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Abstract: (1) In order to accurately judge the new maturity of wheat and better serve the collection,
storage, processing and utilization of wheat, it is urgent to explore a fast, convenient and non-
destructively technology. (2) Methods: Catalase activity (CAT) is an important index to evaluate the
ageing of wheat. In this study, hyperspectral imaging technology (850–1700 nm) combined with a BP
neural network (BPNN) and a support vector machine (SVM) were used to establish a quantitative
prediction model for the CAT of wheat with the classification of the ageing of wheat based on
different storage durations. (3) Results: The results showed that the model of 1ST-SVM based on the
full-band spectral data had the best prediction performance (R2 = 0.9689). The SPA extracted eleven
characteristic bands as the optimal wavelengths, and the established model of MSC-SPA-SVM showed
the best prediction result with R2 = 0.9664. (4) Conclusions: The model of MSC-SPA-SVM was used
to visualize the CAT distribution of wheat ageing. In conclusion, hyperspectral imaging technology
can be used to determine the CAT content and evaluate wheat ageing, rapidly and non-destructively.

Keywords: wheat; catalase activity; hyperspectral imaging technology; ageing; wavelengths selection;
visualization

1. Introduction

Catalase activity (CAT) is the main source of the elimination of hydrogen peroxide
in plants [1]. The plant metabolism process produces the reactive oxygen free radicals,
and then transforms them into hydrogen peroxide, which has a damaging effect on the
plant cells [2]. CAT is commonly found in plant tissues and cells. It is an anti-ageing
protective enzyme for organisms. It is of great significance to protect the stability and
integrity of the cell membranes, and it is related to seed vigor [3,4]. It has the functions of
improving plant photosynthesis, anti-stress levels, enhancing the defense ability, delaying
senescence, promoting metabolism, etc. [5,6]. The study found that the CAT activity of
rice grains showed a decreasing trend with the extension of the storage time. CAT is an
important indicator for judging the ageing of rice grains [7]. Using visible spectroscopy and
near-infrared spectroscopy to quickly analyze the superoxide dismutase (SOD) activity in
barley leaves, the predicted correlation coefficient (r) and root mean square error (RMSEP)
were 0.9064 and 0.5336, respectively [8]. Near-infrared technology was also used to monitor
the biocatalytic reactions and peroxidase (POD) activity [9]. The hyperspectral imaging
technology combining traditional spectroscopy and imaging technology to obtain the
spectral information and spatial distribution information of the sample at the same time
was applied to detect the POD activity of gray disease in tomato leaves [10]. It has the
characteristics of “map integration”, and it has been widely used in the field of agricultural
products in recent years, which can realize rapid and non-destructive testing [11–15]. As
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the hyperspectral technology has the advantages of accuracy, rapidity, non-destructiveness,
and high efficiency in food inspection, hyperspectral technology has now rapidly developed
into a very advantageous analytical technique [16–19].

Hyperspectral imaging (HSI) has proven to be a very promising technology because the
data obtained using this technology contain enough information about the characteristics
of the sample. Thus, it can replace the human inspectors or wet chemical methods for the
automatic grading and nutrition of food. Hyperspectral data can combine the discrimina-
tive analysis techniques (QDA, LDA, and PLS-DA) to explore the qualitative characteristics
of the samples or integrate the regression analysis techniques (PCR, PLSR, SVM, ANN, NB,
and PLS-DA) to explore quantitative characteristics at the same time [20,21]. The potential
of HSI in estimating the concentration of phenolic flavor compounded on malted barley
was studied. The correlation coefficients between the predicted values of SWIR and UV
and the true values were 0.99 and 0.91, respectively [22]. The application of near-infrared
hyperspectral technology in grain identification, quality, moisture, hardness, protein and
starch content determination, germination detection and food safety were reviewed (Fox
and Manley 2014; Hussain et al., 2019) [12,13]. Many scholars have classified the aging of
meat, and they have achieved good results [23–26].

