
scaffold rather than the phenylene linker (ring A’), accounting for the substantial stability.
Photoluminescence PL spectrum of 3 was recorded in a pure chloroform solution exhibiting
emission maxima shifted in a bathochromic way at 415 nm and 440 nm.
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Figure 3. (a) NICS (0) values of (P,M)-3 calculated at the MN15/6-311G+(2d,p) level; (b) HPLC
chromatogram determined by (Daicel Chiralpak IA, n-hexane/i-PrOH = 20/1, flow rate 1.0 mL/min,
T =25°C, 240 nm): t;=10.36 min, t, = 14.30 min, and t3 = 18.32 min; (c) Eyring plot of compound 3
epimerization and thermodynamic parameters; (d) Epimerization process from (P,M)-3 isomer to
(M,M)-3 and (P,P)-3 isomers. The relative Gibbs free energies are calculated in (kcal mol~1) at the

MN15/6-311G(d,p) level.
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Figure 4. (a) UV /vis absorption and PL spectra of 3 in various solvents (20 uM); (b) Frontier Kohn-
Sham molecular orbitals of 3 and TD-DFT calculated electronic transitions at MN15/6-311G (d,p)
level of theory.

2.4. Energetic Characterization by Cyclic Voltammetry

Cyclic voltammetry (CV) measurements of our double aza-oxa[7]helicene 3 showed
reversible redox peaks in both negative and positive regions indicating the chemical stability
of its anion/cation pairs and how they can be reduced or oxidized readily to the neutral
form (Figure 5). Using ferrocene and ferrocenium as internal references, the HOMO energy
level of 3 was calculated using Bredas empirical equation to be around (-7.83 eV) which
is comparable to the DFT-calculated HOMO energy (—7.90 eV) [61]. Epymo could be
estimated after considering the gap between Egomo and Epumo (3.04 eV) from the Apax or
excitation energy (407 nm) to be around (—4.79 eV) showing little higher energy than the
DFT-calculated LUMO (—5.72 eV).
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Figure 5. The cyclic voltammetry profile of 3 in (MeCN) with n-BusNPF¢ (0.1 M) using ferrocene as
internal reference.

3. Materials and Methods
3.1. General Experimental Details

1H-, and 3C-NMR were recorded via JNM ECA600 FT NMR (\H-NMR 600 MHz,
13C-NMR 151 MHz). 'H-NMR spectra are reported as follows: a chemical shift in ppm
downfield of tetramethylsilane (TMS) and referenced to residual solvent peak (CDCI3) at
7.26 ppm, or ((CD3),CO) at 2.05 ppm, multiplicities (s = singlet, d = doublet, dd = doublet
of doublets, t = triplet, q = quartet, m = multiplet), and coupling constants (Hz). '3C-NMR
spectra reported in ppm relative to the central line of triplet for CDCl3 at 77.16 ppm, or the
central line of septet for ((CD3),CO) at 29.84 ppm. APCI-MS spectra were obtained with
JMS-T100LC (JEOL). FT-IR spectra were recorded on a JASCO FT-IR system (FT/IR4100).
Photoluminescence (PL) spectra were recorded on JASCO FP-8550 Spectrofluorometer. UV
spectra were recorded on a JASCO v-770 spectrophotometer. Column chromatography on
510, was performed with Kanto Silica Gel 60 (63-210 um). Commercially available organic
and inorganic compounds were used without further purification. The electro-oxidation
was carried out using sing ElectraSyn® 2.0 (designed by IKA) at a constant current of
1.5 mA, under air (1 atm.) [62].

3.2. Synthetic Procedures
3.2.1. General Procedure for the Synthesis of Double 3-Hydroxy Benzo[c]carbazole 2

To a solution of N ,N4-di(naphthalen-Z-yl)benzene-1,4-diamine 1 (36 mg, 0.1 mmol)
and p-benzoquinone (27 mg, 0.25 mmol, 2.5 equiv.) in dry toluene (1.5 mL), orthophosphoric
acid (10.6 uL, 2.0 equiv.) dissolved in (0.5 mL) toluene was added dropwise. The reaction
mixture was stirred at 50 °C for 5 h under N; atmosphere until its completion. Next, the
reaction was quenched via water, extracted with EtOAc and the combined organic extracts
dried over NapSQOy, and evaporated in vacuo. The crude mixture was purified on silica
column chromatography (eluent: n-hexane/DCM/ethyl acetate =7/1/1) to give double
3-Hydroxy benzo[c]carbazole 2 as a white solid in 54% yield.

