
Citation: Yang, T.; Huang, C.; Jia, J.;

Wu, F.; Ni, F. A Facile Synthesis of

2-Oxazolines via Dehydrative

Cyclization Promoted by Triflic Acid.

Molecules 2022, 27, 9042. https://

doi.org/10.3390/molecules27249042

Academic Editor: Kai Sun

Received: 29 October 2022

Accepted: 15 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Communication

A Facile Synthesis of 2-Oxazolines via Dehydrative Cyclization
Promoted by Triflic Acid
Tao Yang 1,2, Chengjie Huang 1,2, Jingyang Jia 1,2, Fan Wu 1,2,* and Feng Ni 1,2,*

1 Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
2 Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University,

Ningbo 315211, China
* Correspondence: wufan@nbu.edu.cn (F.W.); nifeng@nbu.edu.cn (F.N.)

Abstract: 2-oxazolines are common moieties in numerous natural products, pharmaceuticals, and
functional copolymers. Current methods for synthesizing 2-oxazolines mainly rely on stoichiometric
dehydration agents or catalytic dehydration promoted by specific catalysts. These conditions either
generate stoichiometric amounts of waste or require forcing azeotropic reflux conditions. As such, a
practical and robust method that promotes dehydrative cyclization while generating no byproducts
would be attractive to oxazoline production. Herein, we report a triflic acid (TfOH)-promoted
dehydrative cyclization of N-(2-hydroxyethyl)amides for synthesizing 2-oxazolines. This reaction
tolerates various functional groups and generates water as the only byproduct. This method affords
oxazoline with inversion of α-hydroxyl stereochemistry, suggesting that alcohol is activated as a
leaving group under these conditions. Furthermore, the one-pot synthesis protocol of 2-oxazolines
directly from carboxylic acids and amino alcohols is also provided.

Keywords: 2-oxazolines; dehydrative cyclization; green synthesis

1. Introduction

2-oxazoline is a privileged structural motif in numerous bioactive molecules and
pharmaceuticals [1–7] (Figure 1a) as well as functional copolymers [8–15] (Figure 1c). Var-
ious natural products and synthetic molecules that contain this structural unit possess
biological activities, such as antibiotics [16,17], antineoplastics [18–20], anti-fungals [21],
and anti-inflammatories [22], among others. Furthermore, 2-oxazolines have a wide
range of synthetic applications, including protective groups for carboxylic acid and alde-
hyde, directing groups in C-H functionalization, and valuable chiral Box and Pybox
ligands [23–26] (Figure 1b). These important applications have fueled the development of
various approaches to the efficient construction of 2-oxazolines over the last few decades.
The typical approaches involve coupling amino alcohols with carboxylic acid deriva-
tives [27–31], nitriles [32–34], and aldehydes [35–37] in the presence of activation reagents,
catalysts, or oxidants. Recently, the functionalization of alkenes with amides provided a
valuable alternative approach to the 2-oxazoline synthesis [38–42]. Although these advances
expanded the chemist’s toolbox for 2-oxazoline synthesis, developing practical and cost-
effective new methods for constructing 2-oxazolines would complement current methods.

Despite significant advances in 2-oxazoline synthesis, dehydrative cyclization of N-(β-
hydroxyethyl)amides remains the most widely used method for producing 2-oxazolines.
Numerous stoichiometric reagents, including DAST, XtalFluor-E, PPE, Ph3P/DEAD, and
Burgess reagent, have proven to be efficient at forging the oxazoline moiety [43–53]
(Figure 2a). These conditions generally require either harsh conditions or corrosive reagents,
which may cause additional operating costs and stoichiometric byproduct generation. To
address this issue, several groups have developed catalytic dehydrative approaches [54–57].
The Ishihara group reported a molybdenum complex-catalyzed dehydrative cyclization
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of N-(2-hydroxyethyl)amides [54,55]. Saito and co-workers demonstrated a phosphorus-
based organocatalytic dehydrative cyclization approach [57] (Figure 2a). In addition,
one example of cyclization catalyzed by sulfuric acid was also reported but under harsh
high-temperature conditions [58]. While these methods avoid using stoichiometric dehy-
dration agents and thus have higher atom economy, the requirement for specific catalysts
and forcing azeotropic reflux conditions might limit their industrial application. As a
result, a practical and robust method that promotes dehydrative cyclization while gen-
erating no byproducts would be attractive to oxazoline production. Herein, we report
our effort in the TfOH-promoted synthesis of 2-oxazolines by dehydrative cyclization of
N-(2-hydroxyethyl)amides (Figure 2b).
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2. Results
2.1. Optimization of the Reaction Conditions