In recent years, hyperspectral analysis technology has also made quite good achieve-
ments in grains. First of all, the hyperspectral analysis technology has achieved great
success in the quality analysis of rice [14,27–29]. Secondly, this kind of technology showed
high accuracy in the detection of aflatoxin on corn kernels, the identification of the varieties,
the identification of haploid kernels, and the detection of the water content [30–33]. In
addition, in-depth research and good results have been achieved in wheat pests, virus
infections, and grain storage quality analyses [34–39].

However, using hyperspectral imaging technology combined with algorithms to pre-
dict CAT and classify the different storage durations of wheat has rarely been reported.
Thus, this study mainly investigated the CAT changes of wheat during artificially acceler-
ated ageing and applied the hyperspectral imaging technology combined with chemometric
methods to predict the wheat CAT quantitatively and to distinguish the wheat ageing de-
gree to realize the rapid and non-destructive evaluation of wheat quality.

2. Results and Discussion
2.1. Changes in Wheat CAT Activity during Ageing

The change of the wheat CAT activity is shown in Figure 1. Due to a large number
of samples, each point in the figure represented the average of the seven samples that
were taken. It can be seen from Figure 1 that with the prolonging of the ageing time, the
CAT of the strong, medium, and weak gluten wheat all showed different degrees of a
downward trend.
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The changing trend of CAT was consistent with the report of Feng et al. on the
relationship between CAT activity and the changes in the physical wheat quality [40].
Moreover, the changes of CAT in different wheat varieties were the same. Among them,
the CAT of weak gluten wheat decreased the fastest, from the initial 117.78 mg H2O2/g
to 53.93 mg H2O2/g, which is a decrease of 63.85 mg H2O2/g. The CAT decrease of the
medium gluten wheat was the second fastest, from the initial 112.98 mg H2O2/g 67.56 mg
H2O2/g, which is a decrease of 45.42 mg H2O2/g. The strong gluten wheat CAT decreased
the slowest, from 76.51 mg H2O2/g to 38.60 mg H2O2/g, which is a decrease of 38.60 mg
H2O2/g. It is well known that the Vis/NIR spectra of maize seeds mainly provides chemical
information on the main components such as fat, water, and protein, which are related to
the extended overtones of C-H, O-H, and N-H, respectively. Differences in the reflectance
may be related to the differences in the protein content, which may reflect differences in the
maize seed texture parameters. As catalase belongs to the protein group and a different
storage time will lead to certain changes in the texture of the corn grain, the difference of
the spectral information can be used to detect and identify the corn seeds with a different
texture [41]. Therefore, it is necessary to mine the hidden information to further explain
the variation characteristics of the texture. Therefore, the hidden information needs to be
mined to further explain the variation in the texture properties. Due to the large sample
scale, the short sampling interval for ageing, and the inconsistency of the sample placement
position affected by temperature and humidity, small fluctuations in the wheat CAT during
the ageing process are normal. The CAT of the strong gluten wheat was significantly lower
than that of medium gluten and weak gluten wheat in the early stage of ageing, which the
texture variation may have caused. Overall, the sensitivity of the wheat CAT was high, and
it can be used as an index to characterize the ageing of wheat.

2.2. Data Preprocessing

The spectrum extraction process is shown in Figure 2, in which Figure 2a shows the
corrected image of the sample on the 80th band after 190 days of storage.
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We used the ROI tool in ENVI 5.3 software to select the region of interest, such as
the red region in Figure 2b, and select the local rectangular region as the region of interest
of the sample, representing the overall information of the sample. Finally, we calculated
and saved the average spectral data of the region of interest and drew the average spectral
curve using MATLAB R2019a, as shown in Figure 2c.