e  7,7-(1,4-Phenylene)bis(7H-benzo|[c]carbazol-10-o0l) 2

1H NMR (600 MHz, (CD3),CO): 5 8.80 (d, ] = 8.2 Hz, 2H), 8.31 (s, 2H), 8.17 (d, ] = 2.1 Hz,
2H), 8.07 (d, ] = 8.2 Hz, 2H), 7.92-7.96 (m, 6H), 7.75-7.78 (m, 4H), 7.58 (d, ] = 8.9 Hz, 2H),
7.50 (dd, ] = 8.3, 6.9 Hz, 2H), 7.14 (dd, ] = 8.6, 2.4 Hz, 2H); 13C NMR (151 MHz, (CD3),CO):
6 153.39, 139.70, 137.52, 135.41, 130.82, 130.43, 130.13, 129.80, 128.33, 127.95, 125.47, 123.91,
123.75,115.93, 115.05, 112.67, 111.86, 107.78; DEPT-135 NMR (151 MHz, (CD3),CO): 6 130.12,
129.80, 128.32, 127.95, 123.91, 123.74, 115.03, 112.67, 111.86, 107.76; HRMS (APCI): calcd for
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C3gHpsN2Oy: m/z 541.1911 [M + HJ*, found 541.1912.; IR (KBr): 3334, 3042, 2977, 2926,
1620, 1517, 1473, 1165, 831, 803 cm ™~ !; mp: 198-199 °C.

3.2.2. General Procedure for the Synthesis of Double Aza-oxa[7]helicene 3

A 10 mL DCM solution of 2 (54 mg, 0.1 mmol), f-naphthol (57.7 mg, 0.4 mmol),
tetrabutylammonium hexafluorophosphate(V) (387.4 mg, 1.0 mmol), and BF;OEt; (0.2 M)
was transferred into the undivided electrolysis cell of ElectraSyn® 2.0. This cell is equipped
with two Pt electrodes connected to a DC power supply. At room temperature, a constant
current of 1.5 mA was applied for 3.5 h. After the completion of reaction, the electrolysis
was stopped and crude mixture was purified by column chromatography (5iO;, EtOAc/n-
hexane) to afford the double aza-oxa[7]helicene 3 as a yellow solid in 26% yield.

e  1,4-Bis(10H-benzo[c]naphtho[1’,2":4,5]furo[3,2-g]carbazol-10-yl)benzene 3

TH NMR (600 MHz, CDCls): 6 8.38 (d, ] = 8.2 Hz, 2H), 8.31 (d, ] = 8.2 Hz, 2H), 8.00-8.04
(m, 12H), 7.92 (d, ] = 8.9 Hz, 2H), 7.85 (d, ] = 8.9 Hz, 4H), 7.77 (d, ] = 8.9 Hz, 2H), 7.34-7.39
(m, 4H), 6.95-7.00 (m, 4H); 13C NMR (151 MHz, CDCly): § 154.75, 153.31, 138.79, 137.93,
137.32, 130.86, 129.79, 129.73, 129.50, 129.15, 128.59, 128.10, 128.05, 128.03, 125.13, 124.67,
124.37, 123.62, 120.07, 117.98, 117.77, 116.64, 112.65, 111.58, 109.45, 109.06 (Two carbons
overlapped); DEPT-135 NMR (151 MHz, CDCly): § 129.79, 129.15, 128.59, 128.09, 128.05,
128.03, 125.13, 124.67, 124.37, 123.61, 112.66, 111.58, 109.44, 109.06 (One carbon overlapped);
HRMS (APCI): caled for CsgHsoNoOy: m/z 789.2537 [M + HJ*, found 789.2542; IR (KBr):
3043, 2926, 2856, 1714, 1594, 1500, 1417, 1355, 1209, 805 cm~!; mp: 291-292 °C.

3.3. DFT Calculations

All DFT calculations were performed using the Gaussian 16 package of programs [63].
The geometries of the model compounds were optimized using three DFT functions: B3LYP,
wB97XD, and MN15 at 6-311G(d,p) basis set. All stationary points were identified as
stable minima by frequency calculations. Geometry optimization was achieved using the
normal criteria defined in Gaussian 16. TD-DFT calculations were performed using two
different levels of theory B3LYP/6-311G(d,p) and MN15/6-311G(d,p) in both chloroform
and gas-phase. All structures were optimized without any symmetry assumptions. For
further computational details, see Supplementary Materials.

4. Conclusions

In summary, we introduced a two-step protocol to synthesize double aza-oxa[7]helicene
3 using an electrochemical approach. This novel double hetero[7]helicene shows interesting
structural features that were reflected in its excellent optical properties. We have studied
the photophysical characteristics of this compound and correlated its absorption and
fluorescence behavior based on DFT calculations. Further development for this two-step
protocol towards the preparation of other multiple helicenes and PHAs and study their
photophysical and chiroptical features are currently under investigation.
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absorption and CD spectra of (P,M)-3; Figure S5: Further NICS(0) calculations [57,63—68].
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