We began our reaction optimization by examining the cyclization reaction of β-
hydroxyamide 1 in the presence of several organic acids in 1,2-dichloroethane (DCE)
(Table 1, entries 1–3). It was found that TfOH in DCE at 80 ◦C effectively promoted the for-
mation of the desired 2-oxazoline. The acidity of the acid seemed to be important, as weaker
acids such as MsOH and TFA only afforded product in low yields (Table 1, entries 1–2).
Stoichiometry optimization on acid (Table 1, entries 4–8) revealed that a 1.5 equivalent of
TfOH was optimal (Table 1, entry 7). Several other solvents (Table 1, entries 9–11) gave
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similar results albeit in a slightly lower yield than DCE, suggesting no significant solvent
effect for this transformation. In addition, running the reaction at lower temperatures
afforded product 2 in lower yields (Table 1, entries 12–14).

Table 1. Optimization of the reaction conditions a.
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1 MsOH (1.0) DCE 80 ◦C 16
2 TFA (1.0) DCE 80 ◦C 9
3 TfOH (1.0) DCE 80 ◦C 89
4 TfOH (0.2) DCE 80 ◦C 14
5 TfOH (0.5) DCE 80 ◦C 29
6 TfOH (1.2) DCE 80 ◦C 94
7 TfOH (1.5) DCE 80 ◦C 96 (88) c

8 TfOH (2.0) DCE 80 ◦C 86
9 TfOH (1.5) Toluene 80 ◦C 92
10 TfOH (1.5) PhCF3 80 ◦C 86
11 TfOH (1.5) CH3CN 80 ◦C 95
12 TfOH (1.5) DCE 70 ◦C 91
13 TfOH (1.5) DCE 60 ◦C 85
14 TfOH (1.5) DCE 25 ◦C <5

a Reaction conditions: N-(2-hydroxyethyl)amide 1 (0.2 mmol), acid (0.2–2.0 equiv) and solvent (1 mL) at 25–80 ◦C,
t = 12h. b NMR yield using 1,3-benzodioxole as the internal standard; the NMR yield was calculated based on the
ratio of CH2 signal (5.8 ppm) of 1,3-benzodioxole and CH signal of product 2 (4.5 ppm). c Isolated yield.

2.2. Substrate Scope Studies

With the optimized reaction conditions in hand, we then investigated the generality
of this protocol. We initially tested a range of substrates derived from monosubstituted
benzoic acid and ethanolamine. Functional groups, such as halides, ether, ester, CF3, and
nitro, were well tolerated in standard reaction conditions and afforded the desired products
in good to excellent yields (Figure 3, products 3–11). Although generally unstable under
acidic conditions in the presence of water, the substrate with the cyano group also gave
product albeit in a lower yield. It appears that the steric hindrance had a minimal impact
on the reactivity as evident by the similar yield observed in the reaction of the sterically
hindered substrates (Figure 3, products 12 and 13). N-(2-hydroxyethyl)amides derived from
2-thiophenecarboxylic acid and 2-furoic acid were also viable substrates, delivering the
desired products 14 and 15 in 96% and 73% yield, respectively. N-(2-hydroxyethyl)amides
derived from secondary and tertiary aliphatic acids proceeded smoothly under standard
conditions affording the desired 2-oxazolines with moderate to good yields (Figure 3,
products 16–18). We then turned our attention to exploring the substrates derived from
β-substituted 1,2-amino alcohols. The substrates derived from L-valinol, L-tert-Leucinol,
L-Leucinol, D-Phenylglycinol, 2-amino-2-methyl-1-propanol, and D-serine methyl ester
were all viable substrates and delivered the desired products in good to excellent yields
(Figure 3, products 19–24). Moreover, the substrates derived from (S)-(+)-1-Amino-2-
propanol, L-Threonine methyl ester and (1S, 2R)-(−)-cis-1-amino-2-indanol that bear α-
substitution, and α, β-disubstitution were also well tolerated in this protocol (Figure 3,
products 25–27). Notably, products 26 and 27 were isolated as a single diastereomer, and
no other diastereomers were detected from crude NMR. Mechanistic studies suggested
that products 25 and 26 were formed with an inversion of the stereochemistry at carbon
β. Depending on the starting material, a product with a rigid backbone such as 27 can
be generated with either inversion or retention of the stereochemistry at position β. In
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addition, 1,3-amino alcohol derivative afforded 5,6-dihydro-4H-1,3-oxazine in moderate
yields (Figure 3, product 28).
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Given the robustness of this practical protocol, we envisioned the possibility of a one-
pot synthesis of 2-oxazolines directly from the carboxylic acid and 1,2-amino alcohols. To
construct a TfOH-friendly system, we tested the base-free ynamide invented by Zhao [59]
as a coupling reagent. A variety of oxazolines were successfully synthesized in a one-pot
fashion via in situ coupling of carboxylic acids with amino alcohols followed by cyclization
under standard conditions. (Figure 4, products 29–32, 18).
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2.3. Control Experiments and Mechanistic Studies