The average spectral data of all of the samples (420 in total) were extracted by the
above method. To reduce these effects of random noise in spectral information and obtain
accurate and stable models, we used commonly used preprocessing methods such as
standard normal variables (SNV), multiplicative scatter correction (MSC), first derivation
(1ST), and the second derivative (2ND) [42]. Figure 3a shows the original average spectra
of 420 wheat samples, and Figure 3b shows the spectra after the first-order derivation
(1ST) pretreatment. Compared with the original spectra, the band characteristics were
enhanced. Figure 3c shows the spectrum after the MSC pretreatment. The spectrum
curve was compact, and the effect was outstanding. Figure 3d is the spectrum after SNV
preprocessing. The processed spectrum curve was similar to that after MSC processing.
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The standardization of the spectrum data can eliminate the influence of the data dimension
and make the data index comparable, which is convenient for model establishment.
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2.3. Prediction of CAT Activity Based on the Full Band

Before the model was established, the Kennard–Stone (KS) method was used to divide
the sample into a training set and a test set at a 3:1 ratio, which included 315 training set
samples and 105 test set samples. The training set was used as modelling data, and the test
set was used as prediction data to verify the accuracy of the model [43]. The results of the
sample division are shown in Table 1. It can be seen that the divided training set sample
CAT range was 37.99–117.78 mg H2O2/g, and the test set sample CAT range was 37.91–
114.24 mg H2O2/g. The training set sample can include the test set sample, indicating that
the sample division effect was good, and this is convenient for the model establishment.

Table 1. Dividing results of sample.

Data Set Sample Size
CAT Activity (mg H2O2/g)

Maximum Minimum Average
Value

Standard
Deviation

Training set 315 117.78 37.99 72.66 18.14

Test set 105 114.24 37.91 76.49 17.333

The prediction model of CAT activity in the whole spectral range was established,
and the treatment methods of Yu et al. were adopted and relatively improved [44]. CAT
combined the original (Y) and the full-band data (256 bands in total) that were preprocessed
by 1ST, MSC, and SNV to establish a BP neural network (BPNN) model and a support
vector regression (SVR) model. The model determination coefficient (R2) and the mean
square error (MSE) are shown in Table 2.
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Table 2. Modeling results based on the full band.

Pretreatment

Neural Networks (BP) Support Vector Regression (SVR)

R2 Mean Square
Error (MSE) R2 Mean Square

Error (MSE)

Original (Y) 0.9562 0.0009 0.9569 0.0083
1ST 0.9485 0.0010 0.9689 0.0060

MSC 0.9610 0.0009 0.9635 0.0069
SNV 0.9670 0.0010 0.9638 0.0069

The original three preprocessed spectral data sets were combined with the BPNN to
establish a full-band CAT prediction model. The determination coefficients of R2 values
were 0.9562, 0.9485, 0.9610, and 0.9670, and the mean square errors (MSE) were 0.0009,
0.0010, 0.0009, and 0.0010, respectively. The prediction results were good, and the best fit
between the CAT measured value and the BPNN’s predicted value is shown in Figure 4a.
The original and three preprocessed spectral data sets were combined with the SVR to
establish a full-band CAT prediction model. The coefficients of determination of R2 values
were 0.9569, 0.9689, 0.9635, and 0.9638, and the mean square errors (MSE) were 0.0083,
0.0060, 0.0069, and 0.0069, respectively. The prediction results were good, and the best fit
between the CAT measurement value and the SVR prediction value is shown in Figure 4b.
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Figure 4. (a,b) represent the fitting results of the SNV-BPNN model and 1ST-SVR model based on
full frequency band, respectively.

It can be seen that the model established by the SVR method had better performance in
predicting CAT than the model established by the BPNN method did, but its mean square
error was larger than that of the BPNN method. In summary, the eight full-band prediction
models based on the wheat CAT activity were all highly accurate, with the R2 values all
reaching above 0.9485. Among them, 1ST-SVR was the best full-band prediction model for
CAT, with R2 = 0.9689.

2.4. Prediction of CAT Activity Based on Characteristic Wavelength

Due to a large amount of full-band spectral data and more redundant data, it was
necessary to reduce the amount of data, shorten the modelling time, and improve the
model’s accuracy [45]. In this paper, the SPA, PCA, and PLSR algorithms are compared.
Compared with the other two algorithms, the SPA algorithm was used as a flexible variable
selection method to select the optimal variable to solve the collinear problem in the calibra-
tion process [46]. The SPA only selects a few columns of data in the original spectral data,
but it can summarize the spectral variable information of most of the samples, which can
avoid the redundancy and duplication of information to the greatest extent, and at the same
time, greatly reduce the number of variables in the process of the model’s establishment,
the dimensionality of the data, and the complexity of the model, improve the modeling
efficiency and speed, as well as the model’s accuracy and prediction performance [47].
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Therefore, in this paper, the PSA algorithm was selected as the best algorithm for screening
the wavelengths to extract the characteristic wavelengths associated with the wheat CAT.
The extraction results are shown in Figure 5.
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Among them, Figure 5a shows the characteristic wavelengths extracted by CAT com-
bined with the original spectral data. A total of 16 characteristic wavelengths were ex-
tracted, and the corresponding wavelengths were 853.7 nm, 898.2 nm, 908.5 nm, 915.3 nm,
925.6 nm, 983.4 nm, 1037.7 nm, 1118.7 nm, 1289.3 nm, 1368.9 nm, 1408.5 nm, 1643.6 nm,
1653.3 nm, 1666.3 nm, 1685.7 nm, and 1688.9 nm, respectively. Figure 5b shows the charac-
teristic wavelengths extracted from the spectral data of CAT combined with 1ST. A total
of 17 characteristic wavelengths were extracted, and the corresponding wavelengths were
891.4 nm, 932.4 nm, 1098.5 nm, 1101.9 nm, 1105.2 nm, 1209.3 nm, 1269.4 nm, 1272.7 nm,
1359.0 nm, 1461.1 nm, 1467.7 nm, 1470.9 nm, 1474.2 nm, 1552.7 nm, 1555.9 nm, 1562.5 nm,
and 1569.0 nm, respectively. Figure 5c shows the characteristic wavelengths extracted
from the spectral data after CAT was combined with MSC. A total of 11 characteristic
wavelengths were extracted, and the corresponding wavelengths were 918.7 nm, 956.2 nm,
986.8 nm, 1061.4 nm, 1125.4 nm, 1149.0 nm, 1192.6 nm, 1368.9 nm, 1382.1 nm, 1653.3 nm,
and 1672.7 nm, respectively. Figure 5d shows the characteristic wavelengths extracted from
the spectral data after CAT was combined with SNV, and 14 characteristics were extracted
in total. The corresponding wavelengths were 929.0 nm, 949.4 nm, 983.4 nm, 1058.0 nm,
1118.7 nm, 1145.6 nm, 1192.6 nm, 1325.8 nm, 1368.9 nm, 1382.1 nm, 1477.5 nm, 1637.2 nm,
1653.3 nm, and 1672.7 nm, respectively.

The BPNN and SVR prediction models were established based on the wheat CAT
combined with the characteristic wavelength spectrum data. The model determination
coefficients (R2) and mean square errors (MSE) are shown in Table 3.

The original and three preprocessed characteristic band spectral data sets were com-
bined with the BPNN to establish a CAT prediction model. The R2 values were 0.9483,
0.9105, 0.9648, and 0.9617, and the mean square error MSE were 0.0009, 0.0008, 0.0010, and
0.0010, respectively. The prediction results were good, and the best fit between the CAT
measurement value and the BPNN prediction value is shown in Figure 6a. The original and
three preprocessed characteristic band spectral data were combined with SVR to establish a
CAT prediction model. The R2 values were 0.9538, 0.9347, 0.9664, and 0.9620, and the mean
square errors (MSE) were 0.0090, 0.0123, 0.0064, and 0.0071, respectively. The prediction
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results were good, and the best fit between the CAT measured value and the SVR predicted
value is shown in Figure 6b.