According to previous reports, this reaction has two possible pathways that result in
products with opposite stereochemical outcomes. One pathway involves acid activation of
the amide carbonyl group followed by nucleophilic attack of the hydroxyl group resulting
in 2-oxazoline with retention of stereochemistry (Figure 5a, pathway A). Alcohol activation
followed by intramolecular SN2-like substitution, on the other hand, would produce
cyclized products with reversed a-hydroxyl stereochemistry (Figure 5a, pathway B). We
then conducted several control experiments to study the reaction mechanism. Our studies
started from treating sterically rigid cis-β-hydroxyl amide 34 and trans-β-hydroxyl amide 35
with standard conditions to probe the possible reaction pathway (Figure 5a). Surprisingly,
the formation of product 27 was observed in both cases, suggesting that both pathways are
operatable under standard conditions. While the higher yield obtained from 35 suggested
that pathway B might be more favored, more information is required to gain a better
understanding of the mechanism. We then subjected enantiopure β-hydroxyl amide 36 to
the reaction conditions and analyzed the stereoselectivity using chiral HPLC (Figure 5b).
2-oxazoline 25 was obtained with stereochemical inversion as the major isomer (94:6 e.r.),
which indicates that the pathway involving alcohol activation is more favored. We think
that the erosion of optical purities observed in product 25 might result from a hybrid
reaction pathway. To validate this hypothesis, we conducted the 18O labeling experiment.
N-(2-hydroxyethyl)amides 37 with 95% 18O enrichment was smoothly converted to product,
and the ratio of 18O-19 and 19 was 83:17 (Figure 5c). These data are consistent with the
hypothesis of a hybrid mechanism, in which activation of the hydroxyl group is the
dominant pathway under our reaction condition.
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3. Conclusions

In conclusion, a practical and effective strategy for synthesizing 2-oxazolines via
dehydrative cyclization of N-(2-hydroxyethyl)amides has been developed. This efficient
cyclization process was promoted by TfOH and had good functional group tolerance.
Stereoselectivity and 18O labeling data suggested that the reaction might proceed through
a hybrid mechanism, in which activation of the hydroxyl group is the dominant pathway.
Notably, this robust reaction condition can be adapted to a one-pot reaction by directly
utilizing readily available carboxylic acid and amino alcohols.

Supplementary Materials: The following supporting information can be downloaded at:
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Figure S1: Control experiments on stereochemical outcome of C(4) position; Figure S2: The HPLC
analysis of the (S)-oxazoline 19 and (R)-oxazoline 19; Figure S3: Cis- and trans- 1-amino-2-indanol
derived mechanistic probe; Figure S4: Stereochemical outcome of this protocol; Figure S5: HPLC
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analysis of oxazoline product 25; Figure S6: 18O-labeling study of product 19; Figure S7: HRMS data
of the 18O-labeled N-(2-hydroxyethyl)amides and oxazoline 19.
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