Table 3. Modeling results based on the characteristic band.

Pretreatment

Neural Networks (BP) Support Vector Regression (SVR)

R2 Mean Square
Error (MSE) R2 Mean Square

Error (MSE)

Original (Y) 0.9483 0.0009 0.9538 0.0090
1ST 0.9105 0.0008 0.9347 0.0123

MSC 0.9648 0.0010 0.9664 0.0064
SNV 0.9617 0.0010 0.9620 0.0071
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Figure 6. (a,b) represent the fitting results of MSC-SPA-BPNN and MSC-SPA-SVR models based on
feature bands, respectively.

In summary, compared with the initial SVR model with the full-band data, the sim-
plified MSC-SPA-SVR model showed similar results, indicating that these 14 wavelengths
were suitable for predicting the CAT activity. For the CAT which was combined with
the preprocessed characteristic band spectrum data to establish a prediction model, the
accuracy of the model established by the SVR method was higher than that of the BPNN
method, and the characteristic band spectrum extracted by the MSC method was prepro-
cessed. The accuracy of the model established by the data was higher than that of the
other preprocessing methods, the accuracy R2 of the eight models established based on the
characteristic bands was above 0.9105, and the prediction effect was good. Among them,
the MSC-SPA-SVR model had the best prediction effect, with R2 = 0.9664. The predicted
results of the MSC-SPA-SVR model were consistent with the method reference values that
can be found in the references, indicating that the model was accurate, fast, and stable.

The prediction model established by the characteristic waveband was compared
with the full waveband model. For the original data and the characteristic band model
established by the 1ST and SNV preprocessed spectral data, 16, 17, and 14 characteristic
bands were extracted, respectively, accounting for only 6.25%, 6.64%, and 5.47% of the total
number of bands. Compared with the full-band model, the accuracy of the model was only
reduced by 0.32%, 3.53%, and 0.52%, and the prediction performance was still relatively
good. For the characteristic band model established by the spectral data processed by
MSC, 11 characteristic bands were extracted, which only accounted for 4.30% of the total
number of bands. Compared with the full band model, the accuracy of the model increased
by 0.30%, and the prediction performance was better. It can be seen that the number of
characteristic bands extracted after MSC processing was smaller, and the model accuracy
was higher than that of the full-band model, and the effect was better. Although the model’s
accuracy established by the characteristic bands extracted by other processing methods
were slightly reduced, the prediction effect was still better. The SPA method extracted the
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characteristic bands, which greatly reduced the amount of data, removed a large amount of
redundant information in the spectral data, shortened the modelling time, and improved
the modelling accuracy.

2.5. Classification of Different Years of Wheat Based on CAT Activity

For the wheat stored for 0–4 years, a BP neural network (BPNN) classification model
and a support vector classification (SVC) model were established based on CAT. The
classification statistics results are shown in Table 4.

Table 4. Classifying results based on catalase activity.

Category
BPNN Classification Support Vector Classification (SVC)

Correct Rate/% Number of Correct
Classifications Correct Rate/% Number of Correct

Classifications

Five categories 67.35 33 71.43 35
Four categories: 2 to

3 years of storage 81.63 40 69.39 34

Four categories: 1 to
2 years of storage 87.76 43 87.76 43

Three categories 100 49 95.92 47
Two categories 100 49 95.92 47

They were divided into five categories according to the storage life. The classification
result of the BPNN is shown in Figure 7a, and the classification accuracy (ACC) was
only 67.35%. The classification result of SVC is shown in Figure 7b, and the ACC was
only 71.43%.
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Figure 7. (a,b) represent the five categories results of catalase activity BPNN and SVC, respectively.

Among them, the classification error of the wheat harvested from 2017 to 2019, i.e.,
wheat that was stored for 1–3 years, was relatively large, showing a mixed state, indicating
that the CAT activity of the wheat stored for 1–3 years had certain similarities and could
not be completely distinguished. Therefore, the wheat harvested in 2017–2018, i.e., the
wheat that was stored for 2–3 years, represents one category, and the other durations of
wheat storage were each classified into four categories (these categories include 2 to 3 years
of wheat storage). The BPNN classification accuracy rate was ACC = 81.63%, which was
somewhat improved. The SVC classification accuracy rate was ACC = 69.39%, and the
accuracy rate decreased slightly, indicating that the BPNN classification effect was better.
The wheat that was harvested in 2018–2019, i.e., the wheat that was stored for 1–2 years,
represents one category, and the other durations of wheat storage were each classified
into four categories (these categories include 1 to 2 years of wheat storage). The BPNN
classification accuracy rate was ACC = 87.76%, and the classification accuracy rate was good.
The values for the category that included the wheat that had been stored for 2 to 3 years
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increased. The SVC classification accuracy rate was ACC = 87.76%. The accuracy rate was
good, and it had increased. Therefore, this indicates that the CAT activity of the wheat
that had been stored for 1–2 years was more mixed and difficult to distinguish. The wheat
harvested in 2017–2019, i.e., the wheat that was stored for 1–3 years represents one category,
and the other durations of wheat storage were each placed into this category to make a
total of three classifications. The BPNN classification accuracy rate was ACC = 100%, as
shown in Figure 8a. The SVC classification accuracy rate was ACC = 95.92%, as shown in
Figure 8b.
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The accuracies of the two classification methods were both optimal, and the BPNN
classification method can completely distinguish the three types of wheat. By taking the
wheat harvested in 2017–2019 that was stored for 1–4 years as the first category, the newly
harvested wheat and the stock wheat were classified into two categories. The classification
accuracy of the BPNN was ACC = 100%, and the accuracy of the SVC classification was
ACC = 95.92%. The classification effects were better, and the BPNN method’s classification
effect was better.

Based on the above classification results, the classification model with the highest
classification accuracy and the most categories (i.e., the BPNN had three classifications)
was selected to classify the wheat ageing. The classification model was tested multiple
times to obtain the classification threshold on CAT. The ageing of the newly harvested
wheat was of grade I, and the critical value of CAT was 71.42 mg H2O2/g. The ageing of
the wheat that had been stored for 1–3 years was of grade II, and the critical value of CAT
was 37.91 mg H2O2/g. The wheat that had been stored for more than three years was of
grade III. Namely, when the content of CAT was more than 71.42 mg H2O2/g, the wheat
was fresh when it was in grade I. When the content of CAT ranged from 71.42 mg H2O2/g
to 37.91 mg H2O2/g, the wheat was fresh when it was in grade II. When the content of CAT
was less than 37.91 mg H2O2/g, the wheat was fresh when it was in grade III.

2.6. Visualization of Chemical Information

Since the hyperspectral image of a wheat sample contains a large number of pixels,
up to more than 80,000, here, only a 100 × 100 square area (a total of 10,000 pixels) was
selected for the spectral data extraction and prediction. We visualized the chemical infor-
mation distribution of the wheat CAT activity, and we used the optimal CAT prediction
model (MSC-SPA-SVR) which we have established to predict the CAT of each pixel, which
was applied to transform and visualize every pixel of the hyperspectral images into the
corresponding color images to predict the CAT activity distribution of the tested wheat.
The obtained visualized image was displayed in a linear color scale with different colors,
reflecting the changes of the CAT activity. All of the procedures of the visualization process
were carried out with the software Matlab 2020a (The MathWorks Inc., Natick, MA, USA).
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Figure 9 shows the pseudocolor images of the CAT visualization distribution of three wheat
samples with different ageing grades.
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The color of the image changed from blue to green and from yellow to red. The bluer
the color is, then the higher the CAT value is, which means that the wheat is newer. The
redder the color is, the lower the CAT value is, indicating that the wheat is older. As shown
in Figure 9a, when the CAT = 112.78 mg H2O2/g, and the wheat is of grade I and is fresh,
the overall image is blue-green, and yellow and red colors are slightly distributed. As
shown in Figure 9b, the image is yellow when the CAT = 51.54 mg H2O2/g, and the wheat
is of grade II and is fresh. The amount of red is obviously increased, and it is distributed
with blue-green. As shown in Figure 9c, when the CAT = 37.91 mg H2O2/g, and the wheat
is of grade III and is fresh, the overall image is yellow-red, and blue-green distributed in a
small amount. However, it is easy and convenient to predict and visualize the CAT activity
of various parts of the wheat through the HSI. The HSI described the spatial and spectral
data as a complete whole. Therefore, the HSI imaging technology has the superpotential to
quickly, non-destructively, and visually measure the activity of the wheat CAT, which can
further discriminate the ageing of the wheat.

To sum up, the HSI combined with the BPNN and SVM was successfully used to
predict the wheat’s CAT activity and characterize the wheat’s ageing. In the artificially
accelerated ageing process, the CAT activity of the strong, medium, and weak gluten wheat
decreased with the extension of the ageing time. The wheat CAT activity and ageing
time were more sensitive, and they could be used as an indicator that characterizes the
ageing of the wheat. Using the 1ST, MSC, and SNV methods to preprocess the wheat
hyperspectral data can not only eliminate part of the noise, but they can also strengthen
the spectral information, and the effect was significantly improved. The CAT activity was
combined with the original and full-band spectral data which had been preprocessed by
1ST, MSC and SNV to establish the BPNN model and SVR model. The prediction effect
of the model was significant. All of them are above 0.9485, among which the 1ST-SVR
model had the best prediction effect (R2 = 0.9689). Using SPA to extract the characteristic
bands of the wheat CAT activity and modelling, there were fewer characteristic bands
extracted after the MSC pretreatment (11) (only 4.30% of the total wavelengths) and the
corresponding wavelengths were 918.7 nm, 956.2 nm, 986.8 nm, 1061.4 nm, 1125.4 nm,
1149.0 nm, 1192.6 nm, 1368.9 nm, 1382.1 nm, 1653.3 nm, and 1672.7 nm. The MSC-SPA-
SVR model had the best prediction effect (R2 = 0.9664). The MSC pretreatment method
performed better, and the SVR modelling method performed better. Furthermore, compared
with other studies of the CAT activity by spectroscopy [48,49], the CAT activity prediction
model in the present study had a better performance. Therefore, the results illustrated that
the CAT activity prediction model based on the hyperspectral image can realize the fast
and nondestructive CAT activity detecting of maize kernels.
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3. Materials and Methods
3.1. Sample Processing

Newly harvested wheat: The newly harvested wheat 26 (strong gluten) and the newly
harvested wheat 35 (medium gluten) were from the Xinxiang Academy of Agricultural
Sciences; Yang wheat 13 (weak gluten) was from the Xinyang Academy of Agricultural
Sciences; both of them were newly harvested in June 2020. After the cleaning and impurity
removal, the wheat was sub-packed in non-woven bags. Each type of wheat was divided
into 140 portions, each portion was 150 g, and there were 420 samples in total. For
accelerated ageing, the wheat samples were placed in a constant temperature and humidity
incubator. The storage temperature was set at 40 ± 1 ◦C, and the relative humidity was set
at 90 ± 5% RH. The samples were sampled every ten days for the measurement.

Stored wheat: A total of 147 pieces of wheat of different ages were collected in Henan
Province, all of which were mixed wheat. There were 35 wheat samples which were
harvested in 2016, 32 wheat samples which were harvested in 2017, 25 wheat samples
which were harvested in 2018, 34 wheat samples which were harvested in 2019, and
21 wheat samples which were harvested in 2020. Each wheat sample was 150 g.

3.2. Determination of CAT

The leaf H2O2 contents and CAT activities were measured on the third leaves of the
control and drought-treated wheat plants. H2O2 was determined using the method [50].
The CAT was assayed as described [51].

3.3. Hyperspectral Image Acquisition and Correction

This study used the Gaia Sorter-Dual full-band hyperspectral imaging system, which
was produced by Sichuan Shuangli Hepu Technology Co., Ltd., as shown in Figure 10.
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7. Computer.

Its core components include a bromine tungsten light source, a spectroscopic camera
(Image-λ-N17E), an electronically controlled mobile platform, a computer, and control
software. The spectral range of the system was 850–1700 nm, the number of spectral bands
was 256. The pure genotypes of soft red winter wheat and soft white wheat were placed in
a Petri dish for hyperspectral image scanning. In order to obtain a clear and undistorted
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image, the system parameters were determined after multiple scans [52]. The camera
height was 13.5 cm, the exposure time was 42 ms, and the platform movement speed was
0.48 cm/s. In order to reduce the influence of light source changes and system noise, the
obtained original image (R0) was subjected to black and white correction. A blackboard
image (B), with a reflectivity close to 0%, was obtained by covering the lens with a lens cap.
A whiteboard image (W), with a reflectivity close to 100%, was obtained from a PTFE sheet.
The corrected image (RC) was calculated according to Formula (1).

RC =
R0 − B
W − B

× 100% (1)

3.4. Data Analysis

The ROI tool in the ENVI 5.3 software (ENVI 5.3, Research Systems Inc., Solutions,
Boulder, CO, USA, 2014) was used to select the region of interest (ROI) of the corrected
hyperspectral images and to calculate and extract the average spectral data of the region of
interest (ROI). MATLAB R2019a software (R2019a, The MathWorks Inc., MA, USA) was
used to process and model the extracted spectral data. In this study, the first derivative
(1ST), the multiple scattering correction (MSC), and the standard normal variable transfor-
mation (SNV) methods were used to preprocess 420 extracted spectral data to eliminate the
scattering effects caused by system noise and varying particle size and distribution [53,54].
The successive projections algorithm (SPA) was used to extract the characteristic wave-
lengths related to the wheat fatty acid values and bean plant CAT activity, and the BP
neural network (BPNN) and support vector machine (SVM) methods were used to establish
the regression and classification models, respectively [55,56].

3.5. Visualization of Chemical Information

After the correction of all of the hyperspectral image pixels were extracted from the
spectral data, and the optimal prediction model was imported into the chemical informa-
tion of each pixel in the forecast, and the forecast data in the original coordinate values of
the pixels were used to form a two-dimensional matrix, the pseudocolor processing was
conducted to obtain the distribution of the characterization of chemical information pseu-
docolor image, and the distribution of chemical information visualization was realized [57].

4. Conclusions

Hyperspectral imaging technology (850–1700 nm), combined with the BPNN and
SVM machine learning method, successfully predicted the CAT activity of wheat and
characterized the aging of wheat. The experimental results show that the MSC-SPA-SVR
model is the best in quantitatively predicting the wheat CAT activity. Based on CAT to
classify the wheat of different ages, the accuracy of the BPNN’s three classifications was
100%. Moreover, the best obtained MSC-SPA-SVR model was used to transfer the spectrum
of each pixel into its wheat CAT activity values, thus, visualization maps of the CAT activity
distribution were generated. The results of this study indicate that the HSI has a good
predictive ability and potential for wheat CAT activity. As far as it is known, it is the first
time that researchers have used hyperspectral imaging technology to predict the activity of
wheat catalase. The variety and quantity of wheat used in the experiment are limited, but
the experimental results show that the experimental method is feasible, and this technology
can be extended to more varieties of wheat, wheat samples, or other grain reserves, which
will make the country’s detection and monitoring of grain reserves more rapid, convenient,
and non-destructive.
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